Большая энциклопедия нефти и газа. Применение инертной среды. Общая схема противоречий


ПРИНЦИП ВЫНЕСЕНИЯ

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

ПРИМЕРЫ

Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что, с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки, оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.

Целесообразность этой идеи очевидна.

Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году; между тем это простое и нужное изобретение могло быть сделано значительно раньше.

Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно, обычный вертолет вынужден возить горючее.

Еще один ПРИМЕР.
Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т.д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанное на магнитофонную ленту.

Отделить птичий крик от птиц - решение конечно, необычное, но характерное для принципа вынесения.

ПРИЕМ 3
ПРИНЦИП МЕСТНОГО КАЧЕСТВА
а) Перейти от одной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
б) Разные части объекта должны иметь (выполнять) различные функции.
в) Каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что, с целью предотвращения распространения тумана по выработкам и сноса его с источника пылеобразования вентиляционным потоком, подавление пыли производят одновременно тонкодиспергированной и грубодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.

Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что, с целью уменьшения образования трещиноватых зерен, рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.

Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились, и для каждой части создавались наиболее благоприятные местные условия.

Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.

Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.

Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг - отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джеймс Уатт. Вот что он рассказывает:

"После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того, чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов...

Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день. Я проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремиться туда, и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!"

ПРИЕМ 4
ПРИНЦИП АССИМЕТРИИ
Перейти от симметричной формы объекта к асимметричной.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.85:
а) Перейти от симметричной формы объекта к асимметричной.
б) Если объект асимметричен, увеличить степень асимметрии.)

Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.

Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.

Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая - так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая - значительно дальше.

Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.

ПРИЕМ 5
ПРИНЦИП ОБЪЕДИНЕНИЯ

а) Соединить однородные или предназначенные для смежных операций объекты.
б) Объединить во времени однородные или смежные операции.

ПРИЕМ 6
ПРИНЦИП УНИВЕРСАЛЬНОСТИ

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта - совмещение во времени процессов транспортировки и переработки нефти.

Авторское свидетельство № 160100. Способ транспортировки материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что, с целью одновременного осуществления промывки табачных листьев и фиксации их цвета, используют воду, нагретую до 80-85 C.

Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что, с целью упрощения элемента, сама пленка служит шиной записи-считывания.

ПРИЕМ 7
ПРИНЦИП "МАТРЕШКИ"

а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.;
б) Один объект проходит сквозь полость в другом объекте.

Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких продуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.


ПРИЕМ 8
ПРИНЦИП АНТИВЕСА

а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппаратуры, отличающийся тем, что, с целью удешевления и упрощения прострелочных и взрывных работ, спуск стреляющей и взрывной аппаратуры производят свободно под действием собственного веса, а подъем к устью скважины - с помощью встроенного в корпус реактивного двигателя.

При создании сверхмощных турбогенераторов возникла сложная задача: как уменьшить давление ротора на подшипники? Решение нашли в том, что над турбогенератором установили сильный электромагнит, компенсирующий давление ротора на подшипники.

Иногда приходится решать обратную задачу: компенсировать недостаток веса. При создании и эксплуатации шахтных электровозов возникает явное техническое противоречие: для увеличения тяги нужно утяжелять электровоз, а для уменьшения его мертвого веса следует делать электровоз возможно более легким. Группа сотрудников Ленинградского горного института разработала и успешно применила простое устройство, позволяющее снять это техническое противоречие и в полтора раза увеличить производительность рудничных электровозов: в ведущих колесах монтируется мощный электромагнит; создается магнитное поле, охватывающее колеса и рельсы; сила сцепления резко возрастает, а вес электровоза может быть снижен.

ПРИЕМ 9
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ
Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО АНТИДЕЙСТВИЯ
а) Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.
б) Если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.)

ПРИМЕРЫ
Авторское свидетельство № 84355. Заготовку турбинного диска устанавливают на вращающийся поддон. Нагретая заготовка по мере охлаждения сжимается. Но центробежные силы (пока заготовка не потеряла пластичности) как бы отштамповывают заготовку. Когда же деталь остынет, в ней появятся сжимающие усилия.

На этом принципе основана вся технология предварительного напряжения железобетона: чтобы бетон лучше работал на растяжение, его предварительно укорачивают. Это едва ли не единственный случай, когда строительная техника использует более передовые методы, нежели машиностроение. Предварительно напряженные конструкции применяются в машиностроении еще очень редко, между тем использование этого приема могло бы дать колоссальные результаты.

Рис. 15
Принцип предварительного напряжения: трубы составного вала заранее скручены в направлении, противоположном рабочей деформации.

Как, например, сделать вал прочнее, не увеличивая его наружный диаметр? Решение этой задачи показано на Рис. 15. Вал составлен из вставленных одна в другую труб, предварительно закрученных на определенные расчетом углы. Иными словами, вал предварительно получает деформацию, противоположную по знаку той деформации, какую он получает во время работы. Крутящий момент должен сначала снять эту предварительную деформацию, только после этого начнется деформация вала в "нормальном" направлении. Составной вал весит вдвое меньше равного ему по прочности обычного монолитного.


ПРИЕМ 10
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ИСПОЛНЕНИЯ
а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).
б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку.

(Название приема в формулировке по книге "Творчество как точная наука", 1979, с.86:
ПРИНЦИП ПРЕДВАРИТЕЛЬНОГО ДЕЙСТВИЯ )

Авторское свидетельство № 61056. Черенки многих плодово-ягодных и других культур, посаженные в почву, не укореняются вследствие недостатка питательных веществ в черенке. По данному изобретению предлагается создавать запас питательных веществ заранее, насыщая перед посадкой черенки в ванне с питательной смесью.

Авторское свидетельство № 162919. Способ снятия гипсовых повязок с помощью проволочной пилы, отличающийся тем, что, с целью предупреждения травм и облегчения снятия повязки, пилу помещают в предварительно смазанную подходящей смазкой трубку, выполненную, например, из полиэтилена, и заранее загипсовывают под повязку при ее наложении. Благодаря этому распиливать повязку можно от тела наружу - без опасения задеть тело.

Любопытный случай использования этого же принципа - окраска древесины до того, как дерево срубили: красители поступают под кору дерева и разносятся соками по всему стволу.

ПРИЕМ 11
ПРИНЦИП "ЗАРАНЕЕ ПОДЛОЖЕННОЙ ПОДУШКИ"

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

ПРИМЕРЫ

Авторское свидетельство № 264626. Способ снижения токсического действия химических соединений с помощью присадок, отличающийся тем, что, с целью уменьшения опасности отравления химическими веществами, а также продуктами их превращений в организме, присадки добавляют непосредственно в исходные токсичные химические соединения при их изготовлении.

Авторское свидетельство № 297361. Способ предотвращения распространения лесного пожара посредством создания заградительных полос из растений, отличающийся тем, что, с целью придания огнестойкости растениям, образующим заградительную полосу, в почву вносят биологически усваиваемые или химические элементы, тормозящие процесс их воспламенения.

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шины и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Принцип "заранее подложенной подушки" можно использовать не только для повышения надежности. Вот характерный пример. В связи с тем, что в американских библиотеках часто пропадают книги, изобретатель Эмануэль Трикилис предложил прятать в переплеты кусочек намагниченного метала. При выдаче книги библиотекарь размагничивает этот металлический вкладыш, проталкивая книгу под специальной электрической спиралью. Если посетитель попытается уйти, взяв незарегистрированную книгу, то спрятанный в двери прибор среагирует на магнитный вкладыш в переплете.

Горноальпийская спасательная станция в Швейцарии применила аналогичный метод для быстрого обнаружения людей, попавших в снежную лавину. Теперь лыжник или житель местности, в которой часты лавины, носит небольшой магнит. При несчастном случае этот магнит помогает легко обнаружить пострадавшего с помощью искателя даже под трехметровым покровом снега.

ПРИЕМ 12
ПРИНЦИП ЭКВИПОТЕНЦИАЛЬНОСТИ

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Авторское свидетельство № 110661. Контейнеровоз, в котором груз не поднимается в кузов, а только приподнимается гидроприводом и устанавливается на опорную скобу. Такая машина работает без крана и перевозит значительно более высокие контейнеры.

ПРИЕМ 13
ПРИНЦИП "НАОБОРОТ"

а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).
б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную - движущейся.
в) Перевернуть объект "вверх ногами".

Авторское свидетельство № 184649. Способ вибрационной очистки металлоизделий в абразивной среде, отличающийся тем, что, с целью упрощения процесса очистки, движения вибрации сообщают обрабатываемой детали.

Изобретатель решил эту задачу просто и изящно: металл идет по трубкам, опущенным ко дну литейной формы. По мере заполнения форма движется вниз, и, таким образом, каждая порция металла подается именно туда, где она должна застыть (см. Рис. 16).

Рис. 16
Принцип "наоборот": в отличие от обычного способа заливки, движется форма, а поступающий в нее металл остается неподвижным.

Авторское свидетельство № 109942. Это изобретение решает важную проблему отливки крупногабаритных тонкостенных деталей. При отливке таких деталей желательно, чтобы металл поступал в форму сверху, и затвердение шло снизу вверх. Но лить металл в форму ("дождевой" способ) допустимо с высоты не более пятнадцати сантиметров, иначе металл сгорит или пропитается газами. А как быть, если форма имеет высоту два-три метра? Если подавать металл снизу, то первые порции его затвердеют, не успев подняться к верхней части формы.

Литье всегда осуществлялось так, что двигался металл, а форма была неподвижной. Здесь все наоборот: движется форма, а залитый в нее металл остается неподвижным. Это позволило "совместить несовместимое": плавность заполнения формы и затвердевание металла снизу вверх, как при литье "дождевым" способом.

ПРИЕМ 14
ПРИНЦИП СФЕРОИДАЛЬНОСТИ

а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.
б) Использовать ролики, шарики, спирали.
в) Перейти к вращательному движению, использовать центробежную силу.

Патент ФРГ № 1085073. Устройство для вварки труб в трубную решетку, в котором электродами служат катящиеся шарики.

Авторское свидетельство № 262045. Исполнительный орган проходческого комбайна, включающий породоразрушающие электроды, отличающийся тем, что с целью повышения эффективности разрушения крепких горных пород породоразрушающие электроды выполнены в виде свободно вращающихся клиновых роликов, установленных на изолирующей оси.

Авторское свидетельство № 260874. Способ отделения нитей корда от резины, например, в каркасе изношенных покрышек, включающий выдержку покрышки в углеводородах, обработку ее высоконапорными струями жидкости, механическое расчесывание нитей и их обрезку, отличающийся тем, что, с целью повышения производительности труда, обработку покрышки ведут в процессе ее вращения со скоростью, ослабляющей связь между частицами резины.

ПРИЕМ 15
ПРИНЦИП ДИНАМИЧНОСТИ

а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.
б) Разделить объект на части, способные перемещаться относительно друг друга.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.87 имеет подпункт: в) Если объект в целом неподвижен, сделать его подвижным, перемещающимся.)

Авторское свидетельство № 317390. Ласта плавательная резиновая, отличающаяся тем, что, с целью обеспечения регулирования жесткости ее рабочей лопасти для различных по скорости и длительности плавания режимов, она имеет внутренние продольные полости, весь объем которых заполнен инертной несжимаемой жидкостью, статическое давление которой по необходимости изменяется на берегу или под водой.

Авторское свидетельство № 161247. Транспортное судно, корпус которого имеет цилиндрическую форму, отличающееся тем, что, с целью уменьшения осадки судна при полной загрузке, его корпус выполнен из двух раскрывающихся, шарнирно сочлененных полуцилиндров.

Патент СССР № 174748. Автомобиль с шарнирно соединенными секциями рамы, которые могут поворачиваться при помощи гидроцилиндров. Такой автомобиль обладает повышенной проходимостью.

Авторское свидетельство № 162580. Способ изготовления полых кабелей с каналами, образованными трубками, скрученными с токоведущими жилами, с предварительным заполнением трубок веществом, удаляемым из них после изготовления кабеля. Чтобы упростить технологию, в качестве заполняющего вещества применяют парафин, который после изготовления кабеля расплавляют и выливают из трубок.

ПРИЕМ 16
ПРИНЦИП ЧАСТИЧНОГО ИЛИ ИЗБЫТОЧНОГО РЕШЕНИЯ
Если трудно получить 100% требуемого эффекта, надо получить "чуть меньше" или "чуть больше". Задача при этом может существенно упроститься.

Рис. 17
Принцип избыточного действия: чтобы подавать порошок по трубке 1 равномерно, его насыпают в воронке 2 с избытком; лишний порошок высыпается в бункер 3, а воронка всегда заполнена до краев.

Авторское свидетельство № 181897. Способ борьбы с градом, основанный на кристаллизации с помощью реагента (например йодистого серебра) градового облака, отличающийся тем, что, с целью резкого сокращения расхода реагента и средств его доставки, осуществляют кристаллизацию не всего облака, а крупнокапельной (локально) его части.

Авторское свидетельство № 262333. Устройство для дозирования металлических порошков, содержащее бункер с дозатором, отличающееся тем, что, с целью обеспечения равномерной подачи порошка к дозатору, бункер снабжен внутренней приемной воронкой и каналом с электромагнитным насосом для подачи (с избытком) порошка к воронке (см. Рис. 17).

ПРИЕМ 17
ПРИНЦИП ПЕРЕХОДА В ДРУГОЕ ИЗМЕРЕНИЕ

а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.
б) Многоэтажная компоновка объектов вместо одноэтажной.
в) Наклонить объект или положить его "набок".
г) Использовать обратную сторону данной площади.
д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Авторское свидетельство № 150938. Полупроводниковый диод, отличающийся тем, что, с целью увеличения мощности диода, в нем применен профилированный электронно-дырочный переход и профилированный омический контакт без увеличения периметра полупроводниковой пластины. Переход от плоского контакта к объемному позволяет при прежних габаритах диода получить большую площадь пластины полупроводника и, следовательно, большую мощность, снимаемую с электронно-дырочного перехода.

Известный советский изобретатель Д. Киселев, долгое время работавший над совершенствованием долота для бурения нефтяных скважин, рассказывает в своей книге "Поиски конструктора": "В долоте также каждый подшипник обладает определенной грузоподъемностью, и если увеличить их число, дать меньшую нагрузку каждому, можно улучшить условия их работы, предотвратить износ. Именно по этому пути шла все время моя мысль в поисках различных схем размещения подшипников. Но мешали габариты долота, малое пространство, на котором я имел возможность располагать необходимое мне количество шариков и роликов. Теперь же я вдруг увидел решение, вот оно, рядом. На одном и том же участке поверхности можно разместить большее количество "элементов" подшипников в два яруса, как размещаются люди и вещи в купе пассажирских вагонов. Я даже рассмеялся: так просто было это решение, тщетно разыскиваемое много месяцев".

Авторское свидетельство № 180555. Способ механизации обмена вагонеток в горизонтальном проходческом забое, отличающийся тем, что, с целью устранения подрыва кровли и устройства разъездов, обмен груженых вагонеток на порожние производят посредством перенесения порожней вагонетки с возможным поворотом ее на угол 90 над составом под погрузку.

Авторское свидетельство № 259449. Устройство для магнитографической дефектоскопии, отличающееся тем, что, с целью повышения срока службы, кольцевая магнитная лента выполнена с двусторонним магниточувствительным покрытием и изогнута в виде листа Мёбиуса.

Авторское свидетельство № 244783. Теплица для круглогодичного выращивания овощных культур, отличающаяся тем, что, с целью улучшения светового режима растений за счет использования солнечных лучей, она снабжена вогнутым отражательным экраном, установленным поворотно с северной стороны теплицы.

ПРИЕМ 18
ИСПОЛЬЗОВАНИЕ МЕХАНИЧЕСКИХ КОЛЕБАНИЙ
а) Привести объект в колебательное движение.
б) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой).
в) Использовать резонансную частоту.
г) Применить вместо механических вибраторов пьезовибраторы.
д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Авторское свидетельство № 220380. Способ вибродуговой наплавки и сварки деталей под слоем флюса с низкочастотными колебаниями электрода, отличающийся тем, что, с целью повышения качества наплавленного металла, на низкочастотные колебания накладывают высокочастотные ультразвуковые колебания порядка, например, 20 кГц.

Авторское свидетельство № 307896. Способ безопилочного резания древесины при помощи изменяющего свои геометрические размеры режущего инструмента, отличающийся тем, что, с целью снижения усилия внедрения инструмента в древесину, резание осуществляют инструментом, частота импульсов которого близка к собственной частоте колебаний перерезаемой древесины.

Патент США № 3239283. Трение покоя резко снижает чувствительность тонких приборов, мешает стрелкам, маятникам и другим подвижным частям легко поворачиваться в подшипниках. Чтобы избежать этого, подшипники заставляют вибрировать, и элементы прибора все время совершают осциллирующее движение относительно друг друга. В качестве источника вибрации обычно используют электромотор. При этом кинематика прибора существенно усложняется, а вес увеличивается. Американские изобретатели Джон Броз и Вильям Лаубендорфер разработали конструкцию подшипника, в котором втулки выполняются из пьезоэлектрического материала и с обеих сторон покрываются тонкой электропроводной фольгой. К фольге припаиваются электроды, по которым подводится переменный ток, создающий вибрацию.

ПРИЕМ 19
ПРИНЦИП ПЕРИОДИЧЕСКОГО ДЕЙСТВИЯ
а) Перейти от непрерывного действия к периодическому (импульсному).
б) Если действие уже осуществляется периодически - изменить периодичность.
в) Использовать паузы между импульсами для другого действия.

Авторское свидетельство № 267772. Известен способ исследования процесса дуговой сварки с использованием дополнительного осветителя. Однако при дополнительном освещении наряду с улучшением видимости твердого и жидкого материала, находящегося в области дуги, ухудшается видимость плазменно-газовой фазы столба дуги (явно техническое противоречие!). Предложенный способ отличается тем, что яркость дополнительного осветителя периодически изменяют от нуля до величины, превышающей яркость дуги. Это позволяет совместить наблюдение как за самой дугой, так и за процессом плавления электрода и переноса металла.

Авторское свидетельство № 302622. Способ контроля исправности термопары путем подогрева ее и проверки наличия в цепи э.д.с., отличающийся тем, что, с целью уменьшения времени контроля, нагревают термопару периодическими импульсами тока, а в промежутки времени между импульсами проверяют наличие термо э.д.с.

ПРИЕМ 20
ПРИНЦИП НЕПРЕРЫВНОСТИ ПОЛЕЗНОГО ДЕЙСТВИЯ

а) Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).
б) Устранить холостые и промежуточные ходы.

Авторское свидетельство № 126440. Способ многоствольного бурения скважин двумя комплектами труб. При одновременном бурении двух-трех скважин применяется ротор с несколькими стволами, включаемыми в работу независимо друг от друга, и два комплекта бурильных труб, поочередно поднимаемых и опускаемых в скважины для смены отработанных долот. Операции по смене долот совмещаются во времени с автоматическим бурением в одной из скважин.

Авторское свидетельство № 268926. Способ транспортировки сахара-сырца на судах, отличающийся тем, что, с целью снижения стоимости транспортировки путем утилизации свободных пробегов, используют танкеры, которые после разгрузки от нефтепродуктов или других жидких грузов, очистки и обработки моющими средствами загружают сахаром-сырцом.

ПРИЕМ 21
ПРИНЦИП ПРОСКОКА
Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

ПРИМЕРЫ
Авторское свидетельство № 241484. Способ скоростного нагрева металлических заготовок в потоке газа, отличающийся тем, что, с целью повышения производительности и уменьшения обезуглероживания, газ подают со скоростью не менее 200 м/с, при сохранении потока постоянным на всем протяжении его контакта с заготовками.

Авторское свидетельство № 112889. При разгрузке палубного лесовоза его накреняют с помощью судна-кренователя. Чтобы в воду свалился весь лес, приходиться создавать большой крен лесовоза, а это опасно. Предлагаемый способ состоит в том, что лесовоз быстро (рывком) накреняют на небольшой угол. Возникает динамическая нагрузка, и лес разгружается при небольшом угле крена.

Патент ФРГ № 1134821. Устройство для разрезания тонкостенных пластмассовых труб большого диаметра. Особенность устройства - нож рассекает трубу так быстро, что она не успевает деформироваться.

ПРИЕМ 22
ПРИНЦИП "ОБРАТИТЬ ВРЕД В ПОЛЬЗУ"

а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.
б) Устранить вредный фактор за счет сложения с другим вредным фактором.
в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

ПРИМЕРЫ
Член-корреспондент Академии наук СССР П. Вологдин в статье "Путь ученого" ("Ленинградский альманах", 1953, № 5) писал, что еще в двадцатых годах он задался целью применить токи высокой частоты для нагрева металла. Опыты показали, что металл нагревается лишь с поверхности. Ток высокой частоты никак не удавалось "загнать" в глубь заготовки, и опыты прекратили. Впоследствии Вологдин не раз сожалел, что не использовал этот "отрицательный эффект": промышленность могла бы получить метод высокочастотной закалки стальных деталей на много лет раньше, чем он был предложен в действительности.

По-иному сложилась судьба другого выдающегося изобретения - электроискровой обработки металла.

Б.Р. Лазаренко и И.Н. Лазаренко работали над проблемой борьбы с электроэрозией металлов. Электрический ток "разъедал" металл в месте соприкосновения контактов реле, и с этим ничего не удавалось сделать. Были испробованы твердые и сверхтвердые сплавы - и все безрезультатно. Исследователи пытались помещать контакты в различные жидкости, но разрушение шло еще интенсивнее.

Однажды изобретатели поняли, что этот "отрицательный эффект" можно где-то применить с пользой, и вся работа теперь пошла в другом направлении. 3 апреля 1943 года изобретатели получили авторское свидетельство на электроискровой способ обработки металла.


Сам по себе этот принцип прост: надо допустить то, что кажется недопустимым, - пусть случится! Но тут мысль изобретателя часто наталкивается на психологический барьер...

ПРИЕМ 23
ПРИНЦИП ОБРАТНОЙ СВЯЗИ
а) Ввести обратную связь.
б) Если обратная часть есть - изменить ее.

ПРИМЕРЫ
Авторское свидетельство № 283997. Внутри градирни ветер образует циркуляционные зоны, что снижает глубину охлаждения воды. Чтобы повысить эффективность охлаждения, в секциях градирни устанавливают температурные датчики и по их сигналам автоматически изменяют количество подаваемой воды.

Авторское свидетельство № 167229. Способ автоматического запуска конвейера, отличающийся тем, что, с целью экономии электроэнергии, потребляемой в момент запуска конвейерного двигателя, измеряют мощность, потребляемую двигателем конвейера во время работы, фиксируют ее в момент остановки конвейера и полученный сигнал, обратно пропорциональный весу материала на конвейере, подают на пусковой двигатель в момент запуска конвейера.

Авторское свидетельство № 239245. Способ автоматического регулирования процесса ректификации путем воздействия на расход орошения в колонну в зависимости от температуры и давления на выходе продукта, отличающийся тем, что, с целью стабилизации содержания одного из компонентов в трехкомпонентной смеси, дополнительно вводят коррекцию по удельному весу выходного продукта.

ПРИЕM 24
ПРИНЦИП "ПОСРЕДНИКА"

Использовать промежуточный объект-переносчик.

(Этот прием в формулировке по книге "Творчество как точная наука", 1979, с.89:
а) Использовать промежуточный объект, переносящий или передающий действие.
б) На время присоединить к объекту другой (легко удаляемый) объект.)

ПРИМЕРЫ
Авторское свидетельство № 177436. Способ подвода электрического тока в жидкий металл, отличающийся тем, что, с целью снижения электрических потерь, ток к основному металлу подводят охлаждаемыми электродами через промежуточный жидкий металл, температура плавления которого ниже, а плотность и температура кипения выше, чем у основного металла.

Авторское свидетельство № 178005. Способ нанесения летучего ингибитора атмосферной коррозии на защищаемую поверхность, отличающийся тем, что, с целью получения равномерного покрытия внутренних поверхностей сложных деталей, через последние продувают нагретый воздух, насыщенный парами ингибитора.


ПРИЕМ 25
ПРИНЦИП САМООБСЛУЖИВАНИЯ

а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.
б) Использовать отходы (энергии, вещества).

ПРИМЕРЫ
Авторское свидетельство № 261207. Дробеметный аппарат, корпус которого облицован изнутри износоустойчивыми плитами, отличающийся тем, что, с целью повышения стойкости облицовки, плиты выполнены в виде магнитов, удерживающих на своей поверхности защитный слой дроби. На стенках дробемета возникает, таким образом, постоянно обновляемый защитный слой дроби.

Авторское свидетельство № 307584. Способ сооружения каналов оросительных систем из сборных элементов, отличающийся тем, что, с целью упрощения транспортировки изделий после монтажа начального участка канала, его торцы закрывают временными диафрагмами, готовый участок канала затопляют водой и последующие элементы, также закрытые с торцов временными диафрагмами, сплавляют по этому участку канала.

Авторское свидетельство № 108625. Способ охлаждения полупроводниковых диодов, отличающийся тем, что, с целью улучшения условий теплообмена, применяется полупроводниковый термоэлемент, рабочим током которого является ток, проходящий через диод в прямом направлении.

ПРИЕМ 26
ПРИНЦИП КОПИРОВАНИЯ

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.
б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).
в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

ПРИМЕРЫ
Авторское свидетельство № 86560. Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающееся тем, что, с целью последующей геодезической съемки с панно изображения местности, оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками.

Иногда необходимо (для измерения или контроля) совместить два объекта, которые физически совместить невозможно. В этих случаях целесообразно применять оптические копии. Так была, например, решена задача пространственных измерений на рентгеновских снимках. Обычный рентгеновский снимок не позволяет определить, на каком расстоянии от поверхности тела находиться очаг заболевания. Стереоскопические снимки дают объемное изображение, но и в этом случае измерения приходится вести на глаз: ведь внутри тела нет масштабной линейки! Нужно, таким образом, "совместить несовместимое": тело человека, подвергнутого просвечиванию, и масштабную линейку.

Новосибирский изобретатель Ф.И. Аксенов решил эту задачу, применив метод оптического совмещения. По способу Ф.И. Аксенова стереоскопические рентгеновские снимки совмещаются со стереоскопическими же снимками решетчатого куба. Рассматривая в стереоскоп совмещенные снимки, врач видит "внутри" больного решетчатый куб, играющий роль пространственного масштаба.

Вообще, во многих случая выгоднее оперировать не с объектами, а с их оптическими копиями. Например, канадская фирма "Крютер Палп" пользуется специальной фотоустановкой для обмера бревен, перевозимых на железнодорожных платформах. По данным фирмы, фотографический обмер балансов раз в 50-60 быстрее ручного, отклонение же результатов фотообмера от данных точного подсчета не превышает 1-2%.

Еще один интересный ПРИМЕР:

Авторское свидетельство № 180829 - новый способ контроля поверхности внутренних полостей сферических деталей. В деталь наливают малоотражающую жидкость и, последовательно меняя ее уровень, производят фотографирование на один и тот же кадр цветной пленки. На снимке получаются концентрические окружности. Сравнивая после увеличения (в проекционной системе) полученные этим способом линии с теоретическими линиями чертежа, с большой точностью определяют величину отклонения формы детали.

ПРИЕМ 27
ДЕШЕВАЯ НЕДОЛГОВЕЧНОСТЬ ВЗАМЕН ДОРОГОЙ ДОЛГОВЕЧНОСТИ
Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

ПРИМЕРЫ
Правила асептики требуют, чтобы кипячение шприца с иглами для инъекции продолжалось не менее 45 минут. Между тем во многих случаях бывает необходимо ввести лекарство как можно быстрее. Во Всесоюзном научно-исследовательском институте медицинских инструментов и оборудования создан шприц-тюбик для одноразового использования. Это тонкостенный сосуд из пластмассы, на горловине которого укреплена стерильная игла, защищенная колпачком. Корпус шприца-тюбика в заводских условиях заполняется лекарственным препаратом и запаивается. Такой шприц можно привести в готовность буквально за считанные доли секунды - для этого достаточно лишь снять колпачок, прикрывающий иглу. Во время инъекции лекарство из тюбика выдавливается, после чего использованный шприц-тюбик выбрасывают.

Патент США № 3430629. Пеленка одноразового использования. Содержит наполнитель типа промокашки.

Существует много патентов такого типа: на одноразовые термометры, мусорные мешки, зубные щетки и т.д.

ПРИЕМ 28
ЗАМЕНА МЕХАНИЧЕСКОЙ СХЕМЫ

а) Заменить механическую систему оптической, акустической или "запаховой".
б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.
в) Перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся по времени, от неструктурных - к имеющим определенную структуру.
г) Использовать поля в сочетании с ферромагнитными частицами.

Рис. 20
В этой винтовой паре гайка движется без трения, за счет взаимодействия электромагнитных полей.

Авторское свидетельство № 163559. Способ контроля износа породоразрушающего инструмента, например буровых долот, отличающийся тем, что, с целью упрощения контроля, в качестве сигнализации износа применяют монтируемые в болота ампулы с резко пахучими химическими веществами, например с этилмеркаптаном.

Авторское свидетельство № 154459. Неизнашиваемая винтовая пара (Рис. 20). Винтовая пара состоит из винта 1, в резьбу которого уложена обмотка 2, и гайки 3 с обмоткой 4. Винт и гайка расположены с зазором между ними. Гайка 3 жестко связана с подвижным узлом станка или прибора. При прохождении тока по обмоткам 2 и 4 вокруг них создаются электромагнитные поля. Замыкание этих полей происходит соответственно через гайку и винт, причем магнитный поток достигает максимальной величины при совмещении витков винта и гайки.

При вращении винта магнитный поток между сместившимися один относительно другого витками обмоток винта и гайки искривляется и, как следствие, возникает усилие, стремящееся восстановить первоначальное взаимное расположение витков. Это усилие и будет вызывать поступательное перемещение гайки с подвижным узлом.

Наличие зазора между винтом и гайкой позволяет значительно продлить срок службы винтовой пары, сделать их практически неизнашиваемыми.

"На одном заводе делали сверхъювелирную по тонкости работу: шлифовали стенки отверстия диаметром в полмиллиметра.

Для такой операции изготовили миниатюрный шлифовальник диаметром в две десятых миллиметра, осыпанный алмазной пылью.

Инструмент этот вращала пневматическая турбина со скоростью 1000 оборотов в секунду! Кроме того, шлифовальник двигался по контуру отверстия, обходя его каждую минуту 150 раз. Рабочий был не в силах проникнуть взглядом в зону обработки, не мог уловить момент, когда крохотный инструмент касался детали. Рабочий то затягивал процесс обработки, то кончал его слишком рано, в обоих случаях детали шли в брак.

Собирались уже конструировать уникальный станок-автомат. Но изобретательская мысль нашла простой выход: деталь изолировали от станка, присоединили к ней один полюс электробатарейки, а другой полюс подвели к станку. В цепь включили усилитель и громкоговоритель. Теперь, как только инструмент касался детали, громкоговоритель "вскрикивал". Кричащий станок издавал звуки, по которым можно было судить и о том, когда началась шлифовка, и о том, как она проходит, - тональность звука менялась".

Авторское свидетельство № 261372. Способ проведения процессов, например каталитических, в системах с движущимся катализатором, отличающийся тем, что, с целью расширения области применения, создают движущееся магнитное поле и применяют катализатор с ферромагнитными свойствами.

Авторское свидетельство № 144500. Способ интенсификации теплообмена в трубчатых элементах поверхностных теплообменников... отличающийся тем, что, с целью повышения коэффициента теплоотдачи, в поток теплоносителя вводят ферромагнитные частицы, перемещающиеся под действием вращающегося магнитного поля преимущественно у стенок теплообменника, для разрушения и турбулизации пограничного слоя.

Французский патент № 1499276. После обработки деталей в галтовочных барабанах или вибрационных установках детали нужно отделить от абразивных зерен. Если детали крупные, это сделать нетрудно, если они ферромагнитные, их можно выловить на магнитных сепараторах. Но если детали не обладают магнитными свойствами, а по размерам не отличаются от абразивных зернышек? По данному изобретению задача решается тем, что абразиву придают магнитные свойства. Это можно сделать спрессовыванием или спеканием смеси абразивных зерен и магнитных частиц - стружек, крупинок и т.п., а также внедрением их в поры абразивов.


ПРИЕМ 29
ИСПОЛЬЗОВАНИЕ ПНЕВМО- И ГИДРОКОНСТРУКЦИЙ

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Рис. 21
Вместо массивной дымовой трубы - ажурное сооружение: полая спираль, имеющая на витках сопла, через которые подается сжатый воздух, образующий "стенку".

Авторское свидетельство № 243809.Цель изобретения - улучшение тяги и увеличение высоты рассеивания отводимых газов. Это достигается тем, что корпус трубы (Рис. 21) образован конической спиралью 1, полые витки которой имеют сопла 2 и соединены с полыми опорами 3, свободные концы которых, в свою очередь, присоединены к компрессору 4.

При включении компрессора 4 воздух, поднимаясь под давлением по опорам 3, попадает на спиральные витки корпуса и, вырываясь из сопел 2, создает воздушную "стенку".

Авторское свидетельство № 312630. Способ окраски крупногабаритных изделий распылением с удалением паров растворителя и окрасочного тумана через вентиляционную засасывающую систему, отличающийся тем, что, с целью уменьшения производственных площадей, вокруг окрашиваемого изделия создают восходящую на высоту, превышающую высоту изделия, воздушную завесу, верхние концы которой завихряют посредством напольной вентиляционной засасывающей системы.

Изобретение это преодолевает такое же техническое противоречие, что и в предыдущем случае. Поэтому похожи и решения: пневмостенка вместо жесткой трубообразной ограды.

Авторское свидетельство № 264675. Опора для сферического резервуара, включающая основание, отличающаяся тем, что, с целью снижения напряжения в оболочке резервуара, основание опоры выполнено в виде заполненного жидкостью сосуда с вогнутой крышкой из эластичного материала, принимающей форму опираемой на нее оболочки резервуара.

А вот двойник этого изобретения - авторское свидетельство № 243177. Устройство для передачи усилий от опоры копра на фундамент, отличающийся тем, что, с целью обеспечения равномерности передачи давления на фундамент, оно выполнено в виде плоского замкнутого сосуда, заполненного жидкостью.

ПРИЕМ 30
ИСПОЛЬЗОВАНИЕ ГИБКИХ ОБОЛОЧЕК И ТОНКИХ ПЛЕНОК

а) Вместо обычных конструкций использовать гибкие оболочки и тонкие пленки.
б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

ПРИМЕРЫ
Чтобы уменьшить потери влаги, испаряющейся через листья деревьев, американские исследователи опрыскивают их полиэтиленовым "дождем". На листьях создается тончайшая пластмассовая пленка. Растение, укрытое пластмассовым одеялом, развивается нормально благодаря тому, что полиэтилен значительно лучше пропускает кислород и углекислый газ, чем пары воды.

Авторское свидетельство № 312826. Способ экстракции в системе жидкость - жидкость, отличающийся тем, что, с целью интенсификации процесса массообмена, струю одной фазы подают через слой газа на поверхность другой фазы, перемещаемой пленкой по твердой поверхности.


ПРИЕМ 31
ПРИМЕНЕНИЕ ПОРИСТЫХ МАТЕРИАЛОВ
а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.)
б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Машины всегда строились из плотных (непроницаемых) материалов. Инерция мышления приводит к тому, что задачи, легко решаемые при использовании пористых материалов, зачастую пытаются решить введением специальных устройств и систем, сохраняя все элементы конструкции непроницаемыми. Между тем высокоорганизованной машине присуща проницаемость - примером может служить любой живой организм, начиная с клетки и кончая человеком.

Внутреннее перемещение вещества - одна из важных функций многих машин. "Грубая" машина осуществляет эту функцию с помощью труб, насосов и т.п., "тонкая" машина - с помощью пористых материалов и молекулярных сил.

ПРИМЕРЫ
Авторское свидетельство № 262092. Способ защиты внутренних поверхностей стенок емкости от отложений твердых и вязких частиц из находящегося в емкости продукта, отличающийся тем, что, с целью повышения эффективности защиты и снижения энергозатрат внутрь емкости, изготовленной из пористого материала, подают через ее стенки не образующую отложений жидкость под давлением, превосходящим давление внутри емкости.

Авторское свидетельство № 283264. Способ внесения добавок в жидкий металл с помощью огнеупорных материалов, отличающийся тем, что, с целью улучшения режима внесения добавок, в металл погружают пористый огнеупор, предварительно пропитанный материалом добавки.

Авторское свидетельство № 187135. Система испарительного охлаждения электрических машин, отличающаяся тем, что, с целью исключения необходимости подвода охлаждающего агента к машине, активные части и отдельные конструктивные элементы ее выполнены из пористых материалов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение.


ПРИЕМ 32
ПРИНЦИП ИЗМЕНЕНИЯ ОКРАСКИ

а) Изменить окраску объекта или внешней среды.
б) Изменить степень прозрачности объекта или внешней среды.
в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.
г) Если такие добавки уже применяются, использовать меченые атомы.

ПРИМЕРЫ
В кузнечных и литейных цехах, на металлургических заводах, всюду, где необходимо защитить рабочих от действия жары, применяют водяные завесы. Такие завесы отлично защищают рабочих от невидимых тепловых (инфракрасных) лучей, однако слепяще-яркие лучи от расплавленного металла беспрепятственно проходят сквозь тонкую жидкую пленку. Чтобы защитить рабочих от них, сотрудники польского Института охраны труда предложили окрашивать воду, из которой создается водяная завеса, - оставаясь прозрачной, она полностью задерживает тепловые лучи и в нужной степени ослабляет силу видимого излучения.

Авторское свидетельство № 165645. В фиксирующий раствор вводят краситель, который обратимо абсорбируется фотографическим слоем и не закрашивает подложку-бумагу или целлулоид. Краситель при последующей промывке водой должен удаляться из слоя. Скорость вымывания красителя из фотографического слоя примерно равна скорости вымывания тиосульфата натрия или несколько меньше ее. Обесцвечивание фотографического изображения свидетельствует о полноте промывки слоя от остатков солей, при помощи которых производилось фиксирование фотографического материала.


ПРИЕМ 33
ПРИНЦИП ОДНОРОДНОСТИ

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

ПРИМЕРЫ
Патент ФРГ № 957599. Литейный желоб для обработки расплавленного металла звуком или ультразвуком с помощью звукоизлучателя, помещенного в расплавленный металл, отличающийся тем, что находящаяся в соприкосновении с расплавленным металлом часть звукоизлучателя выполнена из того же металла, что и обрабатываемый металл, или из одного из его легирующих компонентов, и частично расплавляется этим расплавленным металлом, а остальная часть звукоизлучателя принудительно охлаждается и остается прочной.

Авторское свидетельство № 234800. Способ смазывания охлаждаемого подшипника скольжения, отличающийся тем, что, с целью улучшения смазывания при повышенных температурах, в качестве смазывающего вещества берут тот же материал, что и материал вкладыша подшипника.

Авторское свидетельство № 180340. Способ очистки газов от пыли, содержащей расплавленные частицы, отличающийся тем, что, с целью повышения эффективности процесса, исходные газы барботируют в среде, образованной при слиянии этих же частиц в расплав.

Авторское свидетельство № 259298. Способ сварки металлов, при котором свариваемые кромки устанавливают с зазором и подают в него присадочный материал с последующим нагревом свариваемых кромок, отличающийся тем, что, с целью улучшения сварки, в качестве присадочного материала используют летучие соединения тех же металлов, что и свариваемые.

ПРИЕМ 34
ПРИНЦИП ОТБРОСА И РЕГЕНЕРАЦИИ ЧАСТЕЙ
а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы.
б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

ПРИМЕРЫ
Патент США № 3174550. При аварийной посадке самолета бензин вспенивают с помощью специальных химических веществ, переводя его в негорючее состояние.

Патент США № 3160950. Чтобы при резком старте ракеты не пострадали чувствительные приборы, их погружают в пенопласт, который, выполнив роль амортизатора, быстро испаряется в космосе.

Нетрудно заметить, что этот принцип - дальнейшее развитие принципа динамизации: объект изменяется в процессе действия, но изменяется сильнее. Самолет с меняющейся в полете геометрией крыла - это принцип динамизации. Ракета, отбрасывающая отработанные ступени, - принцип отброса.

А вот изобретения-близнецы.

Авторское свидетельство № 222322. Способ изготовления винтовых микропружин, отличающийся тем, что, с целью повышения производительности, оправку выполняют из эластичного материала и удаляют путем погружения ее вместе с пружиной в состав, растворяющий эластичный материал.

Авторское свидетельство № 235979. Способ изготовления резиновых шаров-разделителей, отличающийся тем, что, с целью придания шару необходимых размеров, ядро формируют из смеси измельченного мела с водой с последующей просушкой и разрушением твердого ядра после вулканизации жидкостью, вводимой с помощью иглы.

Авторское свидетельство № 159783. Способ производства полых профилей, отличающийся тем, что, с целью получения разнообразных по размерам и форме профилей на сортовых станах, прокатке подвергают сварные пакеты, наполненные огнеупорным материалом, например, магнезитовым порошком, с последующим удалением наполнителя.

Можно привести сотни подобных изобретений. Трудно представить, сколько времени потеряли изобретатели на поиски, каждый раз отыскивая идею "с нуля". А ведь здесь один типовой прием: изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т.д.

Антипод принципа отброса - принцип регенерации.

Авторское свидетельство № 182492. Способ компенсации износа непрофилированного электрода-инструмента при электроэрозионной обработке токопроводящих материалов, отличающийся тем, что, с целью увеличения срока службы электрода-инструмента, на его рабочую поверхность в процессе обработки непрерывно напыляют слой металла.

Авторское свидетельство № 212672. При гидротранспортировании кислых гидросмесей с абразивными материалами внутренние стенки трубопроводов быстро изнашиваются. Защита их футеровки сложна, трудоемка, ведет к увеличению наружного диаметра труб. Описываемый способ защиты труб предусматривает образование на внутренних стенках трубы защитного слоя (гарниссажа). Для этого в транспортируемую гидросмесь периодически вводят известковый раствор. Таким образом, внутренние стенки трубопровода всегда защищены от износа, а сечение трубопровода уменьшается незначительно, так как гарниссаж изнашивается под действием абразивной кислой смеси.


ПРИЕМ 35
ИЗМЕНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА

а) Изменить агрегатное состояние объекта.
б) Изменить концентрацию или консистенцию.
в) Изменить степень гибкости.
г) Изменить температуру.

ПРИМЕРЫ
Авторское свидетельство № 265068. Способ проведения массообменных процессов в системе газ-вязкая жидкость, отличающийся тем, что, с целью интенсификации процесса, вязкую жидкость перед подачей в аппарат предварительно газируют.

ПРИЕМ 36
ПРИМЕНЕНИЕ ФАЗОВЫХ ПЕРЕХОДОВ
Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

ПРИМЕРЫ
Авторское свидетельство № 190855. Способ изготовления ребристых труб, заключающийся в раздаче заглушенных труб водой, подаваемой под давлением, отличающийся тем, что, с целью удешевления и ускорения процесса изготовления, поданную под давлением воду замораживают.

Может возникнуть вопрос: чем прием № 36 отличается от приемов № 35-а (изменение агрегатного состояния) и № 15 (принцип динамичности)? Прием № 35-а заключается в том, что вместо агрегатного состояния А объект используют в агрегатном состоянии Б и именно за счет особенностей состояния Б получают нужный результат.

Суть приема № 15 в том, что мы пользуемся то свойствами, присущими состоянию А, то свойствами, присущими состоянию Б.

При использовании приема № 36 задача решается за счет явлений, связанных с переходом от А к Б или обратно. Если, например, мы наполним трубу не водой, а льдом, ничего с трубой не произойдет. Требуемый эффект достигается за счет увеличения объема воды при замерзании.

Авторское свидетельство № 225851. Способ охлаждения различных объектов с помощью циркулирующего по замкнутому кругу жидкого теплоносителя, отличающийся тем, что, с целью уменьшения количества циркулирующего теплоносителя и снижения энергетических затрат, часть теплоносителя переводят в твердую фазу и охлаждение ведут полученной смесью.

"Фазовый переход" - понятие более широкое, чем "изменение агрегатного состояния". К фазовым переходам, в частности, относятся и изменения кристаллической структуры вещества. Так, олово может существовать в виде белого олова (плотность 7,31) и серого олова (плотность 5,75). Переход - при 18 С - сопровождается резким увеличением объема (значительно большим, чем при замерзании воды; поэтому усилия здесь могут быть получены намного большие).

Полиморфизм (кристаллизация в нескольких формах) присущ многим веществам. Явления, сопровождающие полиморфные переходы, могут быть использованы при решении самых различных изобретательских задач. Например, в патенте США № 3156974 используются полиморфные трансформации висмута и церия.


ПРИЕМ 37
ПРИМЕНЕНИЕ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ

а) Использовать термическое расширение (или сжатие) материалов.
б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

ПРИМЕРЫ
Авторское свидетельство № 309758. Способ волочения труб на подвижной оправке при пониженных температурах, отличающийся тем, что, с целью создания зазора между трубой и оправкой после волочения для извлечения последней из трубы без обкатки, в охлажденную трубу перед волочением вводят предварительно подогретую, например, до температуры 50-100 С оправку, извлечение которой после деформации производят после выравнивания температур трубы и оправки.

Авторское свидетельство № 312642. Заготовка для горячего прессования многослойных изделий, выполненных в виде концентрично расположенных втулок, изготовленных из различных материалов, отличающаяся тем, что, с целью получения многослойных изделий с напряженными слоями, каждая втулка изготовлена из материала, имеющего температурный коэффициент линейного расширения выше температурного коэффициента линейного расширения материала втулки, расположенной внутри нее.

Смысл приема - в переходе от "грубого" движения на макроуровне к "тонкому" движению на молекулярном уровне. С помощью термического расширения можно создавать большие усилия и давления. Термическое расширение позволяет очень точно "дозировать" движение объекта.

Авторское свидетельство № 242127. Устройство для микроперемещения рабочего объекта, например кристаллодержателя с затравкой, отличающееся тем, что, с целью обеспечения максимальной плавности, оно содержит два стержня, подвергаемых электронагреву и охлаждению по заданной программе, находящихся в закрепленных на суппортах термостатируемых камерах и поочередно перемещающих объект в нужном направлении.


ПРИEM 38
ПРИМЕНЕНИЕ СИЛЬНЫХ ОКИСЛИТЕЛЕЙ

а) Заменить обычный воздух обогащенным.
б) Заменить обогащенный воздух кислородом.
в) Воздействовать на воздух или кислород ионизирующими излучениями.
г) Использовать озонированный кислород.
д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов - повысить интенсивность процессов. В качестве примеров можно назвать способ спекания и обжига дисперсного материала с применением интенсификации процесса горения путем продувки воздухом, обогащенным кислородом; плазменно-дуговую резку нержавеющих сталей, при которой в качестве режущего газа берут чистый кислород; интенсификацию процесса агломерации руд путем ионизации окислителя и газообразного топлива перед подачей в слой шихты и т.д.


ПРИЕМ 39
ПРИМЕНЕНИЕ ИНЕРТНОЙ СРЕДЫ
а) Заменить обычную среду инертной.
б) Вести процесс в вакууме.
ПРИЕМ 40
ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Перейти от однородных материалов к композиционным.

ПРИМЕРЫ
Патент США № 3553820. Легкие прочные тугоплавкие изделия выполнены на основе алюминия и упрочнены множеством покрытых танталом волокон углерода. Такие изделия характеризуются высоким модулем упругости и используются в качестве материалов для конструирования кораблей воздушного и морского флотов.

Композиционные материалы - составные материалы, которые обладают свойствами, не присущими их частям. Например, пористые материалы, о которых шла речь в приеме № 31, представляют собой композицию из твердого вещества и воздуха; ни твердое вещество, ни воздух порознь не обладают теми свойствами, которые есть у пористых веществ.

Композиционные материалы изобретены природой и широко ею используются. Так, древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются. Лигнин связывает их в единое целое и сообщает материалу жесткость.

Интересный композиционный материал представляет сочетание легкоплавкого вещества (например, сплава Вуда) с волокнами тугоплавкого материала (например, стали). Такой материал легко плавиться, а застыв, обладает высокой прочностью. Постепенно происходит взаимная диффузия частиц припоя и волокон, в результате чего образуется сплав с высокой температурой плавления.

Другой композиционный материал - взвесь частиц кремния в масле - способен твердеть в электрическом поле.

6.2. Техническое противоречие

В первоначальной формулировке проблемы формулируются некоторые потребности, функции, которые необходимо выполнить.

В зависимости от вида проблемной ситуации (ПС) ее можно разрешить двумя способами (рис. 6.2):

Рис. 6.2

существенно изменить рассматриваемую систему или ее взаимодействие с надсистемой (НС) таким образом, чтобы отпала необходимость в этой потребности, в выполнении этой функции - ПС 1 ; в этом случае формулируется проблема по изменению НС;

дополнить существующую техническую систему некоторым устройством, которое позволило бы удовлетворить сформулированную потребность - ПС 2 (см. пример на рис 6.2).

Проблемы могут быть разные.

Например, мы не знаем, как технически реализовать выполнение потребной функции.

Или мы в принципе знаем, какое устройство нужно создавать для выполнения потребной функции, но при этом появляются нежелательные эффекты.

Нежелательный эффект, во-первых, связан с тем, что за реализацию функции, которую он должен выполнять, надо «платить». Из стремления же к идеальному решению следует, что полезная функция должна выполняться, но затрат на ее реализацию не должно быть.

Пример 6.2. По трубопроводу перекачивают газ. Необходимо обеспечить постоянный массовый расход газа при заданном перепаде давлений на входе и выходе трубопровода. Однако температура газа на входе в трубопровод меняется. Следовательно, массовый расход газа тоже будет изменяться.

Таким образом, возникает проблема. Массовый расход газа должен быть постоянным для управления некоторым процессом, но он не может быть постоянным, так как изменяется температура газа. При этом в систему нежелательно вводить сложные устройства, которые осуществляли бы функцию регулирования.

Во-вторых, нежелательные эффекты могут проявляться в виде вредных свойств (функций), которые возникают при функционировании технического объекта. Например, мы создаем некоторый технологический процесс, а он оказывает вредное воздействие на человека (электромагнитные излучения, вибрации и т. д.) или загрязняет окружающую среду и др.

То есть проблемная ситуация (ПС 2) заключается в том, что функцию выполнять надо, ибо в этом есть потребность, а нежелательных эффектов при этом быть не должно.

Такие проблемы часто возникают на начальном этапе создания ТО, когда намечается некоторый план решения проблемы, то есть при формировании идеи, принципа действия ТО для реализации ГПФ или попытке улучшить некоторые функциональные характеристики технического объекта.

Г. С. Альтшуллер отмечал, что каждой задаче, входящей в изобретательскую ситуацию, соответствует свое техническое противоречие (ТП) . Суть ТП сводится к тому, что при улучшении известными путями одного свойства (параметра) системы недопустимо ухудшается другой параметр.

Любая продукция, предназначенная для удовлетворения потребностей, характеризуется многими свойствами: экономичностью, надежностью, эргономичностью, эстетичностью, патентоспособностью, транспортабельностью, безопасностью, экологичностью, технологичностью и т. д. Для некоторых видов продукции весьма важными показателями являются масса конструкции, плотность компоновки, энергоемкость, мощность, производительность, время срабатывания механизмов, точность отработки параметров и т. д.

Все эти показатели условно можно разделить на две группы: показатели, характеризующие степень (уровень) выполнения техническим объектом ГПФ , и показатели, характеризующие факторы расплаты за выполнение ГПФ.

Стремление улучшить одни характеристики продукции часто приводит к ухудшению других. По крайней мере, на этапе анализа проблемы и постановки задачи не видно путей, как сделать так, чтобы при улучшении одних свойств не ухудшались бы другие, тоже весьма важные.

В проектно-конструкторских и технологических задачах обнаруживается противоречивость многих свойств, например, точность и производительность в технологии обработки материалов; масса, надежность и стоимость; устойчивость и управляемость технических объектов и др.

Например, один из способов увеличения надежности летательных аппаратов (потребность) - создание резервных систем и агрегатов. А это приводит к увеличению массы аппарата, что недопустимо, так как увеличиваются затраты на выполнение задания (ГПФ).

Нежелательные эффекты могут быть связаны с тем, что улучшение некоторых потребительных свойств приводит к усложнению ТО и, следовательно, к увеличению факторов расплаты.

Ситуация, когда попытки улучшить одну характеристику (или часть) системы приводит к ухудшению другой ее характеристики (или части), называется техническим противоречием (ТП).

Например, в технологии производства мероприятия, направленные на повышение производительности обработки, часто приводят к ухудшению качества продукции. (Если один из двух вариантов технологии при лучшем качестве позволяет обеспечить и бoльшую производительность, то он вытесняет второй вариант; в этом случае проблемной ситуации нет.)

Техническое противоречие появляется часто тогда, когда разработчик пытается каким-либо известным ему способом улучшить один из параметров качества (или функциональное свойство) объекта, но это приводит к недопустимому ухудшению другого, тоже весьма важного параметра качества (или функционального свойства).

Пример 6.2. Увеличение числа инструментов в слесарном наборе улучшает возможности дифференцированного воздействия на изделие, но ухудшает условия работы с набором, который становится более громоздким.

Для улучшения функционального свойства весьма часто рассматривается изменение одного из параметров технической системы, который существенно влияет на это функциональное свойство.

Пример 6.3. Чем больше литейный уклон на модели отливаемого изделия, тем легче извлечь ее из песчаной формы при формовке, но при этом нежелательно увеличиваются припуски металла (дополнительные его объемы), которые приходится в дальнейшем устранять механической обработкой литой заготовки.

Для этой проблемы можно сформулировать технические противоречия в двух вариантах.

ТП-1: Увеличивая литейный уклон, мы облегчаем процесс формования, но при этом увеличиваются затраты на обработку резанием.

ТП-2: Уменьшая литейный уклон, мы снижаем затраты на обработку, но при этом усложняется процесс формования.

Техническое противоречие можно представить в виде схемы, показанной на рис. 6.3.

Рис. 6.3

Формулирование технических противоречий - это конкретная реализация более общего приема поиска решения - переформулирование условий задачи. Это модель задачи, в которой раскрываются положительные и нежелательные эффекты или явления в рассматриваемой предметной области.

При этом возникает проблема, как, сохранив или даже улучшив положительные стороны (эффекты) в создаваемом ТО, не допустить появления нежелательных эффектов.

Формулировка ТП позволяет вычленить положительные и нежелательные эффекты для того, чтобы провести анализ причин появления нежелательных эффектов, и тем самым активизирует мышление на поиск возможных направлений решения проблемы.

Пример 6.4. ТП: Уменьшая время на изучение конкретной темы, мы добиваемся того, что можем более широко информировать обучаемых, но при этом уровень знаний и умений по этой теме понижается.

Пример 6.5. ТП: Декларируя истины, мы даем материал сжато и энергично, но при этом снижается способность обучаемых к самостоятельному поиску знаний.

Пример 6.6. ТП: Необходимо повысить производительность токарной обработки заготовки.

Анализ доступных ресурсов позволяет наметить два мероприятия, которые будут приводить к появлению нежелательных эффектов, связанных, с одной стороны, с увеличением затрат и, с другой стороны, с ухудшением качества получаемой детали (табл.1).

Таблица 6.1

Пример появления нежелательных эффектов при попытке решить поставленную проблему В приведенной таблице можно увидеть следующие противоречия.

ТП-1: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура резца. Период стойкости инструмента уменьшается и, следовательно, увеличиваются затраты на обработку.

ТП-2: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура заготовки. В материале заготовки происходят структурные изменения и, следовательно, снижается качество детали.

ТП-3: Для повышения производительности труда нужно увеличить подачу инструмента (глубину резания на каждом проходе резца). Но при этом увеличивается шероховатость поверхности и, следовательно, снижается качество детали.

Из книги Система технического обслуживания и ремонта общепромышленного оборудования: Справочник автора Ящура Александр Игнатьевич

7.1. Техническое обслуживание 7.1.1. Типовая номенклатура операций ТО металлорежущего, деревообрабатывающего и кузнечно-прессового оборудования представлена в табл. 7.1.Таблица

Из книги Система технического обслуживания и ремонта энергетического оборудования: Справочник автора Ящура Александр Игнатьевич

8.1. Техническое обслуживание Техническое обслуживание электропечей, электропечных агрегатов и оборудования производится в соответствии с требованиями технической документации заводов-изготовителей в процессе нерегламентированного обслуживания.Перечень типовых

Из книги Учебник по ТРИЗ автора Гасанов А И

14.1. Техническое обслуживание Согласно действующим правилам и нормам устанавливаются следующие виды планового ТО устройств РЗА: проверка при новом включении (наладка), первый профилактический контроль, профилактический контроль, профилактическое восстановление

Из книги Инженерная эвристика автора Гаврилов Дмитрий Анатольевич

15.1. Техническое обслуживание При ТО электросварочного оборудования проводятся следующие операции:сварочные трансформаторы: проверка отсутствия чрезмерного шума, нагрева обмоток, нагара на выводах, повреждений изоляции проводов, переключателя напряжений и другой

Из книги автора

16.1. Техническое обслуживание 16.1.1. Техническое обслуживание приборов измерения и контроля проводится в процессе работы оборудования и во время перерывов между сменами.16.1.2. В объем ТО приборов входят: наружный осмотр, очистка приборов; проверка их крепления по месту

Из книги автора

17.1. Техническое обслуживание 17.1.1. Техническое обслуживание котельного оборудования предусматривает выполнение комплекса профилактических операций для обеспечения надежной и бесперебойной работы оборудования до очередного ремонта.17.1.2. Техническое обслуживание

Из книги автора

18.1. Техническое обслуживание 18.1.1. Техническое обслуживание компрессорно-холодильного оборудования и насосов предусматривает производство следующих работ: контроль отсутствия посторонних шумов и стуков, ненормальных вибраций. Контроль температуры подшипников,

Из книги автора

19.1. Техническое обслуживание 19.1.1. При ТО оборудования систем вентиляции и кондиционирования воздуха проводятся следующие виды работ: повседневный надзор за работой оборудования и плановые осмотры оборудования.19.1.2. В порядке повседневного надзора проводятся следующие

Из книги автора

20.1. Техническое обслуживание В объем ТО по видам трубопроводов входят следующие работы: внутренние трубопроводы: наружный осмотр трубопроводов для выявления неплотностей в сварных стыках и фланцевых соединениях и состояния теплоизоляции и антикоррозионного покрытия.

Из книги автора

21.1. Техническое обслуживание При ТО водозаборных и водоочистных сооружений выполняются следующие работы: осмотр, проверка технического состояния, регулировка и подналадка. Подтяжка болтовых креплений. Очистка, смазка, устранение мелких дефектов, подкраска.

Из книги автора

22.1. Техническое обслуживание Кроме общих операций ТО для соответствующего оборудования производятся следующие специфические работы и проверки:электролизеры: проверка отсутствия чрезмерного нагрева и окисления контактных соединений, трещин и сколов изоляторов,

Из книги автора

6.1. Административное противоречие Решение любой технической задачи начинается с анализа проблемы. Результатом этого анализа является постановка и формулировка задачи, которую нужно решать.В проблеме обычно описывается необходимость создания некоторого технического

Из книги автора

6.3. Физическое противоречие Как видно из последнего приведенного примера, предлагаемые мероприятия, направленные на повышение производительности токарной обработки, приводят к появлению ряда НЭ.Проведенный анализ позволяет обнаружить и конкретизировать

Из книги автора

Ограничение и противоречие Техническое ограничение Техническое ограничение - условие (или комплекс условий), которое ограничивает развитие технической системы.В процессе развития технические системы (как и системы вообще) сталкиваются с различными факторами,

Из книги автора

Техническое противоречие В основе любого технического ограничения «нужно, но невозможно» лежит техническое противоречие, которое формулируется как «если улучшить А, то ухудшится Б» и «Если улучшить Б, ухудшится А» (Г. С. Альтшуллер).Например, «инструмент должен быть

Из книги автора

Физическое противоречие Физическое противоречие является причиной технического противоречия и формулируется в терминах свойств, качеств, состояний вещей и процессов.В этой связи приведём разбор красивой задачи из новейшего «Учебника по ТРИЗ», который всячески

Основные понятия классической ТРИЗ, в том числе, противоречия, были определены еще в книгах Г.С. Альтшуллера и с тех пор не подвергались серьезной ревизии и уточнению.

Сегодня ТРИЗ применяется не только в сфере развития технических систем, но и в других сферах человеческой деятельности, в частности, в сферы развития информационных и бизнес-систем. Для успешного применения ТРИЗ в этих сферах требуется согласование понятий, в том числе, противоречий, с понятиями, которые используются специалистами по информационным и бизнес-системам.

Сегодня уже предпринимаются попытки, например, в , провести такую ревизию понятий. Однако пока не решены некоторые проблемы, в том числе,

  1. Плохо определена связь между административным и техническим противоречием.
  2. Нет единой модели, описывающей разные виды противоречий, в частности, как соотносится противоречие альтернативных систем с техническим и физическим противоречиями.
  3. Наименования и структура видов противоречий плохо подходят для использования в других (не-технических) областях.

В данной статье предлагается общая схема понятия противоречий, в которой устранены указанные недостатки.

Требования и ограничения

Понятие «требование» является одним из ключевых в инженерной деятельности. Пожалуй, наиболее зрелые технологии управления требованиями сегодня используются в таких сферах, как системная инженерия и инженерия программного обеспечения .

В системной инженерии сегодня принято различать 2 уровня требований:

  1. Система рассматривается в виде «чёрного ящика». Требования к системе описывают, что от системы хотят ее стейкхолдеры, а также что необходимо надсистеме, в которую входит рассматриваемая система. Такого рода требования называются требованиями стейкхолдеров .
  2. Система рассматривается в виде «прозрачного ящика» на различных стадиях жизненного цикла. Соответственно, такие требования включают предположения о том, как система должна быть устроена (состав и структура системы), а также как она должна себя вести (функционирование системы). Такого рода требования называются системными требованиями .

Очевидно, что системные требования связаны с требованиями стейкхолдеров. По сути, системные требования описывают способы, посредством которых в системе должны реализовываться требования стейкхолдеров.

Особый вид требований в системной инженерии – это ограничения, которым должна удовлетворять система. Широко применяемое в ТРИЗ понятие «нежелательный эффект» полностью соответствует понятию «ограничение».

Пример. Компания «К» внедрила систему электронного документооборота. Данная система позволила планировать сроки обработки и длительность маршрута каждого документа в подразделениях компании «К». Для этого в компании «К» для каждого вида документа установлены нормативные сроки его обработки в подразделении.
Однако в деятельности компании «К» присутствуют документы, которые поступают от внешних контрагентов «А» (накладные, счета и т.п.), а также документы, маршрут обработки которых предполагает их передачу контрагентам «А» и последующий возврат в компанию «К» (коммерческие предложения, договоры, проектная документация и т.п.).
Одно из возможных решений – это согласование с контрагентами «А» для определенных видов документов нормативных сроков их обработки у контрагента. Но не все контрагенты согласны такие нормативы устанавливать и соблюдать. В некоторых случаях согласование нормативов невозможно из-за сроков или по каким-либо другим причинам.

В приведенном выше примере можно выделить следующие требования стейкхолдеров:

  1. Руководство компании «К» хочет, чтобы в системе документооборота устанавливались сроки и маршруты обработки каждого документа.
  2. Руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов.

Системные требования :
(СТ1) Для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения.

Системное ограничение :
(СО1) Для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны.

Общая схема противоречий

Административное противоречие

Известно следующее определение административного противоречия (АП): «нужно что-то сделать, а как сделать – неизвестно…» .

В рамках предлагаемой схемы АП может быть представлено как требование и неизвестный (или не определенный) способ его выполнения. Схема административного противоречия представлена на следующем рисунке.

Из представленной схемы следует, что АП описывает неопределенную изобретательскую ситуацию. Для ее уточнения и выявления противоречия необходимо выбрать известный способ выполнения требования.

Например, в приведенном выше примере требование СТ1 (для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения) не может быть реализовано, для случая, когда документ обрабатывается контрагентом. В этом случае имеет место ограничение СО1 (для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны).

В рассматриваемом примере административное противоречие может быть определено следующим образом:

Как реализовать требование СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»)?

Техническое противоречие

В ТРИЗ техническое противоречие (ТП) определено как …взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия, либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом .

В рамках предлагаемой схемы ТП может быть представлено следующим образом: известный способ (или его изменение) приводит к возникновению противоречия между 2-мя требованиями. Схема ТП представлена на следующем рисунке.

Из схемы следует, что ТП описывает отношение между способом и противоречивыми требованиями. Соответственно, мы можем использовать для обозначения данной структуры термин «противоречие требований». Данный термин уже используют М. Рубин и В. Кияев в .

Пример. Для реализации требования СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А») можно использовать следующий известный способ: согласовать с контрагентом «А» нормативный срок обработки документа. Однако использование данного способа нарушит одно из требований стейкхолдеров (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
В этом случае мы получаем противоречие:
Если
согласовать нормативные сроки обработки документов с контрагентом «А»,
То
(+) мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),
Но
(-) не реализуем требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

Разделение противоречия на ТП1 и ТП2 в АРИЗ в рамках предлагаемой схемы противоречий представляет собой операцию со способом: изменение способа порождает ТП1, не изменение способа – ТП2. В частном случае, это может быть использование и не использование известного способа.

Например, в системе документооборота ТП1 может быть сформулировано так, как указано выше, а ТП2 – следующим образом:
Если
Не согласовать нормативные сроки обработки документов с контрагентом «А»,
То
i>(+) мы обеспечиваем реализацию требования стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
Но
(-) мы не сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»).

Противоречие альтернативных систем

Понятие альтернативного технического противоречия (АТП) или противоречия альтернативных систем предложено В. Герасимовым и С. Литвиным в методе объединения альтернативных систем в надсистему, описанном в . В соответствии с этим методом пара технических противоречий формулируется в соответствии со следующим шаблоном :

АТП1 : Если система реализована в виде базовой системы, то ее достоинством является (указать), но при этом имеется недостаток (указать).
АТП2 : Если система реализована в виде (указать название альтернативной системы), то ее достоинством является (указать устраненный недостаток базовой системы), но при этом имеется недостаток (указать).

В рамках предлагаемой схемы альтернативное техническое противоречие (АТП) может быть представлено следующим образом.

В ТРИЗ физическое противоречие (ФП) определено следующим образом:
… часть рассматриваемой системы должна находиться в таком-то физическом состоянии, чтобы удовлетворять одному требованию задачи, и должна находиться в противоположном состоянии, чтобы удовлетворять другому требованию задачи .

М. Рубин и В. Кияев в предложили новое наименование для ФП – противоречие свойств (ПС). Их определение выглядит так:
формулировка противоположного состояния того или иного свойства одного элемента системы, необходимое для реализации противоположенных требований к системе.

Другими словами, для определения ФП (ПС) необходимо выделить элемент, который должен обладать противоположными свойствами, чтобы удовлетворить противоречивым требованиям. Очевидно, что объект с противоположными свойствами – это элемент, который входит в состав способа, который был выбран в АП и рассматривался в ТП.

В рамках предлагаемой схемы ФП (ПС) может быть представлено следующим образом:

Например, в противоречии, сформулированном для системы документооборота, мы рассматриваем способ (согласовать нормативные сроки обработки документов с контрагентом «А»). Объект, который лежит в основе противоречия – это срок обработки документа у контрагента «А».

Соответственно, противоречие свойств можно сформулировать следующим образом:
нормативный срок должен быть установлен , чтобы мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),

И
нормативный срок не должен быть установлен , чтобы мы смогли реализовать требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

В случае АТП элемент является частью способа, реализованного в базовой системе.

Заключение

Предлагаемая общая схема противоречия отличается от существующих в ТРИЗ определений тем, что для описания противоречия используются понятия «требование» и «способ реализации требований».

Использование в схеме противоречия способа реализации требований позволяет установить связь между административным и техническим противоречием. На уровне административного противоречия нам не известен (либо не выбран) способ реализации требования. Выбирая способ, решатель переходит от административного к техническому противоречию (противоречию требований). Затем, выбирая элемент способа, решатель переходит от ТП (противоречия требований) к ФП (противоречию свойств).

Использование в структуре модели противоречия требований позволяет интегрировать ТРИЗ с достаточно развитыми в различных сферах деятельности технологиями управления требованиями. В перспективе данная схема противоречий и методы работы с ними могут быть интегрированы в системы управления требованиями (RMS) .

Литература

  1. Рубин М.С., Кияев В.И. Основы ТРИЗ и инновации. Применение ТРИЗ в программных и информационных системах: Учебное пособие. 2013.
  2. ISO/IEC 15288:2002. System Engineering. System Life-Cycle Processes.
  3. Software Engineering Body of Knowledge, IEEE, 2004
  4. Альтшуллер Г.С. Найти идею, Введение в теорию решения изобретательских задач, Петрозаводск, Скандинавия, 2003
  5. Альтшуллер Г.С. АРИЗ – значит победа. В сб. Правила игры без правил / Сост.: А.Б. Селюцкий, Петрозаводск, Карелия, 1989.
  6. Альтшуллер Г.С. Алгоритм решения изобретательских задач АРИЗ-85В. 1985.
  7. Герасимов В.М., Литвин С.С. Зачем технике плюрализм? Развитие альтернативных технических систем путем их объединения в надсистему. Ленинград. Журнал ТРИЗ, №1, 1990.
  8. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, Карелия, 1980.

ПЯТЬ ТЕХНИЧЕСКИХ ПРОТИВОРЕЧИЙ АВТОМОБИЛЕЙ

E-mail: *****@***ru

Инженер, ОО ТРИЗ-Чебоксары, РОССИЯ

Чувашский государственный университет, РОССИЯ

Тел. 89063842457, e-mail: *****@***ru

Аннотация. В статье рассмотрены 5 видов противоречий использования личного автотранспорта, связанных с: личным и общественным удобством, аварийностью на дорогах, большой зависимостью от погоды и состояния покрытия, невысоким временем использования (личный транспорт больше стоит, чем движется), выхлопом не только углекислого газа, но и окисла . Рассмотрены подходы к разрешениям этих противоречий с позиций алгоритма решения изобретательских задач АРИЗ, в частности системы приёмов разрешения технических и физических противоречий. Предложены вероятные решения проблем, вызванных указанными противоречиями.

Ключевые слова: технические противоречия, автомобили, приёмы разрешения противоречий, АРИЗ –элементы методик теории решения изобретательских задач ТРИЗ, безопасность личного автомобиля.

THE TECHNICAL CONTRUDICTIONS AND THE AUTOMOBILE

A. R. Andreev, ChuvSU, Cheboksary, RUSSIA

phone: 8917650 3527, e-mail: *****@***ru

E. D. Andreev, Engineer, TRIZ-Cheboksary, RUSSIA

V. A. Mikhailov, ChuvSU, Cheboksary, RUSSIA

Phone: 8906 384 2457, e-mail: *****@***ru

Abstract. In article 5 types of contradictions of use of personal motor transport are considered: personal convenience, comfort inside and accident rate on highways, big dependence on weather and condition of highways, an individual transport costs more, than moves, secretion of nitrogen oxide. Approaches to permissions of these contradictions from positions of algorithm of the solution of inventive problems of ARIZ, in particular system of receptions of permission of technical and physical contradictions are considered. The probable solution of these of problems.

Keywords: technical contradictions, automobiles, methods of resolution of conflicts, ARIZ – elements of techniques of the theory of the solution of inventive problems (TRIZ), safety of the privately owned vehicle.

1. СОСТОЯНИЕ РАЗВИТИЯ АВТОТРАНСПОРТА

Уровни комфорта и безопасности водителя и пассажиров непрерывно улучшают, скорости перевозки возможны 200 км/час, но даже на хорошем автобане, открытом атмосферным осадкам (снегу, льду, воде, туману), поездка становится опасной и уже уносит большое число человеческих жизней. Резкое возрастание сопротивления воздушной среды, возможности путепроводного полотна, экологические проблемы – ограничивают быстроту движения автомобилей. Из параметров транспорта много внимания уделяется его энергопотреблению. Существующие параметры транспорта и путей достигли предельных величин. С точки зрения ТРИЗ , они вышли на участок насыщения известной S-образной кривой изменения параметров во времени, когда : «вес, объём и площадь (машины) и объекта (с которым она взаимодействует) … должны почти совпадать». И энергопотребление на единицу параметра достигает минимально-возможного значения. Какое-то время у системы есть, чтобы оставаться на достигнутом уровне параметров. Потом в соответствии со стремлением всех систем к идеальности они должны исчезнуть: идеален тот «…технический объект…, которого нет, а функция его выполняется»:

– во-первых, выявляют противоречия имеющегося средства, через разрешение которых и происходит развитие;

– во-вторых, новая система должна сначала появиться в проекте, затем в макете, пройти испытания, потом претвориться в массовых сериях;

– в-третьих, нужно время, чтобы общество оценило новую систему, её достоинства и, затем, ощутило потребность в ней;

– в-четвёртых, нелегко запустить систему в производство и «внедрить» изделие в жизнь потому что нужно изменять также смежные отрасли промышленности.

Технические противоречия (ТП), подлежащие устранению (разрешению):

ТП-1: система для перемещения на поверхности земли подвержена воздействию атмосферных осадков, но она не должна быть подвержена им для безопасности перевозок.

ТП-2: система для перемещения должна быть личной (т. е. под рукой в любое время), но она должна быть общественной, чтобы не простаивать и не занимать дорогую городскую площадь, ожидая хозяина, и не затруднять его обслуживанием (быть как такси, но доступнее). Возрастает в городах число автомобилей и для них всё труднее находить места для парковки.

ТП-3: система для перемещения на земле подразумевает возможность столкновений, но она должна исключать возможность столкновения в принципе, чтобы гарантировать жизни людей.

Кроме разрешения этих трёх ТП и сохранения высоких значений скорости перемещения и соотношения «m груза/m системы» при минимальном потреблении энергии (высоком КПД) – предполагаемая система должна разрешить ещё и такие противоречия.

ТП-4: объект научно-технического прогресса при своём развитии не может не влиять на природную среду вредно, но он должен развиваться, сохраняя её.

ТП-5: для увеличения КПД двигателя ДВС возрастает степень сжатия топливной смеси в цилиндрах, при этом возрастает температура горения с 900°С до более 1200°С, но при таких температурах уже окисляется азот воздуха до окисла азота NO, присутствие NO в выхлопе недопустимо.

Последние два противоречия имеют следствием нарушения глобального закон о чистоте энергопотребления и требования ко всем искусственным объектам: использовать для реализации своей функции такие источники энергии, которые не загрязняют и не перегревают окружающую среду. Нашей эпохе не соответствуют даже электромобили – только до первого снегопада и гололёда, потому что «газовать» на заносах означает быстрый разряд аккумулятора. Надо согласиться с : «На смену автомобилю придет не электромобиль, а система, которая будет включать автомобиль (или эквивалентное ему действие) в качестве одной из подсистем». Электроэнергии тоже не является экологически чистой, так как и ТЭЦ, и ГЭС загрязняют природу. К закону о чистоте источников энергии добавляется ещё и требование: при реализации функции объекта запрещаются какие-либо формы противостояния природе. Это будет акт признания человеком превосходства природы. Руководствуясь им, в дальнейшем можно избежать многих недоразумений при развитии в сторону приближения к идеальности. Неужели и в будущем мы будем закапывать огромные средства в дорожное полотно, которое всё равно в нашем климате разрушается, требуя снова и снова больших затрат на ремонт? Без развития техники природная среда осталась бы невредимой. Но «… потенциально природа обречена; она неизбежно будет вытеснена стремительно растущей техникой …» . Если техника вдруг перестанет быть «стремительно растущей», как она это делает в настоящее время – то у природы появляется шанс на сохранение, а у ТП-4 – вариант разрешения. Не технический прогресс губит естественный мир, а производство сверх целесообразности.

2. ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ ТРИЗ К РАЗРЕШЕНИЮ ТП-1 -4

Шаг 1. Целями решения в развитии личного транспорта являются гарантирование безопасности движения с высокой скоростью при практически любой погоде и с минимальным воздействием на окружающую среду. (Зачем это нужно? Сейчас имеет место высокая аварийность личных автомобилей из-за высокой вероятности их столкновений, большое влияние на аварийность оказывает состояние поверхности дороги и погоды, другие причины, независимые от данного водителя. Что этому содействует? Плотный поток транспорта и высокая скорость движения.)

Шаг 2. ИКР - Идеальный конечный результат: САМО СОБОЙ достигается полное исключение столкновений автомобилей и в лоб, и сзади и влияние изменений погоды на движение автомобилей при постоянном движении транспорта за исключением остановок на посадку и высадку пассажиров с практически круглосуточной его доступностью.

Шаг 3. Выбор направлений поиска:

3.1 – что нужно улучшить: безопасность движения автотранспорта в любую погоду;

3.2 – что нужно устранить: столкновения автомобилей и в лоб, и сзади;

3.3 – какой элемент должен быть, чтобы обеспечить пользу, и не должен быть, чтобы устранить вред: личный автомобиль обеспечивает удобство и скорость передвижения, но он больше стоит, чем двигается, занимает много места на улицах города и при движении часто попадает в дорожно-транспортные происшествия;

3.4 – какое действие должно выполняться, чтобы была польза, и не должно выполняться, чтобы не возникал вред: движение автомобиля по дорогам обеспечивает быстрое передвижение, но оно при плохой погоде приводит к столкновениям автомобилей;

3.5–какое условие должно иметь одно значение, чтобы обеспечить пользу, но должно иметь другое значение, чтобы не возникал вред: для быстроты передвижения скорость автомобиля должна быть высокой, для улучшения безопасности движения скорость его должна быть малой (в пределе автомобиль должен всегда стоять).

Выбираем поиск путей как «устранить столкновения автомобилей при движении по автодороге в плохую погоду с большой скоростью и в лоб, и сзади».

Шаг 4. Поиск идей с помощью 30 абстрактных изобретательских приёмов :

4.1 – рассмотрим раздел «Ресурсы»: энергия, вещества, информация, производное (от энергии, вещества или информации), концентрация чего-либо: пока большая энергия столкновения поглощается повреждением корпуса автомобиля (это уменьшает вред для пассажиров – имеется много патентов в этом направлении как и по другим защитным средствам для пассажиров – это направление поглощения вредной энергии); изменяют конструкции вещества-корпуса для решения этой задачи – имеется много патентов; используют информацию по «сопротивлению материалов», на широких шоссе применяют разделение полос встречного движения, чтобы исключить столкновения «в лоб», такое же разделение потоков иногда имеет место в тоннелях;

4.2 – раздел «Время» как ресурс разрешения противоречий: заранее, после, в паузах, ускорить или замедлить, добавим в «одно и то же время»: заранее разрабатывают корпус и бампер, улучшающие энерго-поглощение при столкновениях; после разрезают корпус с слабых местах для извлечения пассажиров; паузы – остановки движения используют для отдыха водителя; ускорить – редко удаётся избежать столкновений путём ускорения движения; замедлить – при ухудшении погоды рекомендуют замедлить движение; в одно и то же время – требуется по задаче и быстрое, и безопасное движение в любых условиях;

4.3 – раздел «Пространство» как ресурс разрешения противоречий: другое измерение – на некоторых мостах встречное движение производят на разных уровнях-этажах; асимметрия – бывает, что в разных направлениях движения ширина полос разная; матрёшка – например, труба в трубе (такие примеры возможны втрубопроводном транспорте?); вынесение – разделение движения на особо опасных участках дорог; локализация – местное ограничение скорости движения, видео контроль движения;

4.4 – раздел «Структура»: исключение – здесь важно в принципе исключить возможности любых столкновений: это возможно при движении в трубе, тогда разные направления обеспечиваются в разных трубах – исключаются лобовые столкновения; если же движение средства-капсулы обеспечивается давлением воздуха, то для двух соседних капсул исключено и столкновение сзади, так как при более быстром движении задней капсулы между двумя капсулами повысится давление воздухаи задняя капсула плавно САМА затормозится (вплоть до остановки на достаточном расстоянии от передней капсулы); дробление – переход источника энергии от ДВС к давлению воздуха означает «раздробление» источника энергии до молекул; объединение – труба-дорога и капсула объединяются в одну систему, обеспечивающую безопасное передвижение капсул с пассажирами в почти любую погоду с достаточно большими и почти постоянными скоростями без любых столкновений капсул с пассажирами; в такой объединенной системе изменяются источник энергии, вводится и объединенная система управления движением АСУТП пневмотранспорта, т. к. внутри капсулы смогут быть только две кнопки: станция назначения и старт – всё движение может управляться только централизовано и автоматизировано – под контролем оператора движения на АСУТП; посредник – источником и регулятором движения будет давление воздуха, подаваемого в трубу системой компрессоров (например, расположенных вдоль трубы через 5-10 км); копия – вместо пульта управления в капсулах будут мониторы, отображающие место и параметры её движения; как видно, по приёмам-подсказкам раздела «Структура» намечены контуры идеи пассажирской , которая пока практически не применяется в этих целях (известны локальные пневмо-системы перемещения грузов); по приёмам «вынесения» и «локализации» из раздела «4.4 - Пространство» в предлагаемой пассажирской пневмо-транспортной системе (ППТС) источник энергии, требуемой системе, вынесен из движущейся капсулы в Надсистему ППТС, туда же вынесены и устройства управления движением капсулы;

4.5 – раздел «Условия и Параметры» включает приёмы разрешения противоречий: частично –капсула представляет собой только облегчённый корпус автомобиля; избыточно – взамен усложнена автодорога;согласовано – все подсистемы ППТС должны работать согласовано; динамично и управляемо – АСУТП динамично отслеживает и задаёт режимы всех подсистем ППТС; – все предполагаемые неполадки работы системы и каждой капсулы в пути, по возможности предусмотрены в программах АСУ и контролируются оператором на центральной станции управления ППТС; изоляция – трубы практически полностью изолируют движущиеся капсулы от подавляющего большинства неблагоприятных погодных явлений; противодействие – чтобы у пассажиров не возникала клаустрофобия, капсулы и верхняя половина трубы будут прозрачными (сделаны из упрочнённого полимера или композита); одноразовость – каждым конкретным пассажиром капсула используется только на время поездки, после его высадки в неё сядет для своего маршрута поездки другой пассажир; инверсия – в системах АСУТП и ППТС следует предусмотреть на станциях накопления капсул, которые часто используются пассажирами для высадки, переустановку капсул в трубу противоположного направления движения.

Шаг 5. Концепция: из сочетания подсказок всех разделов и более 15 подсказок-приёмов (более всего подсказок выбранов разделе4 «Структура», остальные 10-12 приёмов подкрепляли, уточняли и расширяли концепцию технического решения). Все вышерассмотренные идеи позволили представить в ФИПС заявку на патент со следующей формулой изобретения:

1. Транспортная система (ТрС), включающая корпус-салон средства перемещения, расположенный в трубопроводе и снабжённый сиденьями и дверями для пассажиров, отличающаяся тем, что содержит центр автоматического управления движением, через канал связи подключенный к компьютерам реверсивных воздушных компрессорных станций, которые последовательно по длине маршрута посредством своих стыковочных узлов и их шторок соединены с полостью трубопровода, создают и коммутируют движущие потоки воздуха в нём, при этом корпус-салон оборудован бортовым компьютером, включённым через указанный канал связи в единое информационное пространство ТрС, и конструктивно выполнен в виде прозрачной пустотелой цилиндрической, заострённой с переднего конца капсулы (рис. 1), имеющей впускные и выпускные регулируемые решётки, входную дверь-люк открываемую сдвигом внутрь-назад в области потолка, переднее и заднее регулируемые по высоте сидений и наклону спинок пассажирские кресла с пристежными ремнями, а так же позиционируемой при движении и остановках фиксаторами качения в пазах трубопровода, который собирается из прозрачных ударопрочных труб, содержащих аварийные люки с возможностью их открытия сдвигом вверх-в-бок, и размещается на опорах, приподнятых относительно поверхности земли.

Рис. 1 Транспортная труба (4) с капсулой (5): 6 – люк для посадки пассажиров; 7 – кресла для пассажиров; 8 – колёса

Рис. 2 Блок-схема ППТС. Здесь 1 – это блок АСУТП управления движением капсул 5 в трубопроводе 4. Управление идёт по каналу связи 2 путём активизации компрессорных станций 3

2. ТрС по п.1 (рис. 2), в которой центр автоматического управления распределяет зоны ответственности среди местных и региональных центров автоматического управления и объединяет их, а также остальных участников движения в единое информационное пространство.

3. ТрС по п.1 (рис. 3), в которой локальное управление движением конкретной капсулы на участке между двумя соседними компрессорными станциями передаётся компьютеру одной из них, назначенной ведущей.

4. ТрС по п.1, в которой расстояние между соседними компрессорными станциями определяется условиями создания необходимого коэффициента полезного действия для движения капсулы в рамках допустимых скоростей, с учётом рельефа местности и загрузки.

Рис. 3 Под действием давления капсула 5, наружный диаметр которой на 0,5-1 см меньше внутреннего диаметра трубы 4, движется, фиксируясь колёсами в пазах трубы

5. ТрС по п.1, в которой трубопроводы на вокзалах переключаются на нужные направления движения, или к посадочным платформам, посредством поворотных контактных устройств.

6. ТрС по п.5, в которой поворотное контактное устройство представляет собой отрезок трубы, который после заезда и остановки в нём капсулы, вращением в горизонтальной плоскости на 180 градусов соединяется с выбранной для продолжения маршрута веткой трубопровода.

7. ТрС по п.1, компрессорные станции которой содержат два стыковочных узла на каждой ветке проходящего трубопровода, обслуживающие её левые и правые каналы.

8. ТрС по п.7, в которой трубопровод состоит из двух веток встречного движения.

9. ТрС по п.7, в которой шторки стыковочных узлов закрываются и открываются механизмом управления, а также блокируются в закрытом состоянии соответствующими ловителями, по сигналам компьютера своей компрессорной станции.

10. ТрС по п.1, в которой бортовой компьютер капсулы имеет выход на канал связи, монитор и клавиатуру управления, транслирует в автоматическом режиме телеметрию движения, посылает запросы пассажира в центр управления движением, принимает от него текущую информацию, поддерживает интернет-вещание.

11. ТрС по п.10, в которой наряду с компьютером салон капсулы содержит необходимую периферию, как-то: микрофон, наушники, акустические системы, освещение, аккумулятор, а также имеет на потолочной части свето-поглощающее покрытие, например, вида «хамелеон».

12. ТрС по п.1, в которой впускная регулируемая вентиляционная решётка капсулы располагается в области её задней стенки, обрамлённой по периметру прорезиненной юбкой, а выпускная регулируемая вентиляционная решётка размещается на боковой передней поверхности.

13. ТрС по п.1, в которой капсулы, трубопроводы, а также их люки выполняются из полимерного соединения высокой прочности.

14. ТрС по п.13, в которой посадочные и аварийные люки выполняются конструктивно по типу «фонарь» и имеют уплотнители для герметизации в закрытом состоянии, а капсула оборудована аварийным тормозным устройством и аварийным мускульным приводом движения.

15. ТрС по п.1, в которой спинки кресел при необходимости складываются и обеспечивают, с применением пристежных ремней, размещение пассажира или груза в горизонтальном положении.

16. ТрС по п.1, в которой фиксаторы качения располагаются симметрично в углублениях на боковых цилиндрических поверхностях корпуса капсулы и выполняются прорезиненными и подпружиненными.

17. ТрС по п.1 или п. 16, в которой продольные пазы на внутренней поверхности трубопровода должны обеспечивать свободное движение в них фиксаторов качения.

18. ТрС по п.1 или п. 8, в которой трубопровод представляет две рядом расположенные параллельные ветки встречного движения, приподнятые на опорах над поверхностью земли.

3. ПРИМЕР ИЗОБРЕТАТЕЛЬСКОЙ СИТУАЦИИ

1. За последние 50 лет у двигателей автомобилей сни;ty в 2-3 раза расход бензина путём увеличения степени сжатия горючей смеси в их цилиндрах, при этом увеличилась температура горения с 900оС до 1200оС. Очистку выхлопных газов от несгоревшего топлива улучшили также применением Pt-катализатора. Повышение в камере сгорания температуры привело к тому, что недопустимо возросло в выхлопе содержание вредного окисла азота ON. Сейчас в патентном фонде ФИПС РФ много предложений по вводу в выхлопной тракт , мочевины и ещё одного катализатора для превращения окисла в азот по реакции: 4NH3 + 6NO =(kt1)=> 5N2 + 6H2O

и 6NO + 2СОN2Н4 (тв., мочевина) =(kt1)=> 5N2 + 2CO2 + 4H2O.

Это приводит к усложнению и удорожанию системы выхлопного тракта (СВТ) двигателя внутреннего сгорания (ДВС). Рассмотрим поиск решения по алгоритму генератора идей .

Поиск решения

2. Цель: очистить выхлопной газ от окисла азота NO, не усложняя тракт выхлопа. Зачем это надо: примесь газа NO в воздухе вредна для дыхания. Что мешает: Pt катализатор улучшает окисление в выхлопе СО и СхНуОz – продуктов неполного сгорания топлива, но не изменяет содержание NO, применение NН3-содержащего реактива усложняет систему выхлопного тракта.

3. ИКР: Само собой достигается в СВТ превращение NO в обычный N2 воздуха при вводе NН3-содержащего реактива без усложнения выхлопного тракта ДВС.

4.1 Улучшить очистку выхлопного газа от окисла азота NO.

4.2 Устранить усложнение выхлопного тракта при очистке от NO.

Технические противоречия:

4.4 Устранить в выхлопе NO можно восстановлением аммиаком, но недопустимо вводить реактив простым способом (в большом избытке), чтобы не выделять из СВТ вредный газ аммиак.

4.5 При высокой точности внесения в выхлопной тракт реактива (газа, жидкости или твёрдого тела), содержащего NН3 или другой восстановитель, нейтрализуется вред выхлопного газа (по NO / NН3), но решение недопустимо усложняет СВТ двигателя.

Выберем п. 4.2 – упростить выхлопной тракт ДВС.

5. Поиск идеи (используя 30 абстрактных изобретательских приёмов) :

5.1 Ресурсы компонентов системы:

5.1.1 ресурс энергии – выхлопной газ имеет температуру 200 - 500оС (он содержит до 70% химической энергии от сжигания бензина), надо бы как-то использовать эту энергию?

5.1.2 вещества – NO в выхлопе, окислитель, вредная примесь; смесь выхлопных газов содержит также СО, СхНуОz – восстановители, но не активные в отношении к NO. Выхлопной тракт СВТ включает трубу, блок с Pt катализатором, глушитель, блок ввода NН3-реагента, выходное отверстие трубы.

5.1.3 информация – имеем справочники восстановителей и окислителей с данными об их потенциалах, нужны также неизвестные данные о кинетике реакций между ними.

5.1.4 производные от этих ресурсов системы – например, вещества бывают присутствующие, отсутствующие и изменённые (в другом агрегатном или энергетически активированном состояниях) или разности энергий, или заменить вещество.

5.1.5 концентрация неких ресурсов, если она доступна и нужна.

5.2 Ресурсы времени:

5.2.1 заранее – требуется проектирование и установка в СВТ блока восстановления для превращения NO в N2.

5.2.2 после – естественно, после выхлопа из ДВС.

5.2.3 пауза – у ДВС при работе пауз нет, выброс газов непрерывен.

5.2.4 ускорить - скорость превращения NO в N2 должна соответствовать скорости выброса NO из ДВС, пока скорость распада NO слишком мала.

5.2.5 замедлить – здесь не нужно.

5.3 Ресурсы пространства:

5.3.1 другое измерение – части (блоки) системы тракта СВТ находятся последовательно в линии, расположить их иначе?

5.3.2 асимметрия – все части СВТ симметричны относительно оси потока выхлопных газов.

5.3.3 матрёшка – что-то в другое вставить: труба в трубе?

5.3.4 вынесение – блок подготовки реактива вынесен из линии потока – это усложняет СВТ.

5.3.5 локализация – расположение частей СВТ не способствует использованию ресурса восстановителя (С, СО, СхНуО) для устранения вредного NO, ввести катализатор этой реакции перед Pt-катализатором?

5.4 Ресурсы структуры:

5.4.1 искпючение – чтобы не усложнять СВТ, нужно убрать блок подготовки и ввода NН3-восстановителя /мочевины.

5.4.2 дробление – приём «матрёшка» подсказывает, что часть СВТ (труба?) где-то должна быть разделена, тогда одну трубу можно вставить в другую (по п.5.3.3 – матрёшка).

5.4.3 объединение – если иметь катализатор для реакции (использовать имеющиеся вещества) NO + CxHyO, CO =(kt2, t=300°C)=> N2 + CO2 + H2O

5.4.4 посредник – неизвестный катализатор (kt2)?

5.4.5 копия – не пригоден в СВТ?

5.5 Условия:

5.5.1 частично – если вводить NH3-реагент, то его надо 0,95 от точного количества.

5.5.2 избыточно – NH3 вредный, его избыток не желателен.

5.5.3 согласовано – ввод NH3-реагента согласовать с переменным объёмом или другим параметром выхлопного газа в СВТ.

5.5.4 динамично – означает изменять ввод количеств реагента.

5.5.5 управляемо – ввод NH3-реагента управляется объёмом выхлопа, переменой мощности ДВС.

5.6 Параметры:

5.6.1 вакцинация – приём подсказывает, что в СВТ должно быть средство против роста выброса NO – им мог быть катализатор (kt2) реакции между самими компонентами выхлопного газа в СВТ.

5.6.2 изоляция – такой катализатор (kt2) уменьшит вред выхлопа.

5.6.3 противодействие – намечаются 3 пути противодейстия вреду выхлопа:

1) добавить блок управляемого ввода NH3-реагента с достаточной точностью для очистки выхлопа;

2) подобрать катализатор реакции между компонентами выхлопа до реакции до-окисления на Pt-катализаторе;

3) поток выхлопа разделить на 2 потока, в одном потоке установить реагент и/или катализатор (kt3) превращения NO→NH3, потом эти потоки соединить на катализаторе kt2.

5.5.4 одноразовость – возможен ли твёрдый NH3-реагент, который производит очистку выхлопа от NO достаточно долго? Вводимые реагенты расходуются – они одноразовые.

5.5.5 инверсия – применение 1 вредного компонента выхлопа для очистки от 2-го по реакции: NO + CxHyO, CO=>... или вместо ввода в СВТ ДВС газа или жидкости (раствора NH3-реагента) ввести «NH3-реагент» в твёрдой форме, которая выдерживает Т в СВТ и быстро выделяет NH3 только при действии NO.

Возможные сочетания приёмов: все 3 пути (по приёму 5.6.3) используют из 5.1.1 Поле тепла СВТ для нейтрализации выхлопа и подготовку СВТ заранее по 5.2.1:

1-й путь – ввода NH3-реагента и добавление блока с катализатором по 5.2.4 опирается на сочетание приёмов 5.1.1 +5.1.2 +5.1.3 +5.5.1 +5.5.3 +5.6.1. Сущность изменений функции: 1) добавление блоков внешнего с реагентом и в линии СВТ блока ввода с катализатором (kt1) и управление вводом NH3-реагента согласовано с мощностью ДВС;

2) добавление в линию СВТ блока с катализатором реакции между компонентами выхлопа: NO + CxHyO, CO =(kt2)=>...;

3) дробление потока на два с помощью трубы в трубе (5.3.3), один поток не изменен, а во внешний поток вставлен блок с реагентом и kt3-катализом превращения NO +X =(kt3)=>NH3 …, далее 2 потока смешиваются для реакции NO +NH3 =(kt1)=>N2 +…

6. Концепции:

6.1 добавление в СВТ блоков внешнего с NH3-реагентом и в линии СВТ блока ввода с катализатором (kt1) реакции: NO +NH3 =(kt1)=>… при вводе NH3-реагента согласовано с мощностью ДВС;

6.2 добавление в линию СВТ блока с катализатором реакции между компонентами выхлопа по реакции: NO + CxHyO, CO =(kt2)=>... – состав и структура kt2 пока не известны (нужны исследования химиков);

6.3 дробление потока на два с помощью трубы в трубе, один поток не изменен, а в другом (внешнем) потоке вставлен блок с реагентом и катализатором превращения NO +X =(kt3)=>NH3 …, далее 2 потока смешиваются и происходит реакция: NO +NH3 =(kt1)=>N2 +… (нужен выбор Х).

6.4 ввести в линию СВТ блок с твёрдым NH3-источником Z, выделяющим NH3 ровно столько, сколько попало в блок NO, Z должен быть термоустойчив, чтобы не выделял NH3-избыток.

Оценка концепций:

6.1 - состоит в усложнении СВТ, и наиболее технически проработана (в ФИПС РФ имеется множество патентов, не рассмотрено усложнение СВТ путём введения обратной связи и не указан катализатор);

6.2 - наиболее простая СВТ и близкая к идеальному решению, но kt2 катализатор пока не отработан и неизвестен;

6.3 - промежуточная по сложности СВТ, но катализаторы kt2 и kt3 пока не разработаны и неизвестны (есть патент этого СВТ без описания катализаторов).

6.4 - в линию СВТ блок с твёрдым NH3-источником Z, устойчивым при температуре в СВТ и реагирующим только при наличии NO (Z пока не найден).

6.5 - Новые нерешенные задачи: необходима разработка катализаторов kt2 и kt3 (нужна помощь специалистов НИИ катализа РАН) и реагентов-нейтрализаторов Х или термоустойчивого Z - NH3-реагента(известны: мочевина Тразл~150°C, ацетилмочевина Тразл~250°C, ацетат мочевины Тразл~250°C, неизвестна термоустойчивость других производных – требуется до 500°C и выделение NH3при действииNO).

Разработана и предложена заявка на патент на пассажирскую пневмотранспортную систему (ППТС) с целью обеспечения безопасного движения в почти любых погодных условиях.

Рассмотрен пример поиска решения задачи с применениями окислительно-восстановительных реакций по нейтрализации газа в системе выхлопа двигателя внутреннего сгорания. Выявлены четыре возможных способа устранения NO из выхлопного газа, а патенты есть на два из этих способов. Для завершения решения требуются консультации специалистов по катализу и поиск термо-устойчивого твёрдого NH3-выделяющего реагента.

Отметим дополнительно, что широкий перевод автомобильного хозяйства на пневмотранспортную систему, позволяет в принципе снять проблему выхлопа любых газов.

СПИСОК ЛИТЕРАТУРЫ:

Альтшуллер изобретательства. Воронеж: Центр-чернозём. кн. изд-во, 1964. О прогнозировании развития ТС. Баку, 1975/ http://www. altshuller. ru/triz/zrts3.asp Альтшуллер Г., осемь мыслей о природе и технике // Шанс на приключение: сб. /сост. А. Селюцкий. Петрозаводск: Изд-во , 1991. резентация программы «Генератор идей». – URL: http://www/TRIZ-tigr. ru , Утёмов творчество: Методы конструирования новых идей: .- изд. 2-е. – Киров: Изд-во МЦИТО, 2014. – 114 с. , и др. Заявка на патент РФ 2011149865, опубл. 27.06.2013 и др. БД патентов по применениям химических эффектов: http://dace. ru (DatabaseApplyofChemicalEffects): новости (3000 реф.), БДХЭ (2250), статьи (10). Эвристика-3: метод. указания к решению химических задач / сост. . Чуваш. ун-т – Чебоксары: 2007, 116 с. и др. Основы теории систем и решения творческих технических задач – /В. Михайлов, А. Михайлов, Е. Андреев, В. Гальетов, В. Желтов. - Чебоксары: Изд. Чуваш. ун-та, 2012. С. 133-135, 156-199, 206-241, 255-284, 325-330. Михайлов эффекты в системе 40 изобретательских приёмов и после него //сб. Три поколения ТРИЗ – СПб: РА ТРИЗ. – 2014. С. 50-54. Малкин С., Михайлов решений творческих задач по алгоритму Генератора идей //там же. С. 55-57. Малкин С., Утёмов творческих задач по алгоритму ГИ для развития личности /ж-л Концепт http://e-concept. ru (2014 ноябрь, Киров), 7 с. , Желтов креативности в инженерном образовании / Инженерное образование – 17, 2015, с.68-75 , О применении ТРИЗ для решения экологических задач //сб. ТРИЗ-фест-2013, - СПб-Киев: МАТРИЗ, 2013, с.26-35. Михайлов изобретателю химические эффекты (пример очистки выхлопа от окиси азота) //сб. Три поколения ТРИЗ – СПб: РА ТРИЗ. – 2015. С.70-75. , Андреев транспортная система /сб. Дорожно-Транспортный Комплекс: состояние, проблемы и перспективы развития – Чебоксары: ВФ МАДИ-ГТУ, 2015. С. 134-141. , Андреев транспортная система – заявка РФ 2011149865, опубл. 27.06.2013, бюлл. 18.

Altshuller G. S. Invention bases. - Voronezh: Center chernozem. book publishing house, 1964./ru Altshuller G. S. About forecasting of development of the Technical systems. - Baku, 1975 /ru /http://www. altshuller. ru/triz/zrts3.asp Altshuller G., Rubin M. Eight thoughts of the nature and equipment. - In book: Chance of an adventure. Col. A. Selyutsky. Petrozavodsk: Publ. house Karelia, 1991. /ru Malkin of S. Presentation of the program Generator Ideas. - URL: http://www/TRIZ-tigr. ru Mikhailov V. A., Gorev P. M., Utyomov V. V. Scientific creativity: Methods of designing of new ideas: manual. - prod. the 2nd. - Kirov: Publ. house of MTsITO, 2014. – 114 pages. /ru Nikitin A., Mikhailov V., Andreev E. - Clain for patent RU2011149865 (publ. 27.06.2013). Mikhailov V. A. &Alls Date basa Apply of patents on Chemical Effects / http://dace. ru Evristica-3: manual to solution of chemical tascs / Mikhailov V. A., ChuvSU, 2007. 116 p. /ru Mikhailov V. A. &Alls Technical system basis and solution of creative technical tascs -/V. Mikhailov, A. Mikhailov, E. Andreev, V. Galyetov, V. Zheltov– Cheboksary: ChuvSU, 2012. P. 133-135, 156-284, 325-330. /ru Mikhailov V. A. Chemical effects in 40 key G. Altshuller and later on him. //coll. Three generation of TRIZ – Sankt-Peterburg: RATRIZ, 2014. P.50-54. /ru Malkin S., Mikhailov V. Search a creative task solution by generator idea algorithm /ibid. p. 55. /ru Malkin S., Mikhailov V., Utemov V. The creative task solution for personal progress /internet journal KONCEPT – november 2014, Kirov: http://e-koncept. ru ,7 p. /ru Mikhailov V., Mikhailov A., Zheltov V. Creative elements in engineer education //Engeneering Education (Novosibirsk) – 17, 2015. P. 68-75. /ru Andreev E., Mikhailov V., Filichev S. On the application of TRIZ for solution of ecological problems. – SPb-Kiev: MATRIZ-SPbSTU, 2013. P.26-35. /eng/rus Mikhailov V. A. Help to inventor the Chemical Effects // coll. Three generation of TRIZ – Sankt-Peterburg: RATRIZ, 2015. P. 70-75. /Rus/ Nikitin A. I., Mikhailov V. A., Andreev E. D. Passenger-and-freight transport system //coll. Road and transport Complex: a state, problems and prospects of development – Cheboksary: VF MADI-GTU, 2015. Page 134-141. /rus. Nikitin A. I., Mikhailov V. A., Andreev E. D., Andreev A. R. Passenger-and-freight transport system Clain RU 2011149865, publ. 27.06.2013. N 18.

Ревенков А.В.

В развитии технических систем в соответствии с законами диалектики происходит чередование этапов количественного роста и качественных скачков. В процессе количественного роста в результате неравномерного развития характеристик технической системы появляются противоречия.

Противоречие - проявление несоответствия между разными требованиями, предъявляемыми человеком к системе, и ограничениями, налагаемыми на нее законами природы, социальными, юридическими, и экономическими законами, уровнем развития науки и техники, конкретными условиями применения и т. п.

Пример 6.1. При проектировании пассажирского самолета с более высокой скоростью, чем прототип, можно уменьшить площадь крыла (при том же полетном весе). Это связано с тем, что с увеличением скорости увеличивается скоростной напор и, следовательно, для создания той же подъемной силы крыла , где С yкр - коэффициент подъемной силы крыла, ρ - плотность воздуха, Ν - скорость полета, S kp - площадь крыла,

Можно уменьшить площадь крыла S kp . Это желательно сделать, так как чем меньше площадь крыла, тем меньше сопротивление трения и, следовательно, меньше расход горючего.

Но при уменьшении площади крыла падает подъемная сила при малых скоростях полета. Поэтому нужно увеличить посадочную скорость самолета, а это приведет к увеличению длины разбега и торможения и, следовательно, к потребности увеличить взлетно-посадочную полосу, что недопустимо.

На начальных этапах развития, когда требования относительно невысоки, а система обладает большими ресурсами, такие противоречия разрешаются путем компромисса: отыскиваются варианты конструкции, обеспечивающие приемлемые значения обеих конкурирующих характеристик. Но количественный рост продолжается, происходит накопление и обострение противоречий. Эти противоречия разрешаются в результате качественных скачков - создания принципиально новых технических решений.

Если технический объект создан, то весьма часто ставится задача увеличения его главной полезной функции (ГПФ). Для этого, как правило, требуется усилить какое-либо свойство одного из элементов этого технического объекта. Однако при усилении одних свойств элемента нарушается взаимодействие (согласованность) с другими элементами технической системы, возникает противоречие, то есть источником противоречий является совершенствование, развитие технических объектов.

6.1. Административное противоречие

Решение любой технической задачи начинается с анализа проблемы. Результатом этого анализа является постановка и формулировка задачи, которую нужно решать.

В проблеме обычно описывается необходимость создания некоторого технического объекта (ТО) для удовлетворения определенной потребности, приводится соответствующая аргументация этой необходимости, описываются функции, которые должен выполнять этот ТО; требования, которые к нему предъявляются.

Каждый потребитель той или иной продукции характеризуется определенными свойствами. Анализ свойств потребителей позволяет определить некоторый набор требований, которым должна удовлетворять продукция, предназначенная для удовлетворения возникшей потребности.

Каждый вид продукции можно охарактеризовать набором определенных свойств. Часть этих свойств определяют потребительные свойства продукции (рис. 6.1).

Поэтому прежде, чем создавать тот или иной продукт, необходимо, с одной стороны, сформулировать требования, которым он должен удовлетворять, с другой стороны, оценить технические возможности создания продукта с требуемыми свойствами.



Рис. 6.1

Если есть потребность в создании продукции с определенными потребительными свойствами, но неизвестно как ее удовлетворить, то возникает проблемная ситуация (ПС).

Описание ПС - это формулирование потребностей, функций, которые нужно выполнить. Проблема заключается в том, что на этом этапе не видно путей, как реализовать выполнение этой функции.

Проблемная ситуация возникает, если нет соответствия между требованиями, предъявляемыми потребителями, и имеющимися техническими возможностями. Например, создание телевизора с объемным изображением, создание искусственного спутника Земли со сроком активного существования 10 лет и др. То есть первоначальная формулировка проблемы часто носит социально-технический характер и в общем случае выражается в терминах: цель, потребность, функция, нежелательные эффекты.

Г.С. Альтшуллер назвал такие проблемные ситуации административным противоречием . Анализ развития множества ТС показал, что совершенствование их характеристик обычно связано с преодолением противоречий, выявляющихся по мере эксплуатации этих систем. Возникает потребность что-то изменить, улучшить, причем претензии к работе системы обычно формулируются в виде довольно расплывчатых пожеланий типа: "хочется, чтобы было лучше...", "нужно что-то сделать" и т. д., проблем много: нужно что-то сделать, но что?

Этому виду противоречий соответствует изобретательская ситуация, включающая в себя целый клубок задач, из которых нужно выбрать именно ту, которую следует решать в первую очередь. Каким образом выделить первоочередную задачу среди прочих?

Г.С. Альтшуллер в работе "Найти идею" отмечал: "Такие противоречия отражают сам факт возникновения изобретательской задачи, точнее - изобретательской ситуации. Они автоматически даются вместе с ситуацией, но они ни в какой мере не способствуют продвижению к ответу".

Таким образом, административные противоречия только обозначают проблему и в ряде случаев дают некоторое обоснование ее возникновения.

6.2. Техническое противоречие

В первоначальной формулировке проблемы формулируются некоторые потребности, функции, которые необходимо выполнить.

В зависимости от вида проблемной ситуации (ПС) ее можно разрешить двумя способами (рис. 6.2):



Рис. 6.2

существенно изменить рассматриваемую систему или ее взаимодействие с надсистемой (НС) таким образом, чтобы отпала необходимость в этой потребности, в выполнении этой функции - ПС 1 ; в этом случае формулируется проблема по изменению НС;

дополнить существующую техническую систему некоторым устройством, которое позволило бы удовлетворить сформулированную потребность - ПС 2 (см. пример на рис 6.2).

Проблемы могут быть разные.

Например, мы не знаем, как технически реализовать выполнение потребной функции.

Или мы в принципе знаем, какое устройство нужно создавать для выполнения потребной функции, но при этом появляются нежелательные эффекты.

Нежелательный эффект, во-первых, связан с тем, что за реализацию функции, которую он должен выполнять, надо "платить". Из стремления же к идеальному решению следует, что полезная функция должна выполняться, но затрат на ее реализацию не должно быть.

Пример 6.2. По трубопроводу перекачивают газ. Необходимо обеспечить постоянный массовый расход газа при заданном перепаде давлений на входе и выходе трубопровода. Однако температура газа на входе в трубопровод меняется. Следовательно, массовый расход газа тоже будет изменяться.

Таким образом, возникает проблема. Массовый расход газа должен быть постоянным для управления некоторым процессом, но он не может быть постоянным, так как изменяется температура газа. При этом в систему нежелательно вводить сложные устройства, которые осуществляли бы функцию регулирования.

Во-вторых, нежелательные эффекты могут проявляться в виде вредных свойств (функций), которые возникают при функционировании технического объекта. Например, мы создаем некоторый технологический процесс, а он оказывает вредное воздействие на человека (электромагнитные излучения, вибрации и т. д.) или загрязняет окружающую среду и др.

То есть проблемная ситуация (ПС 2) заключается в том, что функцию выполнять надо, ибо в этом есть потребность, а нежелательных эффектов при этом быть не должно.

Такие проблемы часто возникают на начальном этапе создания ТО, когда намечается некоторый план решения проблемы, то есть при формировании идеи, принципа действия ТО для реализации ГПФ или попытке улучшить некоторые функциональные характеристики технического объекта.

Г.С. Альтшуллер отмечал, что каждой задаче, входящей в изобретательскую ситуацию, соответствует свое техническое противоречие (ТП) . Суть ТП сводится к тому, что при улучшении известными путями одного свойства (параметра) системы недопустимо ухудшается другой параметр.

Любая продукция, предназначенная для удовлетворения потребностей, характеризуется многими свойствами: экономичностью, надежностью, эргономичностью, эстетичностью, патентоспособностью, транспортабельностью, безопасностью, экологичностью, технологичностью и т. д. Для некоторых видов продукции весьма важными показателями являются масса конструкции, плотность компоновки, энергоемкость, мощность, производительность, время срабатывания механизмов, точность отработки параметров и т. д.

Все эти показатели условно можно разделить на две группы: показатели, характеризующие степень (уровень) выполнения техническим объектом ГПФ , и показатели, характеризующие факторы расплаты за выполнение ГПФ.

Стремление улучшить одни характеристики продукции часто приводит к ухудшению других. По крайней мере, на этапе анализа проблемы и постановки задачи не видно путей, как сделать так, чтобы при улучшении одних свойств не ухудшались бы другие, тоже весьма важные.

В проектно-конструкторских и технологических задачах обнаруживается противоречивость многих свойств, например, точность и производительность в технологии обработки материалов; масса, надежность и стоимость; устойчивость и управляемость технических объектов и др.

Например, один из способов увеличения надежности летательных аппаратов (потребность) - создание резервных систем и агрегатов. А это приводит к увеличению массы аппарата, что недопустимо, так как увеличиваются затраты на выполнение задания (ГПФ).

Нежелательные эффекты могут быть связаны с тем, что улучшение некоторых потребительных свойств приводит к усложнению ТО и, следовательно, к увеличению факторов расплаты.

Ситуация, когда попытки улучшить одну характеристику (или часть) системы приводит к ухудшению другой ее характеристики (или части), называется техническим противоречием (ТП).

Например, в технологии производства мероприятия, направленные на повышение производительности обработки, часто приводят к ухудшению качества продукции. (Если один из двух вариантов технологии при лучшем качестве позволяет обеспечить и бoльшую производительность, то он вытесняет второй вариант; в этом случае проблемной ситуации нет.)

Техническое противоречие появляется часто тогда, когда разработчик пытается каким-либо известным ему способом улучшить один из параметров качества (или функциональное свойство) объекта, но это приводит к недопустимому ухудшению другого, тоже весьма важного параметра качества (или функционального свойства).

Пример 6.2. Увеличение числа инструментов в слесарном наборе улучшает возможности дифференцированного воздействия на изделие, но ухудшает условия работы с набором, который становится более громоздким.

Для улучшения функционального свойства весьма часто рассматривается изменение одного из параметров технической системы, который существенно влияет на это функциональное свойство.

Пример 6.3. Чем больше литейный уклон на модели отливаемого изделия, тем легче извлечь ее из песчаной формы при формовке, но при этом нежелательно увеличиваются припуски металла (дополнительные его объемы), которые приходится в дальнейшем устранять механической обработкой литой заготовки.

Для этой проблемы можно сформулировать технические противоречия в двух вариантах.

ТП-1: Увеличивая литейный уклон, мы облегчаем процесс формования, но при этом увеличиваются затраты на обработку резанием.

ТП-2: Уменьшая литейный уклон, мы снижаем затраты на обработку, но при этом усложняется процесс формования.

Техническое противоречие можно представить в виде схемы, показанной на рис. 6.3.

Рис. 6.3

Формулирование технических противоречий - это конкретная реализация более общего приема поиска решения - переформулирование условий задачи. Это модель задачи, в которой раскрываются положительные и нежелательные эффекты или явления в рассматриваемой предметной области.

При этом возникает проблема, как, сохранив или даже улучшив положительные стороны (эффекты) в создаваемом ТО, не допустить появления нежелательных эффектов.

Формулировка ТП позволяет вычленить положительные и нежелательные эффекты для того, чтобы провести анализ причин появления нежелательных эффектов, и тем самым активизирует мышление на поиск возможных направлений решения проблемы.

Пример 6.4. ТП: Уменьшая время на изучение конкретной темы, мы добиваемся того, что можем более широко информировать обучаемых, но при этом уровень знаний и умений по этой теме понижается.

Пример 6.5. ТП: Декларируя истины, мы даем материал сжато и энергично, но при этом снижается способность обучаемых к самостоятельному поиску знаний.

Пример 6.6. ТП: Необходимо повысить производительность токарной обработки заготовки.

Анализ доступных ресурсов позволяет наметить два мероприятия, которые будут приводить к появлению нежелательных эффектов, связанных, с одной стороны, с увеличением затрат и, с другой стороны, с ухудшением качества получаемой детали (табл.1).

Таблица 6.1


Пример появления нежелательных эффектов при попытке решить поставленную проблему В приведенной таблице можно увидеть следующие противоречия.

ТП-1: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура резца. Период стойкости инструмента уменьшается и, следовательно, увеличиваются затраты на обработку.

ТП-2: Для повышения производительности труда нужно увеличить скорость резания. Но при этом увеличивается температура заготовки. В материале заготовки происходят структурные изменения и, следовательно, снижается качество детали.

ТП-3: Для повышения производительности труда нужно увеличить подачу инструмента (глубину резания на каждом проходе резца). Но при этом увеличивается шероховатость поверхности и, следовательно, снижается качество детали.

6.3. Физическое противоречие

Как видно из последнего приведенного примера, предлагаемые мероприятия, направленные на повышение производительности токарной обработки, приводят к появлению ряда НЭ.

Проведенный анализ позволяет обнаружить и конкретизировать противоречивость свойств при взаимодействии компонентов рассматриваемой технической системы.

Из анализа табл. 6.1 можно сформулировать следующие противоречия.

Скорость резания должна быть большая для повышения производительности обработки, и она не должна быть большая, так как при этом увеличится температура резца.

Скорость резания должна быть большая для повышения производительности обработки, и она не должна быть большая, так как при этом увеличится температура заготовки.

Подача должна быть большая для повышения производительности обработки, и она не должна быть большая, чтобы не увеличивалась шероховатость поверхности.

Таким образом, для того, чтобы разрешить ТП, формулируются частные задачи, в которых предъявляются несовместимые требования к свойствам отдельных компонентов или взаимодействию между компонентами рассматриваемого объекта.

Совокупность таких требований Ю.В. Горин предложил назвать физическим противоречием (в 1973 г.), подчеркивая, что отношения противоречия перенесены на уровень физических свойств и отношений элементов системы.

Г.С. Альтшуллер отмечал: "Стремясь убрать конфликтующие, противоречивые отношения между внешними сторонами технической системы, получим противоречие на уровне внутреннего функционирования системы. Такое противоречие, в отличие от технического, называется физическим противоречием (ФП).

Сформулированные в примере 6.7 ФП позволяют наметить минизадачи и, тем самым, определить область поиска возможных решений (табл. 6.2).

Таблица 6.2

Пример 6.7. Для получения рельефной поверхности на крупногабаритных оболочках, например, для образования усилений в местах сварки на днищах топливных баков (ТБ), для получения вафельного силового набора на обечайках ТБ (места А на рис. 6.4) применяется операция избирательного размерного химического травления.


Рис. 6.4

Излишки материала удаляются в щелочных растворах. Места, которые не должны подвергаться травлению (поз. А рис. 6.4), покрываются лаком.

Проблемная ситуация заключается в том, что необходимо весьма точно нанести защитный лак на участки, которые не должны подвергаться травлению. Лак должен иметь хорошую адгезию к металлу, чтобы в процессе обработки не было подтравливания материала под покрытием.

Если лак наносить по трафарету, то не удается получить точный контур. Поэтому было принято решение наносить лак на всю поверхность, а затем по шаблону чертилкой делать разметку, скальпелем надрезать покрытие и удалять лак с тех участков, которые должны подвергнуться химической обработке.

Но это решение привело к следующей проблеме. Защитное покрытие должно иметь хорошую адгезию к металлу для того, чтобы не было подтравливания материала под краями покрытия в процессе химической обработки и можно было бы получить точный контур, и покрытие должно иметь слабую (плохую) адгезию , чтобы после нанесения покрытия и его разметки (по шаблону) можно было бы легко удалить часть покрытия (в местах, где должно происходить травление).

Сформулируем ФП:

Лак должен иметь хорошую адгезию, чтобы не было подтравливания; лак должен иметь плохую адгезию, чтобы его можно было легко удалить с участков, подлежащих травлению.

Формулировка ФП - это предельно обостренная и лаконичная формулировка задачи, выраженная часто в парадоксальной форме, обладающая эвристической ценностью.

Кроме того, в этой формулировке необходимо указывать, почему, для какой цели к рассматриваемому объекту предъявляются эти противоречащие требования.

Таким образом, при формулировке ФП нужно раскрыть физическую природу конфликта, объяснить, почему требования, отраженные в постановке задачи, являются противоречащими, и для чего нужно удовлетворить обоим противоречащим требованиям.

Пример 6.8. Из некоторого города в другой надо доехать (на автомобиле) быстро, чтобы успеть к некоторому событию. Но ехать быстро нельзя, так как дорога плохая, и это опасно.

Ехать надо быстро и в то же время медленно. Два противоречащих свойства процесса, которые обусловлены разными требованиями: необходимостью успеть вовремя и безопасностью. Поэтому физическое противоречие можно сформулировать следующим образом.

ФП: Скорость должна быть большая, чтобы успеть, и скорость должна быть маленькая, чтобы доехать.

Таким образом, ФП - это ситуация, когда к объекту или его части предъявляются противоположные (несовместимые) требования. Оно строится по схеме: объект должен обладать свойством Р и, вместе с тем, иметь противоположное свойство анти-Р .

Например. Материал стальной детали, например железнодорожных рельсов, должен быть твердым и прочным (P 1), чтобы хорошо сопротивляться статическим нагрузкам и износу, и должен быть пластичным (P 2), чтобы хорошо сопротивляться ударным воздействиям, приводящим к выкрашиванию поверхностного слоя металла в зоне контакта с колесом. Применение операции термообработки увеличивает прочность и твердость, но при этом снижается пластичность. Свойства прочность и пластичность характеризуют различные качественные стороны материала, но они находятся в отношении противоположности. Для стальной детали они несовместимы.

6.4. Эвристическая ценность противоречий

В физических противоречиях требования, которые предъявляются к объекту, могут являться следствием различных целей, которые ставит перед собой инженер. Эти разные цели и приводят к необходимости реализации в техническом объекте несовместимых свойств (Р и анти-Р) .

Кроме того, физические противоречия могут быть связаны с тем, что требуемое свойство не представляется возможным реализовать, так как этому мешает проявление объективных законов природы. То есть научное основание наблюдаемого явления (которое является нежелательным) не согласуется с требованиями, которые предъявляются к рассматриваемому объекту.

Пример 6.9. Рассмотрим ламповый усилитель. Катод радиолампы должен иметь постоянную термоэлектронную эмиссию (P 1). Однако применение переменного электрического тока (от трансформатора) для подогрева катода приводит к тому, что термоэлектронная эмиссия изменяется (P 2) в соответствии с частотой электрического тока: в громкоговорителе слышен фон (50 Гц), а это недопустимо.

Требуемую функцию (постоянство термоэлектронной эмиссии) надо осуществить, не усложняя систему. Но при этом возникает техническое противоречие, которое можно сформулировать в двух вариантах.

ТП-1: Если для подогрева катода применить постоянный электрический ток, то термоэлектронная эмиссия будет постоянной, но при этом усложняется вся система (надо устанавливать выпрямитель).

ТП-2: Если для подогрева катода применить переменный электрический ток, то вся система упрощается (не надо устанавливать выпрямитель), но термоэлектронная эмиссия не будет постоянной и, следовательно, не обеспечится качество усилителя.

Из этих формулировок видно, что изменяемым параметром (см. рис. 6.3) является электрический ток.

Из этого ТП можно сформулировать следующее ФП.

ФП-1: Электрический ток должен быть переменным, чтобы не усложнять всю систему, и он не должен быть переменным для обеспечения постоянства электронной эмиссии.

Из этого ФП можно сформулировать следующее ИКР.

Катод, который подогревается переменным электрическим током, сам обеспечивает постоянство электронной эмиссии.

Но этому ИКР мешает физическая особенность протекающего процесса.

ФП-2: Электронная эмиссия должна быть постоянной для качественной работы радиолампы, но она должна быть переменной, так как катод подогревается переменным электрическим током.

В этом ФП описываются несовместимые свойства, которыми должен обладать катод при его взаимодействии с другими компонентами радиолампы и надсистемой, то есть при воздействии на него переменного электрического тока.

Рис. 6.5

Таким образом, в физических противоречиях дается описание свойств, которыми должны обладать компоненты системы, чтобы достичь тех целей, которые ставит перед собой разработчик.

Потребность в улучшении (усилении) некоторого функционального свойства Ф 1 влечет за собой необходимость придания одному из компонентов ТС технической характеристики (свойства) Р . Но это ухудшает другое тоже важное функциональное свойство Ф 2 (рис. 6.5).

Свойства Р и не-Р характеризуются на качественном уровне, например, адгезия: большая и маленькая (пример 6.8) скорость: большая и маленькая (пример 6.9), материал: прочный и пластичный, электрический ток: постоянный и переменный (пример 6.10).

Таким образом, ФП отражает ситуацию, в которой к физическому состоянию зоны конфликта предъявляются взаимно противоположные требования.

Для ТП, приведенного в примере 6.4, физическое противоречие можно сформулировать в следующем виде.

ФП: Литейный уклон должен быть большим для удобства формования, и уклон должен быть маленьким, чтобы уменьшить затраты на обработку резанием.

Физическое противоречие представляет собой два несовместимых по истинности высказывания. Как сделать так, чтобы они оказались совместимыми?

Обратимся к законам логики.

Закон непротиворечия гласит, что два противоположных высказывания не могут быть одновременно истинными в одно и то же время и в одном отношении. При этом предполагается соблюдение закона тождества, заключающегося в том, что в рассуждении каждое понятие должно употребляться в одном и том же смысле, в том же содержании признаков.

Закон непротиворечия не будет нарушаться, если утверждение или отрицание относятся к разному времени или изменились какие-либо другие условия. Или же в них понятие, которое является субъектом суждения, рассматривается в разных отношениях. Или же в этих суждениях разные субъекты, то есть рассматриваются разные понятия.

Таким образом, если субъекты высказываний будут разные, то о законе непротиворечия говорить не приходится, так как суждения, участвующие в формулировке ФП, становятся несравнимыми. Следовательно, они перестают быть несовместимыми.

Поэтому можно предложить следующие приемы разрешения противоречий.

Смысл этого приема заключается в том, что при функционировании объекта в одни промежутки времени проявляется одно свойство, например P , а в другие промежутки времени - другое противоположное свойство не-P .

Поскольку субъекты суждения разделены во времени, то в формулировке ФП они представляют собой разные понятия. Следовательно, высказывания, составляющие ФП, становятся несравнимыми и перестают быть противоречащими.

Практическая реализация этого приема весьма часто сводится к введению в систему, например вещества, на определенное время. Это вещество должно обеспечить получение нужного свойства в заданный период времени, а когда оно выполнит свою функцию, оно должно пропасть.

Естественно, возникает проблема, как это организовать. Какими свойствами должно обладать это вещество? Какие поля можно ввести в систему (или найти в ТС или компонентах, с которыми взаимодействует рассматриваемый технический объект), чтобы это вещество проявило нужные свойства?

Для этого нужно посмотреть, какие другие свойства можно обнаружить в системе в эти моменты времени и как их можно для этого использовать.

Таким образом, формулировка ФП активизирует мышление и дает некоторые направления поиска решения.

Пример 6.10. В промышленности распространен способ определения площадок контакта поверхностей при помощи растертых на минеральных маслах красок. Краску наносят на одну поверхность, затем эту поверхность вводят в соприкосновение с другой поверхностью. По распределению пятен краски на этой второй поверхности судят о качестве контакта. Слой краски составляет порядка 5-6 мкм. Для более точного определения зоны контакта поверхностей необходимо применение более тонкого слоя краски. Однако тонкий слой не позволяет четко видеть границы пятна краски.

ТП: При уменьшении толщины краски повышается точность контроля, но ухудшается индикация (обнаружение) результата.

ФП: Слой краски должен быть тонким для повышения точности и он должен быть толстым для обнаружения.

Здесь можно воспользоваться известным приемом переформулирования условий задачи - заменить некоторые термины, желательно более общими, чтобы избавиться от вектора психологической инерции, расширить область поиска возможных решений. В частности, во второй части ФП мысль: "толстым для обнаружения" заменить "контрастным для обнаружения" . Это будет более общая и более точная формулировка, так как толстый слой нужен для контрастности.

Из формулировки ФП видно, что в рассматриваемом технологическом процессе можно выделить два этапа: испытание - приведение площадок в соприкосновение и контроль - момент обнаружения границ пятен краски.

Следовательно, рассматриваемые свойства должны быть различные в разные моменты времени. Значит, нужно использовать прием разрешения противоречия во времени.

Естественно возникает вопрос: какие вещества и (или) поля можно ввести в технологический процесс, чтобы разрешить это противоречие во времени?

Отсюда можно наметить путь решения задачи. Слой краски должен быть тонким в момент испытания, а при контроле пятно краски становится контрастным.

Какие вещества и поля можно ввести в систему, то есть какие физико-технические эффекты можно использовать для решения этой частной задачи?

Можно ввести вещество, которое вступит в химическую реакцию с нанесенным слоем краски, можно ввести в краску люминофор и применить ультрафиолетовое облучение и др.

Действительно, если пытаться ввести в систему вещество, то оно должно определенным образом взаимодействовать с веществами и полями, которые имеются в рассматриваемом техническом объекте. Значит, поиск решения заключается в том, что сначала формулируются свойства, которыми должно обладать это вещество, а потом с учетом определенных ограничений осуществляется поиск самого вещества.

Второй весьма часто применяемый способ разрешения ФП во времени основан на использовании закона динамизации. Действительно, если объект должен иметь различные свойства в разные моменты времени, значит, он должен как-то изменяться и быть легко управляем. Противоречие, описанное в примере 6.1, разрешено введением элементов механизации (закрылки, предкрылки). При посадке самолета форма крыла меняется таким образом, что увеличиваются и коэффициент подъемной силы, и площадь крыла.

Складывающиеся устройства: нож, зонтик, стул, убирающееся шасси самолета, телескопическая удочка - все эти технические решения были разработаны потому, что нужно было разрешить ФП.

Пример. Шариковая ручка должна оставлять след на бумаге, но не должна оставлять следы на одежде, не пачкать карман. Противоречие разрешается во времени либо введением еще одного вещества (шариковая ручка с колпачком), либо за счет динамизации (убирающийся стержень).

Разделить противоречащие свойства в пространстве

Практическая реализация этого приема заключается в том, чтобы разнести в пространстве противоречащие свойства, которыми должен обладать рассматриваемый объект.

Пример 6.11. Еще раз вернемся к рассмотрению проблемы повышения свойств стальных изделий. Для того, чтобы металлическая деталь обладала хорошей износостойкостью нужно, чтобы она имела высокую твердость. Это достигается применением термически упрочняемого материала и процессами упрочняющей термической обработки. Но в таком состоянии материал, как правило, имеет низкую ударную вязкость, то есть подвержен хрупкому разрушению при ударных нагрузках.

Твердость нужна для износостойкости, то есть только в поверхностном слое.

В хрупком материале возникшая трещина развивается практически мгновенно, а в вязком материале происходит медленное разрушение при значительной пластической деформации.

При ударных нагрузках вязкий материал деформируется, а хрупкий ломается. В работающей машине процесс развития пластической деформации может быть обнаружен по изменению характера ее работы. Поэтому высокая ударная вязкость материала конструкции является одним из способов обеспечения безопасности эксплуатации техники.

В конкретной задаче физическое противоречие заключается в том, что: "Деталь должна быть твердой для обеспечения высокой износостойкости, и деталь не должна быть твердой, чтобы иметь высокую ударную вязкость" .

Формулировка этого ФП сама "подсказывает", что его можно разрешить разделением этих свойств в пространстве - твердой деталь должна быть только в поверхностном слое.

Решение: материал детали не упрочняется термической обработкой (малое содержание углерода), а поверхностный слой цементируется (науглероживается) и производится термообработка - закалка.

Высказывания в ФП перестают быть противоречащими, так как в них меняются субъекты. Теперь уже одна часть рассматриваемого объекта обладает свойством Р , а другая - противоположным свойством не-Р .

Таким образом, чтобы понять, можно ли разрешить противоречие в пространстве или во времени, нужно проанализировать требования, которые приводят к противоречащим свойствам, выяснить, в чем различие этих требований.

Для разрешения ФП в пространстве можно либо использовать свободное (пустое) пространство в ТО, либо ввести в систему вещество-разделитель.

Следует отметить еще одну важную особенность этого этапа решения задачи.

Формулировка ФП - это модель задачи. И как всякая модель она позволяет выделить существенные стороны решаемой задачи, сконцентрировать на них свое внимание, понять какие вещественно-полевые, пространственные и временные ресурсы можно использовать для решения проблемы.

Формулирование ФП раскрывает еще два важных аспекта решаемой задачи. Эта модель дает возможность выявить оперативную зону и оперативное время .

Оперативная зона (ОЗ) - это пространство, в пределах которого возникает конфликт.

Оперативное время (ОВ) - это момент времени, когда конфликт возникает, а также время до появления конфликта, когда в ТО происходят процессы, подготавливающие этот конфликт.

Определение оперативной зоны и оперативного времени позволяет конкретизировать поставленную задачу.

В примере 6.12 ОЗ - это все тело детали, ОВ- технологический процесс, в котором формируются рассматриваемые свойства, то есть, процессы термообработки.

В примере 6.11 ОЗ - сопрягаемые площадки, ОВ - от момента испытания до момента контроля.

Рассматривая противоречащие высказывания как диалектическое противоречие, естественно заключить, что для его разрешения нужно найти (синтезировать) такое решение, которое позволило бы избавиться от НЭ и сохранить или, еще лучше, усилить нужное свойство. То есть нужно создать объект с новыми свойствами, исключающими рассматриваемое противоречие (речь идет не о поиске компромиссного решения). Поэтому для разрешения противоречия естественно воспользоваться приемами, которые позволяют изменять системные свойства рассматриваемых объектов.

Из приведенных примеров видно, что разрешение противоречий в пространстве и во времени, как правило, сопровождалось введением в систему веществ и полей, то есть, введением компонентов и связей, которые приводили к изменению системных свойств ТО.

Изменение системных свойств ТО возможно так же и за счет других структурных изменений.

Введение, удаление связей, изменение характера связей между компонентами системы

Пример 6.12. В радиоприемнике сила радиосигнала (особенно коротких волн) на антенне значительно изменяется. Это обусловлено в основном взаимным наложением радиоволн, приходящих в точку приема различными путями. Это сказывается на выходном сигнале - явление фединга-замирания.

ФП: Сила выходного сигнала должна быть постоянной для удобства прослушивания передач, но она не может быть постоянной из-за явления фединга-замирания.

ОЗ - все радиоприемное устройство от антенны до громкоговорителя;

ОВ - моменты времени, когда изменяется сила сигнала на антенне.

Разрешение ФП

Изменение связей в усилительном устройстве: введение отрицательной обратной связи - устройство, называемое автоматическим регулятором усиления.

Для разрешения ФП в примере 6.10 в катод было введено вещество. В каналах тонкого фарфорового цилиндрика помещена вольфрамовая нить - нагреватель. Нить накаливается переменным электрическим током, и ее тепло передается фарфоровому цилиндрику и нанесенному на него никелевому слою. Электрического контакта между катодом и нагревателем нет. Термоэлектронная эмиссия стала постоянной.

В примере 6.7 решения минизадач 1, 2, 4, приведенных в табл. 6.2, основаны на введении в систему дополнительных компонентов.

Системные свойства ТО могут быть изменены также еще одним приемом, основанным на системном подходе.

Количественные изменения в компонентах или во взаимодействиях между ними, которые привели бы к качественным изменениям.

Количественные изменения весьма часто приводят к качественным изменениям и, следовательно, оказывают существенное влияние на системные свойства объекта.

Например, при нагреве жидкости до определенной температуры происходит ее испарение, при нагреве ферромагнетика до определенной температуры, называемой точкой Кюри, происходит скачкообразное изменение магнитных свойств.

Закалка сталей основана на том, что при охлаждении при определенной температуре происходит изменение кристаллической решетки железа. При этом изменяется растворимость углерода в железе (сталь - это твердый раствор углерода в железе). Но здесь применен еще один прием - количественные изменения. При быстром охлаждении фиксируются те структуры, которые устойчивы при высокой температуре.

Следует отметить, что в технических решениях, как правило, используется сразу не менее двух приемов. Например, введение компонента в систему часто приводит и к разделению противоречащих свойств в пространстве; для того, чтобы разделить противоречащие свойства во времени или ввести количественные изменения во взаимодействие компонентов, иногда приходится вводить в систему еще один компонент в виде вещества или поля.

Таким образом, для разрешения ФП целесообразно, в первую очередь, проанализировать те требования, которые приводят к появлению несовместимых свойств, проверить, действительно ли необходимо совмещать противоречащие свойства в одной и той же точке пространства и в один и тот же момент времени, то есть рассмотреть, нельзя ли разрешить противоречие в пространстве или во времени.

Пример 6.13. Период колебания маятника (например, часов - "ходики") должен быть постоянным при изменении окружающей температуры (рис. 6.6, а).

Но поскольку температура воздуха меняется, то это сказывается на точности хода часов. Это связано с тем, что с изменением температуры изменяется длина маятника и, следовательно, период его колебаний.

Рис. 6.6

ФП: Период колебания маятника должен быть постоянным, но он не может быть постоянным, так как при изменении температуры изменяется длина маятника. Стержень металлический и при изменении температуры изменяется его длина.

ОВ - то время функционирования объекта, когда происходит изменение температуры;

ОЗ - точка подвеса, стержень, точка расположения центра масс груза, то есть вся система в целом.

ОЗ и понимание физических законов, которым подчиняется функционирование объекта, позволяют наметить пути решения задачи.

Период колебания маятника зависит от длины стержня и силы тяжести: , где L - длина маятника; g - ускорение силы тяжести.

Естественно, возникает задача, как управлять этими параметрами. При этом надо стремиться к получению идеального технического решения, то есть ТО должен управлять собой сам.

Здесь следует отметить еще одно важное обстоятельство. Технические и физические противоречия часто возникают именно после формулировки идеального технического решения, идеального конечного результата.

В данном случае объект должен сам управлять своими параметрами, для..., но он не может этого сделать, так как у него нет для этого ресурсов . Это тоже можно рассматривать как физическое противоречие.

Значит, эти ресурсы нужно найти. И ориентировку в поиске ресурсов дает представление об оперативной зоне, оперативном времени и компонентах надсистемы, с которыми связан рассматриваемый ТО.

Нужно устройство, которое хорошо бы реагировало на изменение температуры и изменяло бы длину маятника или силу притяжения груза (mg).

Какие вещества и поля можно ввести в систему?

6.5. Заключение

Таким образом, административные (АП), технические (ТП) и физические (ФП) противоречия - это модели задач.

Из приведенных примеров видно, что:

Административные и технические противоречия носят содержательный характер, а по форме они представляют собой описание проблемной ситуации.

Административные противоречия только формулируют проблему в терминах: цель, потребность, функция, нежелательные эффекты .

В ТП противоречие связано с функционированием ТО в целом при выполнении им главной полезной функции (ГПФ). В нем определяется изменяемый параметр, который существенным образом влияет на функциональные свойства технического объекта. Формулировка ТП позволяет обозначить направления решения проблемы.

В ФП , как правило, речь идет о компонентах ТО и их взаимодействиях.

В отличие от АП и ТП в физическом противоречии формулируются требования, приводящие к несовместимым свойствам, которыми должен обладать объект. Раскрывая суть конфликта, формулировка ФП обладает эвристической ценностью и позволяет наметить приемы поиска решения задачи.

Задачи и обстоятельства, в которых они возникают, могут быть самые разные. Дать рекомендации на все случаи невозможно. Поэтому весьма важным является систематизация приемов, их свертывание в компактный набор, который при необходимости можно было бы развернуть.

Г.С. Альтшуллер предложил 11 приемов разрешения физических противоречий, применение которых будет рассмотрено при изучении алгоритма решения изобретательских задач. Но чтобы ими воспользоваться, нужно уметь выявить и сформулировать физические противоречия.

Кроме того, не надо забывать, что знание законов техники весьма часто позволяет целенаправленно выйти на нужный прием разрешения противоречий.