Что такое этиленгликоль и его применение. Этиленгликоль: что такое, применение, отравление — симптомы, лечение. Химические свойства этиленгликоля

Этиленгликоль (1,2-этандиол, 1,2-диоксиэтан, гликоль) является базовым веществом для изготовления различных антифризов, которые используются в системах охлаждения двигателей транспортных средств.

Этиленгликоль – токсичный двухатомный спирт

Химическая формула данного простейшего многоатомного спирта – С2Н6О2 (иначе ее можно записать следующим образом – НО–СН2–СН2–ОН). Этиленгликоль имеет слегка сладковатый вкус, не имеет запаха, в очищенном состоянии выглядит, как немного маслянистая бесцветная прозрачная жидкость.

Так как он причислен к токсичным соединениям (по общепринятой классификации – третий класс опасности), следует избегать попадания данного вещества (в растворах и в чистом виде) в организм человека. Основные химические и физические свойства 1,2-диоксиэтана:

  • молярная масса – 62,068 г/моль;
  • коэффициент оптического преломления – 1,4318;
  • температура воспламенения – 124 градуса (верхний предел) и 112 градусов (нижний предел);
  • температура самовоспламенения – 380 °С;
  • температура замерзания (стопроцентный гликоль) – 22 °С;
  • температура кипения – 197,3 °С;
  • плотность – 11,113 г/кубический сантиметр.

Пары описываемого двухатомного спирта вспыхивают в тот момент, когда его температура достигает 120 градусов. Еще раз напомним, что 1,2-этандиол имеет 3-й класс опасности. А это означает, что его предельно допустимые концентрации в атмосфере могут быть не более 5 миллиграмм/кубический метр. Если же этиленгликоль попадает в организм человека, в нем могут развиться необратимые негативные явления, которые способны привести к смерти. При однократном употреблении вовнутрь 100 и более миллилитров гликоля наступает летальный исход.

Пары данного соединения менее токсичны. Так как этиленгликоль характеризуется сравнительно малым показателем летучести, реальная опасность для человека возникает тогда, когда он систематически вдыхает пары 1,2-этандиола. О том, что есть вероятность отравления парами (либо туманами) рассматриваемого соединения, сигнализирует кашель и раздражение слизистой оболочки. Если человек отравляется гликолем, ему следует принять препарат, содержащий 4-метилпиразол (мощный антидот, подавляющий фермент алкогольдегидрогеназы), или этанол (одноатомный этиловый спирт).

Применение гликоля в разных областях техники

Малая себестоимость данного многоатомного спирта, его особые химические и физические свойства (плотность и другие) привели к тому, что он используется весьма широко в различных технических сферах.

Любой автомобилист знает, что представляет собой обычная охлаждающая жидкость для его «железного коня» под названием антифриз – этиленгликоля 60 % + воды 40 %. Такая смесь характеризуется температурой замерзания -45 градусов, очень трудно найти более подходящую жидкость для автомобильных систем охлаждения, несмотря даже и на высокий класс опасности 1,2-этандиола.

В автомобильной отрасли этиленгликоль находит применение и в качестве отличного теплоносителя. Кроме того, он используется в следующих сферах:

  • органический синтез: химические свойства гликоля позволяют с его помощью защищать изофорон и другие карбонильные группы, использовать спирт в виде эффективного растворителя, работающего при повышенных температурах, а также в качестве основной составляющей специальной авиационной жидкости, уменьшающей явление обводнения горючих смесей для летательных аппаратов;
  • растворение красящих соединений;
  • изготовление нитрогликоля – мощного взрывчатого вещества на основе описываемого нами соединения;
  • газодобывающая промышленность: гликоль не позволяет формироваться гидрату метана на трубах, кроме того, он поглощает излишнюю влагу на трубопроводах.

Нашел этиленгликоль применение и в качестве эффективного криопротектора. Его используют для производства кремов для обуви, в качестве важного элемента жидкостей для охлаждения компьютерной техники, при изготовлении 1,4-диоксина и разных видов конденсаторов.

Некоторые нюансы производства гликоля

В конце 1850-х годов химик из Франции Вюрц получил этиленгликоль из его диацетата, а чуть позже путем гидратации этиленоксида. Но в то время практического применения новое вещество нигде не нашло. Лишь в 1910-х годах его начали использовать при изготовлении взрывчатых соединений. Плотность гликоля, его иные физические свойства и дешевизна производства обусловили то, что им заменили глицерин, который применялся до этого.

Особые свойства 1,2-этандиола по достоинству оценили американцы. Именно они наладили в середине 1920-х его промышленное изготовление на специально построенном и оборудованном заводе в Западной Вирджинии. В последующие годы гликоль использовали почти все известные на то время компании, занимавшиеся производством динамита. В настоящее время интересующее нас соединение, которое имеет третий класс опасности, изготавливается по технологии гидратации окиси этилена. Существует два варианта его производства:

  • с участием ортофосфорной либо серной кислоты (до 0,5 процентов) при температуре от 50 до 100 °С и давлении в одну атмосферу;
  • при температуре около 200 °С и давлении в десять атмосфер.

В результате реакции гидратации образуется до 90 процентов чистого 1,2-диоксиэтана, некоторое количество полимергомологов и триэтиленгликоля. Второе соединение добавляют в гидравлические и , оно применяется в промышленных системах охлаждения воздуха, из него делают препараты для дезинфекции, а также пластификаторы.

Важнейшие требования ГОСТ 19710 к готовому гликолю

С 1984 года действует ГОСТ 19710, который устанавливает требования к тому, какие свойства (температура замерзания, плотность и так далее) должен иметь этиленгликоль, используемый на предприятиях автомобилестроения и в других отраслях народного хозяйства, где на его основе выпускают разнообразные составы.

По ГОСТ 19710 гликоль (как жидкость) может быть двух типов: первого сорта и высшего сорта. Доля (массовая) воды в гликоле первого сорта должна быть до 0,5 %, высшего – до 0,1 %, железа – до 0,00005 и 0,00001 %, кислот (в пересчете на уксусную кислоту) – до 0,005 и 0,0006 %. Остаток после прокаливания готового продукта не может быть более 0,002 и 0,001 %.

Цвет 1,2-диоксиэтана по ГОСТ 19710 (по шкале Хазена):

  • после кипячения в растворе кислоты (соляной) – 20 единиц для продукции высшего сорта (первый сорт не нормируется по цвету);
  • в стандартном состоянии – 5 (высший сорт) и 20 единиц (первый сорт).

В Государственном стандарте 19710 выдвигаются специальные требования к процессу производства описываемого простейшего спирта:

  • используется исключительно герметичная аппаратура и оборудование;
  • производственное помещение обязательно оснащается вентиляцией, рекомендованной для работы с соединениями, которым присвоен третий класс опасности;
  • при попадании гликоля на оборудование или землю его следует сразу же обильно смывать водной струей;
  • персонал, работающий в цеху по производству 1,2-этандиола, обеспечивается противогазом модели «БКФ» либо иным приспособлением для защиты органов дыхания, соответствующим ГОСТ 12.4.034;
  • возгорания гликоля тушат при помощи инертных газов, специальных пенных составов, а также тонкораспыленной воды.

Готовая продукция по ГОСТ 19710 проверяется различными методами. Например, массовая часть двухатомного спирта и диэтиленгликоля устанавливается способом изотермической газовой хроматографии по технологии так называемого «внутреннего эталона». При этом используются весы для лабораторных исследований (ГОСТ 24104), стеклянная или стальная газохроматографическая колонка и хроматограф с детектором ионизационного типа, измерительная линейка, микрошприц, лупа оптическая (ГОСТ 25706), выпарительная чашка и другой инструмент.

Цвет гликоля устанавливают по стандарту 29131 при помощи секундомера, специального цилиндра, конической колбы, соляной кислоты, холодильного агрегата. Массовая часть железа устанавливается по Госстандарту 10555 по методике сульфациловой фотометрии, остатка после прокаливания – по Госстандарту 27184 (посредством выпаривания полученного соединения в платиновой либо кварцевой емкости). А вот массовая часть воды определяется электрометрическим или визуальным титрованием с использованием реактива Фишера в бюретках емкостью 10 либо 3 кубических сантиметра.

Антифриз – охлаждающая жидкость на основе гликоля

Антифриз на основе простейшего многотомного спирта применяется в современных транспортных средствах с целью охлаждения их двигателя. Его основным компонентом является этиленгликоль (есть составы с пропиленгликолем в качестве основного компонента). Добавками служит дистиллированная вода и специальные присадки, которые придают антифризу флуоресцентные, антикавитационные, антикоррозионные, антипенные свойства.

Главная характеристика антифризов – малая температура замерзания. Кроме того, они имеют низкий показатель расширения при замерзании (по сравнению с обычной водой на 1,5–3 процента меньше). При этом такая специальная охлаждающая жидкость на основе гликоля характеризуется высокой температурой кипения, что улучшает процесс эксплуатации транспортного средства в жаркую пору года.

В целом жидкость для охлаждения автодвигателей на основе гликоля и воды обладает следующими достоинствами:

  • отсутствие вредных добавок (аминов, разнообразных нитритов, неблагоприятно влияющих на природу фосфатов);
  • возможность выбора необходимой концентрации антифриза для качественного предохранения от замерзания;
  • стабильные параметры и свойства в течение всего срока службы;
  • совместимость с теми деталями охлаждающей системы авто, которые сделаны из пластмассы или резины;
  • высокие антипенные показатели.

Кроме всего прочего, современные антифризы обеспечивают антикоррозионную защиту металлических сплавов и металлов, имеющихся в двигателе внутреннего сгорания за счет наличия в них особых ингибирующих добавок.

Структурная формула

Истинная, эмпирическая, или брутто-формула: C 2 H 6 O 2

Химический состав Этиленгликоля

Молекулярная масса: 62,068

Этиленглико́ль (гликоль; 1,2-диоксиэтан; этандиол-1,2), HO-CH 2 -CH 2 -OH - двухатомный спирт, простейший представитель полиолов (многоатомных спиртов). В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Токсичен. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу.

История открытий и производства

Этиленгликоль впервые был получен в 1859 году французским химиком Вюрцем из диацетата этиленгликоля омылением гидроксидом калия и в 1860-м гидратацией этиленоксида. Он не находил широкого применения до Первой мировой войны, когда в Германии его стали получать из дихлорэтана для использования в качестве замены глицерина при производстве взрывчатых веществ. В США полупромышленное производство начато в 1917 году через этиленхлоргидрин. Первое крупномасштабное производство начато с возведением завода в 1925 году около Саут Чарлстона (Западная Вирджиния, США) компанией «Carbide and Carbon Chemicals Co.» (англ.). К 1929 году этиленгликоль использовался практически всеми производителями динамита. В 1937 компания Carbide начала первое крупномасштабное производство, основанное на газофазном окислении этилена до этиленоксида. Монополия компании Carbide на данный процесс продолжалась до 1953 года.

Получение

В промышленности этиленгликоль получают путём гидратации оксида этилена при 10 атм и 190-200°С или при 1 атм и 50-100°С в присутствии 0,1-0,5 % серной или ортофосфорной кислоты , достигая 90 % выхода. Побочными продуктами при этом являются диэтиленгликоль, триэтиленгликоль и незначительное количество высших полимергомологов этиленгликоля.

Применение

Благодаря своей дешевизне этиленгликоль нашёл широкое применение в технике.

  • Как компонент автомобильных антифризов и тормозных жидкостей, что составляет 60 % его потребления. Смесь 60 % этиленгликоля и 40 % воды замерзает при −49 °С. Коррозионно активен, поэтому применяется с ингибиторами коррозии;
  • Используется как теплоноситель с содержанием не более 50 % в системах отопления (частные дома в основном)
  • В качестве теплоносителя в виде раствора в автомобилях, в системах жидкостного охлаждения компьютеров;
  • В производстве целлофана, полиуретанов и ряда других полимеров. Это второе основное применение;
  • Как растворитель красящих веществ;
  • В органическом синтезе:
    • в качестве высокотемпературного растворителя.
    • для защиты карбонильной группы путём получения 1,3-диоксолана. Обработкой вещества с карбонильной группой в бензоле или толуоле этиленгликолем в присутствии кислого катализатора (толуолсульфоновой кислоты, BF 3 Et 2 O и др.) и азеотропной отгонкой на насадке Дина-Старка образующейся воды. Например, защита карбонильной группы изофорона
1,3-диоксоланы могут быть получены также при реакции этиленгликоля с карбонильными соединениями в присутствии триметилхлорсилана или комплекса диметилсульфат-ДМФА 1,3-диоксалана устойчивы к действию нуклеофилов и оснований. Легко регенерируют исходное карбонильное соединение в присутствии и воды .
  • Как компонент жидкости «И», используемой для предотвращения обводнения авиационных топлив.
  • В качестве криопротектора
  • Для поглощения воды, для предотвращения образования гидрата метана (ингибитор гидратообразования), который забивает трубопроводы при добыче газа в открытом море. На наземных станциях его регенерируют путём осушения и удаления солей.
  • Этиленгликоль является исходным сырьём для производства взрывчатого вещества нитрогликоля.
Этиленгликоль также применяется:
  • при производстве конденсаторов
  • при производстве 1,4-диоксана
  • как теплоноситель в системах чиллер-фанкойл
  • в качестве компонента крема для обуви (1-2 %)
  • в составе для мытья стёкол вместе с изопропиловым спиртом
  • при криоконсервировании биологических объектов (в крионике) в качестве криопротектора.

Очистка и осушение

Осушается молекулярным ситом 4А, полуводным сульфатом кальция, сульфатом натрия, Mg+I 2 , фракционной перегонкой под пониженным давлением, азеотропной отгонкой с бензолом . Чистота полученного продукта легко определяется по плотности. Таблица плотности водных растворов этиленгликоля, 20°С

Меры безопасности

Этиленгликоль - горючее вещество. Температура вспышки паров 120 °C. Температура самовоспламенения 380 °C. Температурные пределы воспламенения паров в воздухе, °С: нижний - 112, верхний - 124. Пределы воспламенения паров в воздухе от нижнего до верхнего, 3,8- 6,4 % (по объему). Этиленгликоль токсичен. По степени воздействия на организм относится к веществам 3-го класса опасности. Летальная доза при однократном пероральном употреблении составляет 100-300 мл этиленгликоля (1,5-5мл на 1 кг массы тела). Имеет относительно низкую летучесть при нормальной температуре, пары обладают не столь высокой токсичностью и представляют опасность лишь при хроническом вдыхании. Определённую опасность представляют туманы, однако при их вдыхании об опасности сигнализируют раздражение и кашель. Противоядием при отравлении этиленгликолем являются этанол и 4-метилпиразол. В организме метаболизируется путём окисления до альдегида гликолевой кислоты и далее до гликолевой кислоты, которая затем распадается до муравьиной кислоты и диоксида углерода . Также он частично окисляется до щавелевой кислоты , которая вызывает повреждения почечной ткани. Этиленгликоль и его метаболиты выводятся из организма с мочой.

Екатеринбург 2016

Понятие об Спиртах

Многоатомные спирты

Этиленгликоль

Глицерин

Химические свойства

Применение спиртов в промышленности

Список литературы

Введение

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH2–CH2–OH, глицерин HO–СH2–СН(ОН)–CH2–OH, пентаэритрит С(СН2ОН)4.

Многоатомные спирты

Многоатомными являются спирты, содержащие две и более гидроксильные группы в составе молекулы органического вещества. Все двухатомные спирты называются гликолями.

Этиленгликоль

Этиленгликоль (тривиальное название) или этандиол (систематическое название). Химическая формула HO−CH2CH2−OHHO−CH2CH2−OH.

Двухатомный спирт, простейший представитель многоатомных спиртов. В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Этиленгликоль токсичен. По степени воздействия на организм относится к веществам 3-го класса опасности. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу. Этиленгликоль - горючее вещество. Температура вспышки паров 120 градусов C.

Этиленгликоль находит широкое применение в технике в качестве охлаждающего реагента систем охлаждения двигателей и компьютеров, антифризов и тормозных жидкостей. Используется в органическом синтезе.

ПОЛУЧЕНИЕ ЭТИЛЕНГЛИКОЛЯ

В промышленности этиленгликоль получают путём:

· (I) гидратацией 1,2-дихлорэтана;

· (II) гидратацией хлоргидринов;

· (III) гидратации окиси этилена при повышенном давлении и температуре в присутствии 0,1-0,5 % серной или ортофосфорной кислоты, достигая 90 % выхода;

· (IV) окислением этилена перманганатом калия:

ХИМИЧЕСКИЕ СВОЙСТВА ЭТИЛЕНГЛИКОЛЯ

Этиленгликоль обладает всеми свойствами гликолей.

1. Взаимодействие с щелочными металлами : образует соли гликоляты

В отличие от одноатомных спиртов, многоатомные взаимодействуют также и соснованиями. Качественным реактивом на многоатомные спирты является щелочной раствор гидроксида меди(II), при взаимодействии с которым многоатомные спирты образуют комплексное соединение с медью ярко-синего цвета.

2. Взаимодействие с органическими кислотами: образует -одно- и двухзамещенные сложные эфиры (аналогично глицерину)

3. Взаимодействие с галогеноводородами HHal: образует этиленгалогенгидрины

HOCH2CH2OH+HHal⟶HOCH2CH2Hаl+H2O

4. Дегидратация при нагревании в присутствии концентрированной серной кислоты: образуется ацетальдегид 5. Окисление в зависимости от условий и окислителя: могут образовываться

· гликолевый альдегид,

· гликолевая кислота,

· глиоксаль,

· глиоксалевая и щавелевая кислоты;

Окисление молекулярным кислородом приводит к образованию формальдегида HCOH и муравьиной кислоты HCOOH.

Глицерин

Глицерин (тривиальное название) или пропантриол-1,2,3 (название по систематической номенклатуре).

Самые известные и применяемые в жизни человека и в промышленности вещества, принадлежащие к категории многоатомных спиртов - это этиленгликоль и глицерин. Их исследование и использование началось несколько веков назад, но свойства этих во многом неповторимы и уникальны, что делает их незаменимыми и по сей день. Многоатомные спирты используют во многих химических синтезах, отраслях промышленности и сферах человеческой жизнедеятельности.

Первое «знакомство» с этиленгликолем и глицерином: история получения

В 1859 году, посредством двухстадийного процесса взаимодействия дибромэтана с ацетатом серебра и последующей обработки едким кали полученного в первой реакции этиленгликольдиацетата, Шарль Вюрц впервые синтезировал этиленгликоль. Некоторое время спустя был разработан метод прямого гидролиза дибромэтана, но в промышленных масштабах в начале двадцатого века двухатомный спирт 1,2-диоксиэтан, он же - моноэтиленгликоль, или просто гликоль, в США получали посредством гидролиза этиленхлоргидрина.

На сегодняшний день и в промышленности, и в лаборатории применяют ряд других методов, новых, более экономичных с сырьевой и энергетической точек зрения, и экологичных, так как применение реагентов, содержащих или выделяющих хлор, токсины, канцерогены и другие опасные для окружающей среды и человека вещества, сокращается по мере развития «зелёной» химии.

Аптекарем Карлом Вильгельмом Шееле в 1779 году был открыт глицерин, а особенности состава соединения изучил в 1836 году Теофиль Жуль Пелуз. Двумя десятилетиями позже было установлено и обосновано строение молекулы данного трёхатомного спирта в трудах Пьера Эжена Марселея Вертело и Шарля Вюрца. Наконец, ещё двадцать лет спустя Шарль Фридель провёл полный синтез глицерина. В настоящее время промышленность использует два метода его получения: через хлористый аллил из пропилена, а также через акролеин. Химические свойства этиленгиликоля, как и глицерина, широко используют в различных сферах химического производства.

Строение и структура соединения

В основе молекулы лежит непредельный углеводородный скелет этилена, состоящий из двух атомов карбона, в котором произошёл разрыв двойной связи. На освободившиеся валентные места у атомов углерода присоединились две гидроксильные группы. Формула этилена - С 2 Н 4 , после разрыва кранной связи и присоединения гидроксильных групп (через несколько стадий) она выглядит как С 2 Н 4 (ОН) 2 . Это и есть этиленгликоль.

Молекуле этилена присуща линейная структура, в то время как двухатомный спирт имеет некое подобие транс-конфигурции в размещении гидроксильных групп по отношению к углеродному остову и друг к другу (в полной мере этот термин применим к положению относительно кратной связи). Такая дислокация соответствует самому удаленному расположению водородов из функциональных групп, меньшей энергии, а значит - максимальной устойчивости системы. Попросту говоря, одна ОН-группа «смотрит» вверх, а другая - вниз. В то же время неустойчивыми являются соединения с двумя гидроксилами: при одном атоме карбона, образуясь в реакционной смеси, они тут же дегидратируются, переходя в альдегиды.

Классификационная принадлежность

Химические свойства этиленгликоля определяются его происхождением из группы многоатомных спиртов, а именно подгруппы диолов, то есть соединений с двумя гидроксильными фрагментами у соседних атомов карбона. Веществом, также содержащим несколько ОН-заместителей, является и глицерин. Он имеет три спиртовых функциональных группы и является самым распространённым представителем своего подкласса.

Многие соединения этого класса также получают и используют в химическом производстве для различных синтезов и прочих целей, но применение этиленгликоля имеет более серьёзные масштабы и задействовано практически во всех отраслях промышленности. Этот вопрос будет рассмотрен ниже более подробно.

Физические характеристики

Применение этиленгликоля объясняется наличием ряда свойств, которые присущи многоатомным спиртам. Это отличительные черты, характерные только для данного класса органических соединений.

Самое важно из свойств - это неограниченная способность смешиваться с Н 2 О. Вода + этиленгликоль даёт раствор, обладающий уникальной характеристикой: температура его замерзания, в зависимости от концентрации диола, ниже на 70 градусов, чем у чистого дистиллята. Важно отметить, что зависимость эта нелинейная, и по достижении определённого количественного содержания гликоля начинается обратный эффект - температура замерзания повышается при увеличении процентного содержания растворяемого вещества. Эта особенность нашла применение в области производства различных антифризов, жидкостей «незамерзаек», которые кристаллизуются при крайне низких термических характеристиках окружающей среды.

Кроме как в воде, процесс растворения отлично протекает в спирте и ацетоне, но не наблюдается в парафинах, бензолах, эфирах и тетрахлорметане. В отличие от своего алифатического родоначальника - такого газообразного вещества, как этилен, этиленгликоль - это сиропоподобная,прозрачная, с незначительным желтым оттенком жидкость, сладковатая по вкусу, с нехарактерным запахом, практически нелетучая. Замерзание стопроцентного этиленгликоля происходит при - 12,6 градусах Цельсия, а кипение - при +197,8. В нормальных условиях плотность составляет 1,11 г/см 3 .

Методы получения

Этиленгликоль можно получить несколькими способами, некоторые из них сегодня имеют лишь историческое или препаративное значение, а другие активно используются человеком в промышленных масштабах и не только. Следуя в хронологическом порядке, рассмотрим самые важные.

Выше уже был описан первый метод получения этиленгликоля из дибромэтана. Формула этилена, двойная связь которого разорвана, а свободные валентности заняты галогенами, - главного исходного вещества в данной реакции - помимо углерода и водорода имеет в своём составе два атома брома. Образование промежуточного соединения на первой ступени процесса возможно как раз благодаря их отщеплению, т. е. замещению ацетатными группами, которые при дальнейшем гидролизе превращаются в спиртовые.

В процессе дальнейшего развития науки стало возможным получение этиленгликоля прямым гидролизом любых этанов, замещенных двумя галогенами у соседних атомов карбона, с помощью водных растворов карбонатов металлов из щелочной группы или (менее экологичный реагент) Н 2 О и диоксида свинца. Реакция довольно «трудоёмкая» и протекает лишь при значительно повышенных температурах и давлении, но это не помешало немцам в периоды мировых войн использовать этот метод для производства этиленгликоля в промышленных масштабах.

Свою роль в становлении органической химии сыграл и способ получения этиленгликоля из этиленхлоргидрина путём его гидролиза угольными солями металлов щелочной группы. При повышении температуры реакции до 170 градусов выход целевого продукта достигал 90 %. Но был значительный недостаток - гликоль нужно было как-то извлекать из раствора соли, что непосредственно сопряжено с рядом трудностей. Учёные решили этот вопрос, разработав метод с тем же исходным веществом, но разбив процесс на две стадии.

Гидролиз этиленгликольацетатов, являясь ранее завершающей стадией метода Вюрца, стал отдельным способом, когда сумели получить исходный реагент окислением этилена в уксусной кислоте кислородом, то есть без применения дорогих и совсем неэкологичных соединений галогенов.

Известно также много способов производства этиленгликоля путём окисления этилена гидроперекисями, перекисями, органическими надкислотами в присутствии катализаторов (соединений осмия), и др. Также существуют электрохимические и радиационно-химические методы.

Характеристика общих химических свойств

Химические свойства этиленгликоля определяются его функциональными группами. В реакциях может принимать участие один гидроксильный заместитель или оба, в зависимости от условий процесса. Главное отличие в реакционной способности заключается в том, что за счёт наличия у многоатомного спирта нескольких гидроксилов и их взаимного влияния проявляются более сильные чем у одноатомных "собратьев". Поэтому в реакциях со щелочами продуктами являются соли (для гликоля - гликоляты, для глицерина - глицераты).

В химические свойства этиленгликоля, равно как и глицерина, входят все реакции спиртов из категории одноатомных. Гликоль даёт полные и неполные эфиры в реакциях с одноосновными кислотами, гликоляты, соответственно, образуются с щелочными металлами, а при химическом процессе с сильными кислотами или их солями выделяется альдегид уксусной кислоты - за счёт отщепления от молекулы атома водорода.

Реакции с активными металлами

Взаимодействие этиленгликоля с активными металлами (стоящими после водорода в химическом ряде напряженности) при повышенных температурах даёт этиленгликолят соответствующего металла, плюс выделяется водород.

С 2 Н 4 (ОН) 2 + Х → С 2 Н 4 О 2 Х, где Х - активный двухвалентный металл.

на этиленгликоль

Отличить многоатомный спирт от любой другой жидкости можно с помощью наглядной реакции, характерной только для данного класса соединений. Для этого к бесцветному раствору спирта вливают свежеосажденный (2), имеющий характерный голубой оттенок. При взаимодействии смешанных компонентов наблюдается растворение осадка и окрашивание раствора в насыщенно синий цвет - в результате образования гликолята меди (2).

Полимеризация

Химические свойства этиленгликоля имеют большое значение для производства растворителей. Межмолекулярная дегидратация упомянутого вещества, то есть отщепление воды от каждой из двух молекул гликоля и их последующее объединение (одна гидроксильная группа отщепляется полностью, а от другой отходит только водород), даёт возможность получения уникального органического растворителя - диоксана, который часто используется в органической химии, несмотря на его высокую токсичность.

Обмен гидроксила на галоген

При взаимодействии этиленгликоля с галогеноводородными кислотами наблюдается замена гидроксильных групп соответствующим галогеном. Степень замещения зависит от мольной концентрации галогенводорода в реакционной смеси:

НО-СН 2 -СН 2 -ОН + 2НХ → Х-СН 2 -СН 2 -Х, где Х - хлор или бром.

Получение эфиров

В реакциях этиленгликоля с азотной кислотой (определённой концентрации) и одноосновными органическими кислотами (муравьиной, уксусной, пропионовой, масленой, валерьяновой и т. д.) происходит образование сложных и, соответственно, простых моноэфиров. При других концентрация азотной кислоты - ди- и тринитроэфиров гликоля. В качестве катализатора используется серная кислота заданной концентрации.

Важнейшие производные этиленгликоля

Ценными веществами, которые можно получить из многоатомных спиртов с помощью несложных (описанных выше), являются эфиры этиленгликоля. А именно: монометиловый и моноэтиловый, формулы которых - НО-СН 2 -СН 2 -О-СН 3 и НО-СН 2 -СН 2 -О-С 2 Н 5 соответственно. По химические свойства они во многом похожи на гликоли, но, так же, как и любой другой класс соединений, имеют уникальные реакционные особенности, присущие только им:

  • Монометилэтиленгликоль представляет собой жидкость без цвета, но с характерным отвратным запахом, закипающую при 124,6 градусах Цельсия, отлично растворяющуюся в этаноле, других органических растворителях и воде, значительно более летучую, чем гликоль, и с плотностью, меньшей, чем у воды (порядка 0,965 г/см 3).
  • Диметилэтиленгликоль - также жидкость, но с менее характерным запахом, плотностью 0,935 г/см 3 , температурой закипания 134 градуса выше ноля и растворимостью, сравнительной с предыдущим гомологом.

Применение целлозольвов - так в общем называют моноэфиры этиленгликоля - довольно распространено. Они используются в качестве реагентов и растворителей в органическом синтезе. Также применяются и их для антикоррозийных и антикристаллизационных добавок в антифризы и моторные масла.

Области применения и ценовая политика продукционного ряда

Стоимость на заводах и предприятиях, занимающихся производством и продажей подобных реактивов, колеблется в среднем около 100 рублей за килограмм такого химического соединения, как этиленгликоль. Цена зависит от чистоты вещества и максимального процентного содержания целевого продукта.

Применение этиленгликоля не ограничивается какой-то одной областью. Так, в качестве сырья его используют в производстве органических растворителей, искусственных смол и волокон, жидкостей, замерзающих при отрицательных температурах. Он задействован во многих промышленных отраслях, таких как автомобильная, авиационная, фармацевтическая, электротехническая, кожевенная, табачная. Неоспоримо весомо его значение для органического синтеза.

Важно помнить, что гликоль - это токсичное соединение, которое может нанести непоправимый вред здоровью человека. Поэтому его хранят в герметичных сосудах из алюминия или стали с обязательным внутренним слоем, защищающим ёмкость от коррозии, только в вертикальных положениях и помещениях, не снабженных отопительными системами, но с хорошей вентиляцией. Срок - не более пяти лет.

(моноэтиленгликоль) представляет собой горючую прозрачную бесцветную жидкость маслянистой консистенции, без запаха, сладковатая на вкус. Хорошо растворяется в воде, спиртах, кетонах, умеренно - в бензоле, толуоле, диэтиловом эфире. В этиленгликоле плохо растворяются раститительные и животные масла и не растворяются минеральные масла, парафины, каучук, ацетил- и этилцеллюлоза, поливинилхлорид. При растворении этиленгликоля в воде выделяется теплота и происходит уменьшение объема.
Он является продуктом гидратации окиси этилена, простейший представитель многоатомных спиртов (полиолов), обладает всеми свойствами гликолей. Токсичен. Корозионно активен, обладает очень высокой гигроскопичностью и сильно поглащает воду из воздуха и других газов.
Плотность: 1,112 г/см³. Температура плавления -12,9° С, температура кипения 197,3° С.

Химическая формула: C 2 H 4 (OH) 2 .

В промышленности этиленгликоль получают гидратацией этиленоксида в присутствии серной или ортофосфорной кислоты. В качестве побочных продуктов образуются ди-, три- и полигликоли.
Выпускают этиленгликоль двух марок: волоконный и антифризный.

Этиленгликоль применяют в химической, текстильной, автомобильной, авиационной, электротехнической промышленностях. Он обладает уникальной возможностью не замерзать при пониженных температурах. Исключительно важным свойством этиленгликоля является его способность понижать температуру замерзания водных растворов. Благодаря этому, вещество нашло широкое применение в производстве низкозамерзающих и охлаждающих жидкостей (автомобильных антифризов, тосолов, тормозных жидкостей).
Кроме того, 41-45% мирового производства этиленгликоля используется для получения синтетических полиэфирных волокон и пленок: целлофана, полиуретанов и ряда других полимеров.
Также моноэтиленгликоль применяют при производстве гидравлических и закалочных жидкостей, алкидных смол, растворителей, конденсаторов, крема для обуви, взрывчатого вещества нитрогликоля и для других целей.

Физико-химические характеристики моноэтиленгликоля ГОСТ 19710-83.:
Наименование показателя Норма для сорта
Высший Первый
Внешний вид Прозрачная жидкость
Массовая доля этиленгликоля, %, не менее 99,8 98,5
Массовая доля диэтиленгликоля, %, не более 0,05 1,0
Цветность в единицах Хасена, не более:в обычном состояниипосле кипячения с соляной кислотой 5
20
20
-
Массовая доля остатка после прокаливания, %, не более 0,001 0,002
Массовая доля железа, %, не более 0,00001 0,0005
Массовая доля воды, %, не более 0,1 0,5
Массовая доля кислот в пересчете на уксусную, %, не более 0,0006 0,005
Показатель преломления при 20°С 1,431-1,432 1,430-1,432
Пропускание в ультрафиолетовой области спектра, %, не менее, при длинах волн 220/275/350 нм 75/95/100 -

Требования безопасности моноэтиленгликоля ГОСТ 19710-83.:
Степень токсичности 2
Основные свойства и виды опасности
Основные свойства Прозрачная жидкость. Маслянистая, вязкая, остаток кубовый при охлаждении затвердевает. Без запаха. Растворима в воде. Гигроскопична. Высококипящая. Малолетуча. Загрязняет водоемы.
Взрыво- и пожароопасность Горюч. Температура вспышки паров 120° С. Температура самовоспламенения 380° С. Воспламеняется при нагревании от открытого пламени. Емкости могут взрываться при нагревании.
Опасность для человека Обладает наркотическим действием. Опасен при вдыхании (слабость, головная боль, головокружение, одышка, сердцебиение, боли в груди), проглатывании (тошнота, понос, слабость), попадании на кожу (краснота, отек), попадании в глаза (резь, слезотечение).
При пожаре возможны ожоги. При контакте с остатком кубовым возможен термический ожог. При попадании внутрь может вызвать хроническое отравление с поражением жизненно важных органов (действует на сосуды, почки, нервную систему). Этиленгликоль может проникать через кожные покровы.
Предельно допустимая концентрация (ПДК) этиленгликоля в воздухе рабочей зоны - 5 мг/м³. Этиленгликоль относится к третьему классу опасности (ГОСТ 12.1.005). Из-за низкой упругости паров не представляет опасности острых отравлений при вдыхании.
Средства индивидуальной защиты Для химразведки и руководителя работ - ПДУ-3 (в течение 20 минут). Для аварийных бригад - изолирующий защитный костюм КИХ-5 в комплекте с изолирующим противогазом ИП-4М или дыхательным аппаратом АСВ-2. При возгорании - огнезащитный костюм в комплекте с самоспасателем СПИ-20. При отсутствии указанных образцов: защитный общевойсковой костюм Л-1 или Л-2 в комплекте с промышленным противогазом РПГ-67 с патроном А.
При малых концентрациях в воздухе (при превышении ПДК до 100 раз) - спецодежда, промышленный противогаз малого габарита ПФМ-1 с универсальным защитным патроном ПЗУ, автономный защитный индивидуальный комплект с принудительной подачей в зону дыхания очищенного воздуха. Маслобензостойкие перчатки, перчатки из дисперсии бутилкаучука, специальная обувь.
Спецодежда, фартук из пленочной ткани, резиновые перчатки и сапоги, противогаз марки "ФГ-13-А" или марки "БКФ".
Необходимые действия в аварийных ситуациях
Общего характера Отвести вагон в безопасное место. Изолировать опасную зону в радиусе не менее 200 м. Откорректировать указанное расстояние по результатам химразведки. Удалить посторонних. В опасную зону входить в защитных средствах. Соблюдать меры пожарной безопасности. Не курить. Устранить источники огня и искр. Пострадавшим оказать первую помощь.
При утечке, разливе и россыпи Сообщить в ЦСЭН. Не прикасаться к пролитому веществу. Устранить течь с соблюдением мер предосторожности. Перекачать содержимое в исправную емкость или в емкость для слива с соблюдением условий смешения жидкостей. Проливы оградить земляным валом, засыпать инертным материалом, собрать в емкости. Не допускать попадания вещества в водоемы, подвалы, канализацию.
При пожаре Не приближаться к горящим емкостям. Охлаждать емкости водой с максимального расстояния. Тушить тонкораспыленной водой, пенами и порошками с максимального расстояния.
Нейтрализация Вещество откачать из понижений местности с соблюдением мер пожарной безопасности. Место разлива обваловать и не допускать попадания вещества в поверхностные воды, изолировать песком, воздушно-механической пеной. Срезать поверхностный слой почвы с загрязнениями, собрать и вывезти для утилизации с соблюдением мер безопасности. Места срезов засыпать свежим слоем грунта. Промытые водой поверхности подвижного состава, территории промыть моющими композициями, слабым щелочным раствором (известковым молоком, раствором кальцинированной соды). Поверхность территории (отдельные очаги) выжечь при угрозе попадания вещества в грунтовые воды; почву перепахать.
Меры первой помощи Вызвать скорую помощь. Свежий воздух, покой, тепло, чистая одежда.
При попадании в глаза промыть теплой водой с мылом. При попадании этиленгликоля на кожу снять одежду и обмыть облитые участки кожи теплой водой с мылом. При попадании продукта в организм человека через рот необходимо немедленно промыть желудок обильным количеством воды или ненасыщенным раствором питьевой соды, вызвать рвоту. Крепкий чай. Давать пить 30%-ный этиловый спирт по 30 мл через 3 часа, щелочное питье (2%-ный раствор соды).

Упаковка, транспортировка и хранение.
Этиленгликоль заливают в алюминиевые бочки вместимостью 110 и 275 дм³, бочки из коррозионно-стойкой стали вместимостью 110-250 дм³, в стальные неоцинкованные бочки вместимостью 100, 200 дм³, а также в железнодорожные цистерны с котлами из алюминия или коррозионно-стойкой стали.
Этиленгликоль, упакованный в бочки, транспортируют всеми видами транспорта в крытых транспортных средствах, а также наливом в железнодорожных цистернах в соответствии с правилами перевозок грузов, действующими на данном виде транспорта. Этиленгликоль, упакованный в бочки, перевозят железнодорожным транспортом повагонно и мелкими отправками. При транспортировании наливом - в железнодорожных цистернах с котлами из алюминия или коррозионно-стойкой стали, по согласованию с потребителем - в железнодорожных цистернах с верхним сливом и цистернах из углеродистой стали.
Этиленгликоль хранят в герметичных емкостях из алюминия, коррозионно-стойкой стали или алюминированной стали. Этиленгликоль в бочках хранят в крытых неотапливаемых складских помещениях. Не допускается хранение продукта высшего сорта в бочках из углеродистой стали. Бочки с этиленгликолем должны храниться вертикально. Высота штабеля бочек не должна превышать три яруса.
Гарантийный срок хранения: высшего сорта - 1 год со дня изготовления, первого сорта - 3 года со дня изготовления.