Цифровой кадр. Виды цифровых фотоаппаратов. Съемка с фотовспышкой

Помимо собственно цифрового оборудования, в сферу цифровой фотографии оказываются традиционно включены:

  • Аналоговые компоненты цифровых аппаратов (например, матрица содержит аналоговые части);
  • Теле- и видеокамеры, некоторые факсимильные и копирующие аппараты, использующие для получения изображения аналогичные фотоаппаратам матрицы, но передающие и записывающие аналоговый сигнал ;
  • Некоторые исторические модели фототехники, например Sony Mavica , записывающие аналоговый сигнал .

Достижения в области технологий и производства фотосенсоров , оптических систем позволяют создавать цифровые фотокамеры, которые вытесняют плёночную фототехнику из большинства сфер применения, хотя приверженцы плёнки среди профессиональных фотографов остаются. Кроме того, создание встроенных в сотовые телефоны , карманные компьютеры цифровых миниатюрных фотоаппаратов создало новые сферы применения фотографии.

Энциклопедичный YouTube

  • 1 / 5

    Цифровая фотография начинается с момента создания и внедрения Фотосе́нсора или Фотода́тчика - светочувствительного устройства, состоящего из матрицы и аналого-цифрового преобразователя .

    Размер фотосенсоров и угол изображения

    Размеры матриц большинства цифровых фотоаппаратов по размеру меньше стандартного кадра 35-мм плёнки. В связи с этим возникает понятие эквивалентного фокусного расстояния и кроп-фактора .

    Формат кадра

    В большинстве цифровых фотоаппаратов соотношение сторон кадра равно 1,33 (4:3), равное соотношению сторон большинства старых компьютерных мониторов и телевизоров. В плёночной фотографии используется отношение сторон 1,5 (3:2). В основном все цифровые зеркальные фотоаппараты с размерами фотосенсоров до 24×36 мм выпускаются с рабочими отрезками фотообъективов зеркальных плёночных фотоаппаратов этого класса, что позволяет использовать старую оптику, рассчитанную на это поле. Это вызвано прежде всего наличием прыгающего зеркала видоискателя, ограничивающего уменьшение рабочего отрезка объектива и автоматически сохраняет возможность применения (преемственность) ранее выпущенных объективов. Применение старой оптики в «цифрозеркалках» с матрицами, размерами меньших 24×36 мм, порой обеспечивают лучшую разрешающую способность объектива по площади кадра в силу неиспользования периферийной части изображения.

    Устройство цифрового фотоаппарата

    Виды цифровых фотоаппаратов

    Цифровые фотоаппараты со встроенной оптикой

    Зеркальные фотокамеры

    Цифровые зеркальные камеры (англ. DSLR ) являются аналогом плёночных зеркальных камер и имеют сопоставимые размеры (меньшие за счёт отсутствия фильмового канала).

    Своё название зеркальная камера получила благодаря зеркальному видоискателю (англ. TTL, Through The Lens ), с помощью которого фотограф имеет возможность визировать сцену через объектив фотоаппарата.

    Среднеформатные и прочие профессиональные цифровые камеры

    Выпускаются также цифровые камеры бо́льших форматов, предназначенные для профессионального использования. Среди них есть как специализированные, например панорамные камеры , так и камеры больших стандартных форматов, например среднеформатные .

    Для стандартных форматов, вместо полностью цифровых камер также с успехом применяются цифровые «задники».

    Цифровые задники

    Параметры цифрового фотоаппарата

    Качество изображения, даваемого цифровым фотоаппаратом, складывается из многих составляющих, которых намного больше, чем в плёночной фотографии. В их числе:

    • Габариты фотосенсоров
    • Электронная схема считывания и оцифровки аналогового сигнала АЦП
    • Алгоритм обработки и формат файлов, применяемый для сохранения оцифрованных данных
    • Разрешение матрицы в Мпикс (количество пикселей)

    Количество и размер пикселей матрицы

    В цифровых фотокамерах число физических пикселей является основным маркетинговым параметром и бывает от 0.1 (у вебкамер и встроенных камер) - до ~21 Мпикс. (У некоторых задников - до 420 Мпикс). В цифровых видеокамерах - до 6 Мпикс. Размеры пиксела в больших фотосенсорах составляют ~6-9 мкм , в малых - меньше ~6 мкм .

    Видоискатели

    • Прямой видоискатель
      • Стеклянный глазок
      • Светоделитель
      • Электронный видоискатель EVF
      • Шарнирное зеркало (Зеркальный видоискатель)
    • ЖК видоискатель

    Форматы файлов

    Битовая глубина цвета

    Носители данных

    Большинство современных цифровых фотоаппаратов производят запись снятых кадров на Flash-карты следующих форматов:

    • Memory Stick (модификаций PRO, Duo, PRO Duo)

    Наиболее распространённым на сегодня (2014 г.) типом карт памяти является Secure Digital. Также возможно подключение большинства камер напрямую к компьютеру, используя стандартные интерфейсы - USB и IEEE 1394 (FireWire). Ранее использовалось подключение через последовательный COM-порт . Некоторые фотоаппараты кроме слотов для карт памяти имеют встроенную память.

    Достоинства и недостатки цифровой фотографии

    Основная статья: Достоинства и проблемы цифровой фотографии

    Основные преимущества цифровой фотографии

    • Оперативность процесса съёмки и получения конечного результата.
    • Огромный ресурс количества снимков.
    • Большие возможности выбора режимов съёмки.
    • Простота создания панорам и спецэффектов.
    • Совмещение функций в одном устройстве, в частности, видеосъёмка в цифровых фотоаппаратах и, наоборот, фоторежим в видеокамерах.
    • Уменьшение габаритов и веса фотоаппаратуры.
    • Возможность предпросмотра результата .

    Основные недостатки цифровой фотографии

    Искусство цифровой фотографии - это категория творческих практик, связанных с созданием, редактированием, трансформацией и представлением цифровых изображений в качестве авторских произведений. Цифровая фотография может быть представлена как самостоятельное визуальное произведение (фотоснимок, фотопринт, фотолайтбокс), но может включаться в качестве компонента в более крупные формы, например инсталляции , перформансы , компьютерные художественное программы и базы данных, Интернет-проекты в современном искусстве .

    Термин «цифровая фотография» позволяет дифференцировать изображения, созданные с помощью процесса цифрового фотографирования и/или компьютерного редактирования, от изображений, полученных в результате съёмки плёночной аналоговой фотокамерой.

    Цифровая фотография входила в жизнь постепенно, шаг за шагом. Национальное аэрокосмическое агентство США приступило к использованию цифровых сигналов в 1960-х годах, вместе с полетами на Луну (например, для создания карты лунной поверхности) - как известно, аналоговые сигналы могут при передаче теряться, а цифровые данные подвержены ошибкам гораздо меньше. Первая сверхточная обработка изображений была разработана именно в тот период,поскольку Национальным аэрокосмическим агентством для обработки и улучшения космических изображений использовалась вся мощь компьютерных технологий. Холодная война, в процессе которой применялись самые разнообразные шпионские спутники и секретные системы обработки изображений, также способствовала ускорению развития цифровой фотографии.

    Первая электронная камера без пленки была запатентована компанией Texas Instruments в 1972 году. Главный недостаток этой системы заключался в том, что фотографии можно было просматривать только по телевизору. Аналогичный подход был реализован и в устройстве Mavica компании Sony, которое было анонсировано в августе 1981 года в качестве первой коммерческой электронной камеры. Камеру Mavica можно уже было подключить и к цветному принтеру. В то же время она не являлась настоящей цифровой камерой - это была скорее видеокамера, с помощью которой можно снять и показать отдельные снимки. Камера Mavica (Magnetic Video Camera) позволяла записывать до пятидесяти изображений на двухдюймовых гибких дисках с помощью ПЗС-датчика размером 570х490 пикселей, что соответствовало стандарту ISO 200. Она имела одну выдержку, равную 1/60-й секунды, ручную регулировку диафрагмы и три сменных объектива: 25-миллиметровый широкоугольный, 50-миллиметровый обычный и объектив с переменным фокусным расстоянием 16–65 мм. В настоящее время такая система может показаться примитивной, однако не стоит забывать, что Mavica была разработана почти 25 лет назад!

    В 1992 году фирма Kodak объявила о выпуске первой профессиональной цифровой фотокамеры DCS 100 на основе фотоаппарата Nikon F3. В фотокамеру DCS 100 был встроен датчик изображения на ПЗС с разрешением 1,3 Мб, а также переносной жесткий диск для хранения 156 зафиксированных изображений. Следует отметить, что этот диск весил около 5 кг, сама фотокамера стоила $25 тыс., а получаемые изображения годились по качеству лишь для печати на страницах газет. Поэтому такой фотоаппаратурой целесообразно было пользоваться лишь в тех случаях, когда сроки получения изображений были важнее, чем их качество.

    Перспективы цифровой фотографии стали более ясными с появлением в 1994 году двух новых типов цифровых фотокамер. Компания Apple Computer впервые выпустила фотокамеру Apple QuickTake 100, имевшую странную форму бутерброда и способную фиксировать 8 изображений с разрешением 640 х 480 пикселей. Это была первая цифровая фотокамера для массового потребителя, доступная по отпускной цене $749. Изображения, получавшиеся с ее помощью, также были неважного качества, не позволявшего их как следует напечатать, а поскольку Интернет тогда находился на начальной стадии своего развития, данная фотокамера не нашла широкого применения.

    Вторая фотокамера, выпущенная в том же году фирмой Kodak совместно с агентством новостей Associated Press, предназначалась для фоторепортеров. Ее модели NC2000 и NC200E сочетали в себе внешний вид и функциональные возможности пленочных фотокамер с мгновенным доступом к изображениям и удобствами их фиксации, характерными для цифровых фотокамер. Модель NC 2000 получила широкое распространение во многих редакциях новостей, что послужило толчком для перехода с пленочной на цифровую технологию.

    Начиная со средины 90-х годов XX века цифровые фотокамеры стали более совершенными, компьютеры - более быстродействующими и менее дорогими, а программное обеспечение - более развитым. В своем развитии цифровые фотокамеры прошли путь от чужеродного вида устройств, которые могли быть дороги лишь их создателям, до универсальной, простой в употреблении фотоаппаратуры, встраиваемой даже в вездесущие сотовые телефоны и обладающей такими же техническими характеристиками, как и самые последние модели полноформатных (35 мм) цифровых фотокамер. А по качеству получаемых изображении такая фотоаппаратура превосходит пленочные фотоаппараты.

    Перемены, постоянно происходящие в технологии цифровых фотокамер, весьма примечательны.

    Основные достоинства и проблемы цифровой фотографии , в сравнении с традиционным фотопроцессом с применением фотоплёнки .

    Достоинства

    Быстрое получение результатов

    Некоторые камеры и принтеры позволяют получать отпечатки без компьютера (камеры и принтеры с возможностью прямого подключения или принтеры, печатающие с карт памяти), но этот вариант, как правило, исключает или уменьшает возможности коррекции снимка и имеет другие ограничения.

    Гибкое управление параметрами съёмки

    Цифровая съёмка позволяет гибко управлять некоторыми параметрами, которые, в традиционном фотопроцессе, жёстко привязаны к фотоматериалу плёнки - светочувствительностью и цветовым балансом (также, называемым балансом белого ).

    Цифровой шум

    На левой части изображения приведён фрагмент фотографии снятой при неблагоприятных условиях (длинная выдержка, высокая чувствительность ISO), шум хорошо заметен. На правой части изображения - фрагмент фотографии снятой при благоприятных условиях. Шум практически незаметен

    Цифровые фотографии, в той или иной степени, содержат цифровой шум . Количество шума зависит от технологических особенностей сенсора (линейного размера пикселя, применяемой технологии CCD/CMOS, и др.).

    Шум в большей степени проявляется в тенях изображения. Шум возрастает с увеличением светочувствительности съёмки, а также, с увеличением времени экспозиции.

    Цифровой шум в чём-то эквивалентен зернистости изображения на фотоплёнке. Зернистость повышается с увеличением чувствительности плёнки, точно также как и цифровой шум. Однако, зернистость и цифровой шум имеют разную природу и различаются по внешнему виду:


    свойство зернистость цифровой шум
    Является … … ограничением разрешения плёнки, отдельное зерно повторяет форму и размер светочувствительного кристалла эмульсии … шумовыми отклонениями, привнесёнными электроникой камеры, шум образуется пикселями (или пятнами 2-3 пикселя, при интерполяции цветовых плоскостей) одинакового размера.
    Проявляется … … нелинейной яркостной и, в меньшей степени, цветовой текстурой, неровными линиями резких переходов яркости и цвета … шумовой текстурой из девиаций яркости и цвета по всему снимку, снижающей различимость деталей, создающих неоднородности на однотонных участках
    В целом запечатлевает … … точные яркости и цвета, отклонения несут позиционный характер … яркости и цвета со статистическим отклонением к серому цвету, хроматические девианты имеют цвета, несвойственные объекту съемки (что раздражает восприятие снимка), отклонения несут амплитудный характер
    С повышением чувствительности … … увеличивается максимальный размер зерна
    С повышением экспозиции … … не изменяется … увеличивается уровень шума (степень девиаций)
    На белых участках … … практически не проявляется … проявляется слабо
    На чёрных участках… … практически не проявляется … проявляется наиболее сильно

    В отличие от цифрового шума, изменяющегося от камеры к камере, степень зернистости плёнки не зависит от применяемой камеры - самый дорогой профессиональный аппарат и дешёвая компактная камера на одной и той же плёнке дадут изображение с одинаковой зернистостью.

    Цифровой шум начинает подавляться ещё при считывании с сенсора (вычитанием «нулевого» уровня каждого пикселя из считанного потенциала), продолжается при обработке изображения камерой (или конвертером RAW-файла). При необходимости шум также может быть дополнительно подавлен в программах обработки изображений.

    При конвертации RAW-файлов мы работаем с неизменёнными данными с матрицы аппарата и поэтому можем более точно работать с подавлением шумов, так как изображение и шумы на нем не размыты интерполяцией цветовых плоскостей (см. раздел Устройство цветного сенсора и его недостатки ).

    Муар

    Дефект. Муар при съемке текстуры (мира контраста)

    При цифровой съемке происходит растрирование изображения. Если в изображении присутствует другой (не обязательно равномерный) растр, при фокусировке дающий частоты близкие к частоте к растра сенсора, может возникнуть муар - биение растров, образующее зоны усиления и ослабления яркости. Они могут сливаться в линии и текстуры, изначально отсутствующие на объекте съемки.

    Муар усиливается с приближением частот и уменьшением угла между растрами. Последнее свойство означает, что муар можно уменьшить, снимая сцену под некоторым углом, подобранным опытным путем. Нормальную ориентацию сцены можно вернуть в графическом редакторе (ценой потери краёв, и некоторой потери четкости).

    Муар очень ослабляется при расфокусировке - в том числе «смягчающими» светофильтрами (которые применяются в портретной съемке) или оптикой относительно невысокого разрешения, неспособной сфокусировать точку, соизмеримую с линией растра сенсора (то есть, оптика невысокого разрешения или сенсор с пикселями маленького размера).

    В сенсорах, представляющих собой прямоугольную матрицу светочувствительных датчиков, имеется как минимум два растра - горизонтальный, который образуют строки пикселей и, перпендикулярный ему, вертикальный. Большинство современных камер используют высокое разрешение сенсора, а также специальные фильтры слегка размывающие изображение, так что возможный муар довольно слаб.

    Высокое энергопотребление

    В плёночной фотографии изображение получается химическим способом, не требующим электричества. Электричество могут использовать только дополнительные электронные компоненты (дисплей, вспышка, моторы, автофокус, экспонометры и т. п.), если камера ими оборудована. Процесс же получения и записи цифрового изображения является полностью электронным. В связи с этим, подавляющее большинство цифровых камер потребляют больше электроэнергии, чем их электронные плёночные аналоги (механические плёночные камеры, разумеется, вообще ничего не потребляют). Особенно высоким энергопотреблением отличаются компактные камеры, использующие в качестве видоискателя жидкокристаллический экран , с люминесцентной подсветкой.

    Сенсоры, выполненные по технологии CMOS, отличаются меньшим энергопотреблением, чем CCD-сенсоры.

    Из-за энергопотребления, а также стремления к компактности, в бо́льшей части цифровых камер производители отказались от использования батарей размеров AA и AAA , популярных в пленочных камерах, в пользу более ёмких и компактных аккумуляторов. Некоторые модели позволяют использовать батареи AA в дополнительных батарейных блоках.

    Сложное устройство и высокая цена цифровых камер

    Даже самая простая цифровая камера является сложным электронным устройством, потому что как при съемке, как минимум, должна:

    • открыть затвор на заданное время
    • считать информацию с сенсора
    • записать файл изображения на носитель

    В то время как простой плёночной камере достаточно просто открыть затвор, а для этого (а также, манипуляций с плёнкой) достаточно нескольких несложных механических узлов.

    Именно сложность объясняет цены цифровых камер в 5-10 раз превышающие цены аналогичных плёночных моделей. При этом среди простых моделей цифровые камеры часто проигрывают плёночным по качеству картинки (в основном, по разрешению и цифровому шуму).

    Кроме всего прочего, сложность увеличивает число возможных неисправностей и стоимость ремонта.

    Системы с массивом цветных фильтров

    Наиболее распространённая ныне цветная плёночная фотография использует многослойную фотоэмульсию со слоями, чувствительными к разным диапазонам спектра видимого света.

    Большинство же современных цветных цифровых камер используют для цветоделения мозаичный фильтр Байера или его аналоги . В фильтре Байера каждый датчик на фотосенсоре имеет светофильтр одного из трёх основных цветов и воспринимает только его.

    Такой подход имеет ряд недостатков.

    Потери разрешения и цветовые артефакты

    Полное изображение получается восстановлением (интерполяцией) цвета промежуточных точек в каждой из цветовых плоскостей. Таким образом, возможны ошибки интерполяции, которые снижают разрешение (резкость) изображения.

    Интерполяция может давать неверный цвет, и таким образом, давать дополнительный цветовой шум даже при высоких ISO и чуствительность. К уже рассмотренным выше недостаткам следует отнести ).

    Решением данных вопросов занимаются конвертеры RAW-файлов и программы редактирования фотографий .

    Чувствительность

    Для хорошего цветопередачи каждый пиксель должен принимать только часть спектра падающего света. Таким образом, часть света будет не учтена, что приведёт к падению чуствительности. (В системах с цветоделительной призмой потенциально меньшее количество света поглощается).

    Альтернативные схемы цветоделения

    Недостатки фильтра Байера заставляют разработчиков искать альтернативные решения. Вот наиболее популярные из них.

    Трёхсенсорные схемы

    Данные схемы используют три сенсора и призму, разделяющую световой поток на составляющие цвета.

    Основной проблемой трёхсенсорной системы является совмещение трёх получающихся изображений в одно. Но это не мешает использовать её в системах с относительно низким разрешением, например в видеокамерах .

    Многослойные сенсоры

    Идея многослойного сенсора, аналогичного современной цветной фотоплёнке с многослойной эмульсией, всегда владела умами разработчиков электроники, но до последнего времени не имела методов для практической реализации.

    Разработчики компании Foveon решили использовать свойство кремния поглощать свет разной длины волны (цвета) на различной глубине кристалла, расположив датчики основных цветов друг под другом на различных уровнях микросхемы. Реализацией этой технологии стали сенсоры , анонсированные в 2005 году.

    Сенсоры X3 считывают полную гамму цветов на каждом пикселе, поэтому им несвойственны проблемы, связанные с интерполяцией цветовых плоскостей. У них есть собственные проблемы - склонность к шуму, межслойная хроматическая аберрация , и т. п. но эта технология еще находится в активном развитии.

    Разрешение в применении к сенсорам X3 имеет несколько трактовок, отталкивающихся от различных технических аспектов. Так для модели «Foveon X3 10.2 MP»:

    • Итоговое изображение имеет пиксельное разрешение 3,4 мегапикселя. Так понимает мегапиксель пользователь.
    • Сенсор имеет 10,2 миллионов датчиков (или 3,4×3). Такое понимание использует компания в маркетинговых целях (именно эти цифры присутствуют в маркировках и спецификациях).
    • Сенсор обеспечивает разрешение изображения (в общем смысле) соответствующее 7 -мегапиксельному сенсору с фильтром Байера (по расчётам Foveon), т. к. не требует интерполяции и поэтому обеспечивает более чёткое изображение.
    Дихроичное деление внутри пикселя

    Создан прототип матрицы с цветоделением внутри пиксела, лишённой большинства недостатков всех вышеперечисленных методов цветоделения. Однако его чрезвычайно низкая технологичность препятствует его широкому внедрению.

    Сравнительные особенности

    Быстродействие

    Цифровые и плёночные камеры, в общем, имеют схожее быстродействие, определяемое задержками перед съёмкой кадра в различных режимах. Хотя отдельные типы цифровых камер могут уступать плёночным.

    Лаг затвора

    При этом в большинстве компактных и бюджетных цифровых камер используется медленный, но точный контрастный автофокус (неприменимый для плёночных камер). Плёночные камеры той же категории используют менее точные (полагающиеся на высокую ГРИП), но быстрые системы фокусировки.

    Зеркальные камеры (как цифровые, так и плёночные) используют одинаковую систему фазовой фокусировки, с минимальными задержками.

    Для уменьшения влияния автофокуса на лаг затвора (как в цифровых, так и в некоторых типах плёночных камер) применяется предварительная (в т. ч. упреждающая, для движущихся объектов) фокусировка.

    Задержка видоискателя

    Неоптические видоискатели, применяемые в незеркальных цифровых камерах - ЖК-экран или электронный видоискатель (окуляр с ЭЛТ или ЖК-экраном), могут показывать изображение с задержкой, что, как и лаг затвора, может привести к запаздыванию съёмки.

    Время готовности

    Время готовности камеры к съёмке - понятие, существующее для электронных камер и камер с выдвигающимися элементами. Большинство механических камер готовы к съёмке всегда, и среди них нет цифровых - все цифровые камеры и задники являются электронными.

    Время готовности электронных камер определяется временем стартовой инициализации камеры. Для цифровых камер время инициализации может быть бо́льшим, но достаточно мало - 0,1-0,2 секунды.

    Компактные камеры с выдвигающимися объективами имеют значительно бо́льшее время готовности, но такие объективы имеют как цифровые, так и плёночные камеры.

    Задержка при непрерывной съёмке

    Задержка при непрерывной съёмке обусловлена обработкой текущего кадра и подготовкой к съёмке следующего, которые требуют некоторого времени. Для плёночной камеры такой обработкой будет перемотка плёнки на следующий кадр.

    Цифровая камера перед следующим снимком должна:

    • Считать данные с сенсора;
    • Обработать изображение - сделать файл нужного формата и размера с необходимыми коррекциями;
    • Записать файл на цифровой носитель.

    Самой медленной из перечисленных операций является запись на носитель (Flash-карту). Для её оптимизации используется кэширование - запись файла в буфер, с записью из буфера на медленный носитель, параллельно с другими операциями.

    Обработка включает в себя большое количество операций по восстановлению, коррекции изображения, уменьшения до требуемого размера и упаковке в файл нужного формата. Для увеличения производительности, кроме повышения частоты работы процессорной части камеры, повышают её эффективность, разрабатывая специализированные процессоры с аппаратной реализацией алгоритмов обработки изображения.

    Скорость считывания с сенсора обычно становится «бутылочным горлом » производительности только в топовых моделях профессиональных камер, с сенсорами высокого разрешения. Все другие виды задержек в них производители устраняют. Как правило, максимальная скорость работы конкретного сенсора ограничивается физическими факторами, приводящими на бо́льших скоростях к резким снижениям качества изображения. Для работы с большей производительностью разрабатываются новые типы сенсоров.

    Также на время подготовки к съёмке следующего кадра (как при цифровой, так и при обычной съёмке) влияет время, необходимое для зарядки вспышки, если она используется.

    Максимальное количество кадров при непрерывной съёмке

    Кэширование записи на медленный носитель рано или поздно приводит к заполнению буфера и падению производительности на реальный уровень. В зависимости от программного обеспечения камеры, при этом съёмка может:

    • остановиться;
    • продолжаться с низкой скоростью по мере записи изображений;
    • или продолжаться на той же скорости, затирая в буфере ранее заснятые, но не записанные изображения.

    Поэтому, для непрерывной съёмки, кроме количества кадров в секунду, камера имеет параметр максимального количества кадров , которые камера может сделать до переполнения кэша записи. Это количество зависит от:

    • Размера оперативной памяти и разрешения сенсора (заводские характеристики) камеры;
    • Выбранных пользователем:
      • формата файла (если камера это позволяет);
      • размера изображения (если формат это позволяет);
      • качества изображения (если формат это позволяет).

    Плёночные камеры, в силу своего устройства, всегда работают с реальной производительностью, и максимальное количество кадров ограничивает только количество кадров на плёнке.

    Съёмка в инфракрасном диапазоне

    Большинство современных (2008 год) цифровых камер содержит фильтр , удаляющий из светового потока инфракрасный компонент. Однако в ряде камер этот фильтр можно снять и, отфильтровав видимую часть света, фотографировать в невидимом инфракрасном диапазоне (съёмка теплового излучения или съёмка с инфракрасной подсветкой)

      Цифровой зеркальный фотоаппарат Canon EOS 350D Цифровой фотоаппарат Canon PowerShot A95 Цифровая фотография фотография, результатом которой является изображение в виде массива цифровых данных файла, а в качестве светочувствительного материала… … Википедия

      Цифровой зеркальный фотоаппарат Canon EOS 350D Цифровой фотоаппарат Canon PowerShot A95 Цифровая фотография фотография, результатом которой является изображение в виде массива цифровых данных файла, а в качестве светочувствительного материала… … Википедия Википедия

      Матрица на печатной плате цифрового фотоаппарата Матрица или светочувствительная матрица специализированная аналоговая или цифро аналоговая интегральная микросхема, состоящая из светочувствительных элементов фотодиодов. Предназначена для… … Википедия

    Цифрова́я фотогра́фия - раздел , связанный с получением , хранимого в цифровом формате. Цифровая фотография, в отличие от плёночной, использует для записи изображения, то есть электрические сигналы вместо химических процессов. В настоящее время цифровая фотография применяется все шире, продажи цифровых фотоаппаратов в большинстве стран уже превысили продажи плёночных камер. Все шире технологии получения цифровых изображений применяются и в устройствах, ранее для этого не предназначенных, например, в или в .

    Сейчас в цифровой фототехнике применяются несколько типов сенсора. По элементрной базе:

    • (CCD)
    • (CMOS)
    • DX-матрица (гибрид КМОП и ПЗС)

    По технологии цветоотделения:

    • матрицы с
    • матрицы

    Многофункциональность

    Исключая самые дешёвые варианты () и самые дорогие профессиональные устройства, цифровой фотоаппарат записывает снятые изображения на электро-магнитный носитель, в основном, Flash-карты и мини-диски, хотя ранее выпускались аппараты, использующие для этих целей и .

    Многие цифровые фотоаппараты вместе с фотографиями позволяют записывать видео- и аудиофрагметны. Отдельные устройства можно использовать в качестве веб-камер, многие позволяют подключать их напрямую к для печати или к для просмотра фотографий.

    Сравнение с плёнкой

    Достоинства цифровой фотографии

    • Оперативный просмотр снятых кадров позволяет быстро понять ошибки и переснять неудавшийся кадр;
    • Вы платите только за печать готовых фотографий;
    • Долгое хранение фотографий на электронных носителях (при своевременном копировании на свежие носители в соответствии со сроком службы носителя) не приводит к ухудшению их качества;
    • Изображения готовы для обработки и тиражирования на , их не надо сканировать;
    • Большинство цифровых фотокамер компактнее плёночных аналогов;
    • Многие цифровые фотоаппараты позволяют проводить съёмку в инфракрасных лучах, используя лишь , в то время как для классической фотографии требуется специальная ;
    • Возможность гибкого управления , в то время как цветные фотоплёнки бывают всего двух видов - для дневной съёмки и для съёмки при электрическом освещении.

    Достоинства плёночной фотографии

    • В большинстве любительских плёночных фотоаппаратов применяются широко доступные стандартные батареи питания, в отличие от специализированных в большинстве цифровых камер (в основном - ради компактности камеры).
    • Время использования комплекта батарей в плёночной камере намного больше;
    • Простые механические камеры вообще не требуют электрического питания и могут использоваться в экстремальных условиях;
    • Фотоплёнка, особенно негативная, имеет намного большую , чем цифровые матрицы, что позволяет без потери деталей снимать сюжеты с большим диапазоном ;
    • На очень длинных при плохой уровень заметно превышает зернистость плёнки;
    • Плёночная черно-белая фотография с использованием компенсационных светофильтров более предпочтительна, чем последующая обработка в похожей манере цифровых фотографий благодаря заметно лучшему качеству изображения;
    • Цифровые камеры пока стоят намного дороже плёночных аналогов;
    • Перспектива длительного хранения цифровых носителей пока неясна. Фотографии приходится периодически копировать на новые носители.

    Равные возможности

    • Зернистость плёнки имеет свою аналогию в виде . Чем плёнка или чем больше эквивалентное число ISO цифрового кадра, тем сильнее уровень шума или зернистость;
    • Быстродействие современных цифровых фотокамер сравнялось с быстродействием аналогичных плёночных моделей, за исключением времени срабатывания затвора () в моделях, использующих систему контрастного (большинство обычных незеркальных моделей);

    Сравнение форматов кадра

    В большинстве цифровых фотоаппаратов соотношение сторон кадра равно 1,33 (4:3), равное соотношению сторон большинства компьютерных мониторов и телевизоров. В плёночной фотографии используется отношение сторон 1,5 (3:2). Некоторые цифровые фотоаппараты позволяют снимать фотографии с плёночным соотношением сторон, включая большинство цифровых зеркальных аппаратов, в целях обеспечения преемственности и совместимости аксессуаров от плёночных камер.

    Заключение

    В заключение можно сказать, что сегодня цифровая фотография однозначно более предпочтительна для любителей и большинства профессионалов, исключая фотографов с очень специфическими требованиями, или снимающих на большой и средний формат.

    Параметры цифрового фотоаппарата

    Качество изображения, даваемого цифровым фотоаппаратом, складывается из многих составляющих, которых намного больше, чем в плёночной фотографии. В их числе:

    • Качество оптики, в том числе уровень
    • Тип матрицы: или
    • Физический размер матрицы
    • Качество встроенных обработки, в том числе подавление шума
    • Количество пикселей матрицы

    Количество пикселей матрицы

    Количество пикселей матрицы сейчас составляет несколько миллионов и измеряется мегапикселами. Количество мегапикселей матрицы указывается в паспорте фотоаппарата производителем. Хотя зачастую производители лукавят, скрывая способ подсчёта этих данных. Например, для фотоаппаратов, использующих матрицы с (а это подавляющее большинство современных камер), производитель указывает количество пикселей в готовом файле, хотя в матрице каждая из ячеек воспринимает только одну составляющую цвета, а получение остальных составляющих производится математически на основе данных соседних ячеек. А, например, для фотоаппаратов на основе сенсора , оно указывается втрое больше, чем реальных, хотя с формальной точки зрения ошибки здесь нет, так как каждая ячейка такой матрицы состоит из трёх слоёв, каждый из которых воспринимает свой цвет. Исходя из вышеизложенного, сравнивать эти две технологии только по количеству мегапикселей некорректно.

    Форматы файлов

    Большинство современных цифровых фотоаппаратов записывают изображения в следующих форматах:

    • - формат, осуществляющий сжатие с потерями информации. Компромисс между качеством и размером файла. Позволяет задать степень сжатия (и качество соответственно). Есть на подавляющем большинстве цифровых камер.
    • - формат без сжатия или со сжатием без потерь ( компрессия). Как правило, реализуется только в претендующих на профессиональность камерах. В профессиональных зеркальных камерах TIFF почти никогда не используется и даже не реализована его поддержка, поскольку с одной стороны в максимальном качестве дает удовлетворительное качество, а если необходимо большее, то формат RAW и меньше по объёму, чем и содержит больше данных. Размер файла (если он без сжатия) легко определить, перемножив разрешение матрицы по вертикали и горизонтали с количеством байт на пиксел. Обычно применяется только, когда невозможно использовать RAW, а JPEG не устраивает из-за потери данных. Формат TIFF может использовать глубину 8 или 16 бит на цвет.
    • RAW - файл этого формата представляет собой «полуфабрикат» изображения - информацию, считанную с матрицы без обработки (или с минимальной обработкой). Назначение такого формата - дать фотографу возможность полного влияния на процесс съемки изображения с возможностью последующей коррекции параметров съемки (цветовой баланс, ) и степени необходимых преобразований (коррекция контраста, резкости, насыщенности, подавление шума и т. п.), в т. ч. для исправления ошибок фотографа. В RAW-формата данные содержатся с той точностью и динамическим диапазоном, на который способна матрица камеры, обычно около 12 бит на цвет в линейной шкале. В то время как в форматах TIFF или JPEG чаще всего испольузется 8 бит на цвет в гамма-компенсированой шкале (в JPEG также присутсвуют потери сжатия). Кроме того, данные в TIFF или JPEG хранятся с уже применёнными "внутри камеры" фильтрами (резкости, контраста и др. используемых при съемке). Кроме того, компьютер может сделать необходимые преобразования более точно и качественно, чем процессор камеры. Формат файла RAW специфичен для каждой камеры, может иметь различные расширения (CRW, CR2, NEF и др.), и поддерживается меньшим числом программ для обработки изображений. Для получения изображения из формата RAW, используются специальная программа (RAW-конвертор) или соответствующий , «понимающие» такой формат. Формат RAW, как правило, реализуется в любительских и профессиональных камерах. По размеру файл RAW обычно меньше или равен файлу формата TIFF, размеры файлов различны поскольку используются технологии сжатия без потерь.

    К изображениям дописывается дополнительная информация о параметрах съёмки в формате .

    Носители данных

    Большинство современных цифровых фотоаппаратов производят запись снятых кадров на Flash-карты следующих форматов:

    • (CF-I или CF-II)
    • (модификаций PRO, Duo, PRO Duo)
    • (MMC)

    Также возможно подключение большинства камер напрямую к компьютеру, используя стандартные интерфейсы - и (FireWire). Ранее использовалось и подключение через последовательный , однако сейчас оно уже не применяется.

    Цифровые задники

    Цифровые задники применяются в профессиональной студийной фотосъёмке. Они представляют собой устройства, содержащие светочувствительную матрицу, процессор, память и интерфейс с компьютером. Цифровой задник устанавливают на профессиональные среднеформатные фотоаппараты вместо кассет с плёнкой. Самые продвинутые современные цифровые задники содержат до 39 мегапикселей в матрице.

    Размер матрицы и угол изображения

    Разметы матриц большинства цифровых фотоаппаратов по размеру меньше стандартного кадра 35-мм плёнки. В связи с этим возникает понятие эквивалентного фокусного расстояния и кроп-фактора .

    Эквивалентное фокусное расстояние - это такого объектива, использование которого при съёмке на 35-мм фотоплёнку даст такой же , что и сравниваемый цифровой фотоаппарат. Соотношение между реальным фокусным расстоянием и эквивалентным называется кроп-фактором.

    Учёт кроп-фактора особенно важен при использовании цифровых фотоаппаратов со сменными . Если мы, например, используем объектив с фокусным расстоянием 50 мм с цифровым фотоаппаратом, кроп-фактор которого равен 1,6, то мы получим угол изображения, эквивалентный 80-мм объективу при съёмке на фотоплёнку. Следует отметить, что при установке объективов на цифровые фотоаппараты не происходит увеличения фокусного расстояния, как думают многие. Физически происходит лишь отсечение части кадра, не попадающего на матрицу, то есть меняется именно , а не . При этом влияние на перспективу изображения остается соответствующим 50 мм объективу. Благодаря этому, кадр, снятый таким цифровым фотоаппаратом через 50 мм объектив не будет полностью эквивалентен кадру, снятому 80 мм объективом на плёнку именно с точки зрения влияния на перспективу. У 80 мм объектива перспектива будет больше «сжата».

    Несмотря на обилие фотографов, зачастую самоиспечённых, мало кто сможет детально поведать об истории фотокадров. Именно этим мы сегодня и займёмся. Прочитав статью, вы узнаете: что такое камера обскура, какой материал стал основой для первого фотоснимка и как появилась моментальная фотография.

    С чего всё начиналось?

    О химических свойствах солнечного света люди знали очень давно. Ещё в древности любой человек мог сказать, что солнечные лучи делают цвет кожи более тёмным, догадывались о воздействии света на вкус пива и искрение драгоценных камней. История насчитывает более тысячи лет наблюдений за поведением тех или иных предметов под воздействием ультрафиолетового излучения (именно такой вид излучения характерен для солнца).

    По-настоящему применять первый аналог фотографии стали ещё в X веке нашей эры.

    Применение это заключалось в так называемой камере обскура. Представляет она собой полностью тёмное помещение, одна из стен которого имела круглое отверстие, пропускающей свет. Благодаря ему на противоположной стене появлялась проекция изображения, которое художники того времени «дорабатывали» и получали красивые рисунки.

    Изображение на стенах было перевёрнутым, но это не делало его менее красивым. Открыл такое явление арабский учёный из Басры по имени Альгазен. Он на протяжении долгого времени занимался наблюдением за световыми лучами, а явление камеры обскура впервые было замечено им на затемнённой белой стене своей палатки. Использовал учёный её для наблюдения за затемнениями солнца: уже тогда понимали, что смотреть на солнце напрямую очень опасно.

    Первая фотография: предпосылки и успешные попытки.

    Главной предпосылкой можно назвать доказательство Иоганном Генрихом Шульцем в 1725 году того, что именно свет, а не тепло, заставляет серебряную соль становиться тёмной. Сделал он это случайно: пытаясь создать светящееся вещество, он перемешал мел с азотной кислотой, и c небольшой долей растворённого серебра. Он заметил, что под влиянием солнечных лучей белый раствор темнеет.

    Это натолкнуло учёного на ещё один эксперимент: он попытался получить изображение букв и цифр, вырезая их на бумаге и прикладывая к освещаемой стороне сосуда. Изображение он получил, но у него даже мыслей не было о его сохранении. На основе работ Шульца, учёный Гротгус установил, что поглощение и излучение света происходит под влиянием температуры.

    Позднее, в 1822 году, было получено первое в мире изображение, более-менее привычное для современного человека. Получил его Жозеф Ньсефор Ньепс, но кадр, который он получил, не сохранился должным образом. Из-за этого он продолжил работу с большим усердством и получил 1826 году, полноценный кадр, названный «Вид из окна». Именно он вошёл в историю как первая полноценная фотография, хоть и до привычного нам качества было ещё далеко.

    Применение металлов – существенное упрощение процесса.

    Спустя несколько лет, в 1839 году ещё один француз Луи-Жак Дагер опубликовал новый материал для получения фотографий: медные пластины, покрытые серебром. После этого, пластину обдавали парами йода, из-за чего создавался слой светочувствительного йодида серебра. Именно он был ключевым для будущей фотографии.

    После обработки слой подвергался 30-минутному экспонированию в освещённом солнечным светом помещении. Далее пластину относили в тёмную комнату и обрабатывали парами ртути, а закреплялся кадр при помощи поваренной соли. Именно Дагера принято считать создателем первого более-менее качественного фотоснимка. Такой способ хоть и был далёк от «простых смертных», но уже был существенно проще первого.

    Цветная фотография – прорыв своего времени.

    Многие думают, что цветная фотография появилась только с созданием плёночных фотоаппаратов. Это вовсе не так. Годом создания первого цветного фотоснимка принято считать 1861, именно тогда Лжеймс Максвелл получил изображение, позже названое «Тартановой лентой». Для создания использовался метод трёхцветной фотографии или метод цветоделения, тут уж как кому больше нравится.

    Для получения этого кадра было использовано три камеры, каждая из которых оснащалась специальным фильтром, составляющие основные цвета: красный, зелёный и синий. Как итог, получалось три изображения, которые объединялись в одно, но такой процесс нельзя было назвать простым и быстрым. Чтобы упростить его велись бурные исследования светочувствительных материалов.

    Первым шагом к упрощению было выявление сенсибилизаторов. Их открыл Герман Фогель, учёный из Германии. Спустя некоторое время, ему удалось получить слой, чувствительный к зелёному цветовому спектру. Позднее, его ученик Адольф Мите создал сенсибилизаторы, чувствительные к трём основным цветам: красному, зелёному и синему. Своё открытие он продемонстрировал в 1902 году на берлинской научной конференции вместе с первым цветным проектором.

    Один из первых в России учёных-фотохимиков Сергей Прокудин-Горский, ученик Мите, разработал более чувствительный к красно-оранжевому спектру сенсибилизатор, что позволило ему превзойти учителя. Также он сумел уменьшить выдержку, сумел сделать снимки более массовыми, то есть создал все возможности для тиражирования фотографий. На основе изобретений этих учёных были созданы специальные фотопластины, которые, несмотря на недостатки, были крайне востребованы среди рядовых потребителей.

    Моментальная фотография – очередной шаг к ускорению процесса.

    Вообще, годом появления такого вида фотографии принято считать 1923, когда был зафиксирован патент на создание «моментального фотоаппарата». Толку от такого аппарата было мало, комбинация из камеры и фотолаборатории была крайне громоздкой и не сильно уменьшало время получения кадра. Понимание проблемы пришло немного позже. Заключалось оно в неудобстве процесса получения готового негатива.

    Именно в 30-х годах впервые появились сложные светочувствительные элементы, позволяющие получать готовый позитив. Их разработкой на первых парах занималась фирма Agfa, а массово ими занялись ребята из Polaroid. Первые фотоаппараты компании позволяли получать моментальные фотографии сразу после съёмки кадра.

    Немногим позднее похожие идеи пытались реализовать и в СССР. Здесь создавались фотокомплекты «Момент», «Фотон», однако популярности они не сыскали. Главная причина – отсутствие уникальных светочувствительных плёнок для получения позитива. Именно принцип, заложенный этими аппаратами, стал одним из ключевых и самых популярных в конце XX – начале XXI века, особенно в Европе.

    Цифровая фотография – резкий скачок в развитии индустрии.

    По-настоящему зародился такой вид фотографии совсем недавно – в 1981 году. Основателями смело можно считать японцев: компания Sony показала первый аппарат, в котором матрица заменила фотоплёнку. Все же знают, чем цифровая камера отличается от плёночной, верно? Да, он не мог называться качественным цифровым фотоаппаратом в современном понимании, но первый шаг был на лицо.

    В дальнейшем, похожую концепцию развивало множество компаний, но первый цифровой аппарат, каким его привыкли видеть, создала компания Kodak. Серийно камеру начали выпускать в 1990 году, и она почти сразу стала супер популярной.

    В 1991 году компания Kodak совместно с Nikon выпускают профессиональный цифровой зеркальный фотоаппарат Kodak DSC100 на основе фотокамеры Nikon F3. Весил такой аппарат 5 килограмм.

    Стоит отметить, что с приходом именно цифровых технологий стала более обширна сфера применения фотографии.
    Современные же камеры, как правило, подразделяются на несколько категорий: профессиональные, любительские и мобильные. В целом, они между собой отличаются только размером матрицы, оптикой и алгоритмами обработки. Из-за малого количества различий, грань между любительскими и мобильными камерами постепенно стирается.

    Применение фотографии

    Ещё в середине прошлого столетия сложно было представить, что чёткие изображения в газетах и журналах станут обязательным атрибутом. Особенно ярко бум фотографии проявился с появлением цифровых камер. Да, многие скажут, что плёночные фотоаппараты были лучше и популярнее, но ведь именно цифровые технологии позволили избавить фотоиндустрию от таких проблем, как закончившаяся плёнка или наложение кадров друг на друга.

    Более того, современная фотография переживает крайне интересные изменения. Если раньше, к примеру, для получения фотографии в паспорте нужно было отстоять длинную очередь, сделать снимок и ждать ещё несколько дней до его печати, то сейчас достаточно просто сфотографировать себя на белом фоне с определёнными требованиями на телефон и напечатать снимки на специальной бумаге.

    Художественная фотография тоже шагнула далеко вперёд. Раньше было сложно получить высоко детализированный кадр горного пейзажа, сложно было обрезать ненужные элементы или сделать качественную обработку фотографии. Сейчас замечательные кадры получают даже мобильные фотографы, готовые без особых проблем составить конкуренцию карманным цифровым камерам. Конечно, конкурировать с полноценными камерами, типа Canon 5D смартфоны не могут, но это тема для отдельного разговора.

    Цифровая зеркалка для новичка 2.0 — для ценителей NIKON.

    Моя первая ЗЕРКАЛКА — для ценителей CANON.

    Итак, дорогой читатель, теперь вы знаете немного больше об истории фотографии. Надеюсь, этот материал станет полезным для вас. Если это так, то почему бы не подписаться на обновление блога и друзьям про него не рассказать? Тем более вас ждёт ещё масса интересных материалов, которые позволят вам стать более грамотными в вопросах фотографии. Удачи вам и спасибо за уделённое внимание.

    Искренне ваш, Тимур Мустаев.