Пластик и пластмасса. Маркировка пластика или какие виды пластмасс бывают. Использование после переработки

Пластмасса

Цепочки молекул полипропилена.

Предметы быта, полностью или частично сделанные из пластмассы

Пластма́ссы (пласти́ческие ма́ссы, пла́стики) - органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры).

Исключительно широкое применение получили пластмассы на основе синтетических полимеров. Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формоваться и сохранять после охлаждения или отверждения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное. В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на термопласты и реактопласты .

Получение Іі

Производство синтетических пластмасс основано на реакциях полимеризации , поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен) Пластические массы получают на основе высокомолекулярных соединений - полимеров. Их разделяют на два класса - термопласты и реактопласты. Основные механические характеристики пластмасс те же, что и для металлов.

Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами, причем производство бумаги является наиболее энерго- и капиталоемким процессом. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные и меломиноформальдегидные (их производят из карбомида, они более дорогостоящие). Первые используются для пропитки крафт-бумаги, вторые – для декоративной.

Пластик состоит из нескольких слоев. Защитный слой – оверлей – практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меломиноформальдегидной смолой. Следующий слой – декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой – компенсирующий (крафт-бумага, пропитанная меломиноформальдегидными смолами). Этот слой присутствует только у американского пластика.

Свойства

Пластмассы характеризуются малой плотностью (0,85-1,8 г/см³), чрезвычайно низкой электрической и тепловой проводимостью, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований , отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов .

Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние.

Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Твёрдость пластмасс определяется по Бринеллю при нагрузках 50 - 250 кгс на шарик диаметром 5 мм.

Теплостойкость по Мартенсу - температура, при которой пластмассовый брусок с размерами 120 Х 15 Х 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 Х 15 мм, равное 50 кгс/кв.см, разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм. переместится на 6 мм.

Теплостойкость по Вика - температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг.) углубится в пластмассу на 1 мм.

Температура хрупкости (морозостойкость) - температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.

Методы переработки

Механическая обработка пластмасс.

Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струей воздуха.

Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

Угол резания резцов 85-90°; при обдирочных работах этот угол может быть 85°.

Величина заднего угла резца не должна превышать 10-12°; лишь при обдирке можно его увеличивать до 15°. Вершину резца закругляют, причем радиус закругления должен быть 3-4 мм. Угол наклона режущей кромки 4-5°.

Для распиливания слоистых пластических масс применяют ленточные пилы, дисковые пилы и карборундовые круги.

Ленточными пилами можно пользоваться для распиливания по прямой линии плит толщиной до 25 мм, причем скорость пилы составляет 1200-2000 м/мин. Зубья пил должны быть конусными, по 3 зуба на 1 пог. см. Зубья затачивают поперек и разводят так, чтобы ширина пропила была равна, по крайней мере, двойной толщине пилы.

Дисковыми пилами можно резать пластмассы толщиной до 50мм. Скорость вращения 2000-3000 об/мин. при диаметре пилы 330 мм.

Карборундовые круги применяют для распиливания особо твердых материалов.

Для сверления пластмасс рекомендуют пользоваться перовыми сверлами из быстрорежущей стали со шлифованными режущими кромками. Угол заострения для слоистых материалов при обработке параллельно слоям 100-125°, а для пластмасс, обрабатываемых перпендикулярно слоям, для карболита и других – 55-70°. Скорость резания 30-40 м/мин., подача 0,2-0,34 мм/об.

При сверлении слоистой пластмассы вдоль слоев, чтобы предупредить растрескивание материала, подача не должна превышать 0,25 мм/об., материал же надо заживать в тисках для предупреждения выламывания; сверление отверстий диаметром более 20 мм рекомендуют заменять растачиванием на токарном станке. Сверло надлежит время от времени извлекать из отверстия, давая возможность охладиться как инструменту, так и обрабатываемому материалу.

Просверленные отверстия обычно оказываются меньше диаметра сверла на 0,03-0,06 мм.

Для фрезерования плоскостей, пазов, канавок и пр. применяют фрезы с простым зубом. Скорость резания для торцовых фрез 46-52 м/мин., а для фасонных - 24-27 м/мин. Средняя величина подачи 0,1 мм/об. Отверстия в слоистом материале удовлетворительно пробиваются при нормальной температуре (комнатной) обычным вырубным штампом. Зазор между пуансоном и матрицей должен быть минимальный (около 0,1 мм). Слоистые материалы толщиной 3,5-5 мм удовлетворительно пробиваются лишь в нагретом до 90-100° виде. Для нагревания обрабатываемого материала пользуются масляными ваннами. Расстояние между соседними отверстиями должно составлять не менее двойной толщины материалов.

Шлифовку пластических масс производят стеклянной шкуркой, прикрепляемой к деревянному кругу, причем скорость вращения должна быть около 7м/сек.

Изделия простой формы полируют фланелевым кругом, не применяя полировочных составов. Изделия сложной формы сначала полируют матерчатым кругом с применением обычной (крокусной) пасты, а затем сухим фланелевым кругом. Круг диаметром 300 мм должен делать около 1200 об/мин.

Источники

1. Дзевульский В.М. Технология металлов и дерева. - М.: Государственное издательство сельскохозяйственной литературы. 1995. 2. ЗАО "ТУКС". Пластические массы (пластмассы) (11.11.2008). Проверено 11 ноября 2008.

Ссылки

  • Пластмасса на базе белка и с применением нанотехнологий
  • Применение различных видов пластмасс в народном хозяйстве

Wikimedia Foundation . 2010 .

Синонимы :

Пластмассами называют материалы, получаемые на основе природных или синтетических полимеров, которые на определенной стадии производства или переработки обладают высокой пластичностью.

Пластмассы широко применяются практически во всех отраслях народного хозяйства, что обусловлено наличием у различных видов пластмасс широкого спектра полезных свойств.

Пластмассы получаются синтезом (соединением) молекул простых органических и неорганических веществ (мономеров) с получением больших макромолекул – полимеров ("поли"– много).

В зависимости от поведения при нагревании пластмассы делятся на термопластичные и термореактивные.

Пластмассы, свойства и строение которых после нагревания и последующего охлаждения не изменяются, называются термопластичными – каждый раз при нагревании они размягчаются, а при охлаждении затвердевают, не изменяя своих свойств, поэтому могут перерабатываться многократно. Полимеры, которые при нагревании или охлаждении необратимо изменяют структуру, теряя способность плавиться и растворяться, называются термореактивными. Эти полимеры могут обрабатываться однократно.

Для придания пластмассе различных полезных свойств в ее состав вводят наполнители, пластификаторы и различные добавки.

Наполнителями служат органические или неорганические вещества в виде порошков (древесной или кварцевой муки, графита), волокон (бумажных, хлопчатобумажных, асбестовых, стеклянных) или листов (ткани, слюды, древесного шпона). Наполнители повышают прочность, теплостойкость, износостойкость и другие свойства пластмасс.

Пластификаторами называют вещества, вводимые в состав пластмасс с целью повышения их пластичности и эластичности.

К добавкам откосятся вещества, замедляющие разрушение пластмасс при воздействии тепла, света и других факторов. Для изменения цвета пластмассы в нее добавляют красители.

По происхождению пластмассы делятся на природные и синтетические. К природным полимерам относятся материалы, созданные на основе целлюлозы (продукта переработки древесины и хлопка) – целлофан, целлулоид, ацетатное волокно, нитролаки, кинопленка и др.

Экономически наиболее эффективными являются синтетические пластмассы, получаемые полимеризацией или поликонденсацией.

Полимеризацией называется процесс образования высокомолекулярных соединений – полимеров, при котором макромолекулы образуются путем последовательного соединения молекул низкомолекулярного вещества – мономера, при этом не происходит образование каких-либо побочных продуктов.

Поликонденсацией называется процесс образования высокомолекулярных соединений не менее чем из двух мономеров, проходящий с выделением низкомолекулярных продуктов (низкомолекулярных веществ – воды, спирта и т. д.).



Широкое применение пластмасс определяется их ценными физическими и химическими свойствами. Для органических полимеров и пластмасс на их основе характерна низкая плотность, что определяет их широкое использование в авиа-, авто-, ракето- и судостроении.

Многие пластмассы отличаются высокой химической стойкостью. Они не подвержены электрохимической коррозии, на них не действуют слабые кислоты и щелочи. Некоторые из пластмасс (фторопласты, поливинилхлориды, полиолефины и др.) находят применение в химическом машиностроении, в ракетостроении, служат для защиты металлов от коррозии. Большинство пластмасс безвредно в санитарном отношении.

Пластмассы обладают высокими диэлектрическими свойствами и широко применяются в электро-, радиотехнике и радиоэлектронике.

Пластмассы имеют низкую теплопроводность (в 70–220 раз ниже теплопроводности стали), что позволяет их использовать в качестве теплоизоляторов.

Механические свойства пластмасс находятся в широком диапазоне. В зависимости от вида они могут быть твердыми и прочными или же гибкими и упругими. Ряд видов пластмасс по механической прочности превосходит чугун и бронзу.

Многие пластмассы обладают высокой морозостойкостью и теплостойкостью (например, фторопласт может применяться при температурах от –269 до +260°С).

Хорошие антифрикционные свойства одних видов пластмасс позволяют применять их для изготовления подшипников скольжения, высокий коэффициент трения других видов позволяет их использовать для изготовления деталей тормозящих устройств.

Пластмассы обладают хорошей восприимчивостью к окрашиванию. Некоторые пластмассы могут быть изготовлены прозрачными, не уступающими по своим оптическим свойствам стеклу. При этом пластмассы, в отличие от стекла, пропускают ультрафиолетовые лучи.

Пластмассы обладают хорошими технологическими свойствами – при обработке хорошо льются, прессуются, обрабатываются резанием. Изделия из пластмасс изготавливают способами безотходной технологии (без снятия стружки) – литьем, прессованием, формованием с применением невысоких давлений в вакууме.

Недостатком пластмасс являются: малая прочность, жесткость и твердость, большая ползучесть, особенно у термопластов, низкая теплостойкость (для большинства пластмасс температура составляет от -60° до +200°), старение, плохая теплопроводность. Однако положительные свойства пластмасс несравнимо выше их недостатков, поэтому их применение очень высокое и непрерывно растет. Рассмотрим наиболее часто применяемые виды пластмасс.

Основные виды термопластичных пластмасс, их свойства и применение

Из полимеризационных пластмасс наиболее широко используются: полиэтилен, полипропилен, полистирол, винипласт, фторопласт и полиакрилат.

Полиэтилен. Полиэтилен является продуктом полимеризации этилена. Его получают при крекинге нефти, из коксового газа, из этилового спирта.

Полиэтилен выпускается в виде пленок толщиной 0,03–0,3 мм, шириной 1400 мм и длиной до 300 м, а также в виде листов толщиной 1–6 мм и шириной до 1400 мм. Полиэтилен обладает исключительно высокими диэлектрическими свойствами, поэтому находит широкое применение при изготовлении кабельной изоляции, деталей для радиоаппаратуры, телевизионных и телеграфных установок. Вследствие водонепроницаемости и химической стойкости (при температурах до 60°С он стоек против соляной, серной, азотной кислот, растворов щелочей и многих органических растворителей) полиэтилен применяют для изготовления деталей химической аппаратуры, нефте- и газопроводов, цистерн, им выстилают каналы оросительных сетей. Полиэтилен нетоксичен, поэтому из него изготавливают пленку для хранения пищевых продуктов, применяют для изготовления предметов домашнего обихода. Так как полиэтилен прозрачен, то его применяют в качестве заменителя стекла, в сельском хозяйстве полиэтиленовой пленкой покрывают парники. Из полиэтилена изготавливают крышки подшипников, детали вентиляторов и насосов, гайки, шайбы, полые изделия вместимостью до 200 л, тару для хранения и транспортировки кислот и щелочей.

Полипропилен является производным этилена. По сравнению с полиэтиленом полипропилен имеет более высокую механическую прочность и жесткость, большую теплостойкость и меньшую склонность к старению. Недостатком полипропилена является его невысокая морозостойкость.

Полипропилен применяют для изготовления антикоррозионного покрытия резервуаров, труб и арматуры трубопроводов, электроизоляторов, а также для изготовления деталей, применяемых при работе в агрессивных средах. Из полипропилена изготавливают корпуса автомобилей и аккумуляторов, прокладки, трубы, фланцы, водонапорную арматуру, пленки, пленочные покрытия бумаги и картона, корпуса воздушных фильтров, конденсаторы, зубчатые и червячные колеса, ролики, подшипники скольжения, фильтры масляных и воздушных систем, уплотнения, детали приборов и автоматов точной механики, кулачковые механизмы, детали телевизоров, магнитофонов, холодильников, стиральных машин, изоляцию проводов и кабелей и т.д. Полипропилен обладает хорошими технологи-ческими свойствами – способностью к литью, экструзии, прессованию, сварке и обработке резанием.

Отходы при производстве полипропилена и отработавшие изделия из него используют для повторной переработки.

Полистирол – продукт полимеризации стирола. Твердый, жесткий, бесцветный, прозрачный полимер, водостоек, обладает прекрасными диэлектрическими свойствами, химически инертен, легко окрашивается в различные цвета. Недостатками полистирола являются его повышенная хрупкость при ударных нагрузках, склонность к старению, невысокая тепло- и морозостойкость.

Полистирол перерабатывается в изделия литьем под давлением, экструзией. Его применяют для изготовления деталей радио- и электроаппаратуры, предметов домашнего обихода, детских игрушек, трубок для изоляции проводов, пленок для изоляции в электрических кабелях и конденсаторах, открытых емкостей (лотков, тарелок, подносов), прокладок, втулок, светофильтров, крупногабаритных изделий радиотехники (корпусов транзисторных приемников), деталей электропылесосов, мебельной фурнитуры, конструкционных изделий с антистатическими свойствами. Ударопрочным полистиролом облицовывают пассажирские вагоны, салоны автобусов и самолетов. Из него изготавливают крупногабаритные детали холодильников, корпуса радиоприемников, телефонных аппаратов и т. д.

Поливинилхлоридные пластмассы. Пластмассы на основе поливинилхлорида (полихлорвинил или сокращенно ПХВ) имеют хорошие электроизоляционные свойства, химически стойки, не поддерживают горения, атмосферо-, водо-, масло- и бензостойки.

Обработкой порошкового ПХВ получают винипласт в виде пленок, листов, труб, стержней. Винипластовые детали хорошо механически обрабатываются и хорошо свариваются. Из винипласта изготавливают трубы для транспортировки воды, агрессивных жидкостей и газов, коррозионно-стойкие емкости, защитные покрытия для электропроводки, детали вентиляционных установок, теплообменников, шланги вакуум-проводов, защитные покрытия для металлических емкостей, изоляцию проводов и кабелей. Поливинилхлорид используют для получения пенопластов, линолеума, искусственной кожи, объемной тары, товаров бытовой химии, вибропоглощающих материалов в машино-строении и на всех видах транспорта, водо-, бензо- и антифризостойких трубок, прокладок и т.д.

Фторопласты – производные этилена, где все атомы водорода заменены галогенами. Наиболее широкое распространение получил фторопласт-4 (тефлон), или политетрафторэтилен.

Фторопласт-4 в изделиях представляет собой белое вещество со скользкой, не смачивающейся водой поверхностью. Он имеет исключительно высокие диэлектрические свойства, по химической стойкости превосходит все известные материалы, включая благородные металлы, может длительно выдерживать температуры до 250ºС. Пленка из него не становится хрупкой даже в среде жидкого гелия. Он стоек к воздействию минеральных и органических щелочей, кислот, органических растворителей, не набухает в воде, не смачивается жидкостями и вязкотекучими средами пищевых производств (тестом, патокой, вареньем и т.д.). При непосредственном контакте не оказывает влияния на организм человека, разрушается только под действием расплавленных щелочных металлов. Фто-ропласт-4 имеет низкий коэффициент трения и применяется для изготовления подшипников скольжения без смазки. Фторопласты широко применяются в электро- и радиотехнической промышленности, а также для изготовления химически стойких труб, кранов, мембран, насосов, подшипников, деталей медицинской техники, коррозионно-стойких конструкций, тепло- и морозостойких деталей (втулок, пластин, дисков, прокладок, сальников, клапанов), для облицовки внутренних поверхностей различных криогенных емкостей.

Полиакрилаты. Наиболее известным представителем этой группы является органическое стекло (оргстекло). Оно термопластично, достаточно прочно, легче стекла, обладает высокой прозрачностью и пропускает ультрафиолетовые лучи, имеет высокий коэффициент преломления. Его применяют для изготовления оптических стекол, из него делают окна самолетов и кораблей, предметы домашнего обихода. Недостаток – низкая поверхностная твердость.

Полиамиды включают в себя такие известные пластмассы, как нейлон, капрон и др. Их применяют для изготовления зубчатых колес и др. деталей машин – получают методом литья под давлением, для электроизоляции проводов – путем нанесения на них расплавленной смолы, для изготовления волокна – при продавливании смолы через фильеры, для изготовления пленки и клея. Волокна из полиамидов используют для корда автопокрышек, изготовления буксировочных канатов,

Для производства чулочно-носочных изделий и т.д. Полиамиды имеют низкий коэффициент трения и могут использоваться в качестве подшипников.

Полиуретаны характеризуются высокой упругостью, износостойкостью, низким коэффициентом трения. Их используют для изготовления изоляции, фильтровальных и парашютных тканей, применяют для получения пенопластов, каучуков, пленок антикоррозионных покрытий.

Основные виды термореактивных пластмасс, их свойства и применение

Основу термореактивных пластмасс (реактопластов) составляет связующее вещество – химически затвердевающая термореактивная смола. Кроме того, в состав реактопластов входят наполнители, пластификаторы, отвердители, ускорители или замедлители, растворители. Наполнителями, определяющими структурную основу пластмасс, могут быть порошковые, волокнистые и гибкие листовые материалы. Наиболее известными являются слоистые пластики, представляющие собой композиции из чередующихся слоев связующей смолы и листового наполнителя. В зависимости от вида наполнителя слоистые пластики получают свое наименование: гетинакс (наполнитель – бумага), текстолит (наполнитель – хлопчатобумажная ткань), асбо-текстолит (наполнитель – асбестовая ткань), стеклотекстолит (наполнитель – стеклянная ткань), древеснослоистые пластики – ДСП (наполнитель – древесный шпон).

Слоистые наполнители пропитывают смолой, сушат и режут по размеру. Из готовых листов в этажных прессах горячим способом прессуют плиты, а в пресс-формах – иные заготовки или детали.

Гетинакс применяют в электро- и радиотехнике в листах и плитах для изготовления панелей, печатных плат, электроизоляторов, изолирующих шайб, прокладок, а также в виде труб и цилиндров в трансформаторах.

Текстолит применяется для изготовления зубчатых колес, вкладышей подшипников и, так же как гетинакс, для изготовления электроизоляторов и печатных плат. В сравнении с гетинаксом он прочнее и устойчив при нагревании до 130°С.

Асботекстолит отличается теплостойкостью и хорошими фрикционными свойствами. Его применяют для изготовления трущихся деталей дисков сцепления и тормозных колодок.

Стеклотекстолит исключительно прочен и отличный электроизолятор.

При изготовлении поро- и пенопластов добавляют газообразователи – вещества, которые при нагреве разлагаются и выделяют большое количество газов, вспенивающих смолу.

Занимаясь с детьми всегда открываешь для себя много нового. Пока я готовила материал для занятий по окружающему миру - прочла много интересного про Полярную звезду (я даже не знала, в чем ее особенность) и размеры Вселенной, историю Олимпийских игр и наконец-то сама перестала путать пресмыкающихся и земноводных:). Но одна тема задела меня особенно.

Из чего делают пластмассу

Сейчас мы изучаем раздел "хозяйство". Изучаем довольно поверхностно, поскольку профессии, производство хлеба и подобные вопросы мы раньше уже затрагивали. Но, чтобы вспомнить посмотрели несколько видео (спасибо Татьяне), в том числе и про изготовление пластмассы.

И все бы хорошо. Ролик нарисован довольно понятно. Но до этого мы с Варварой знакомились с темой загрязнения мирового океана и многие вещи меня шокировали. Я просто никогда не задумывалась об этом! Мне всегда было жалко выбрасывать стекло, но о пластмассе я просто не думала. А многие предпочтут вообще ухмыльнуться и махнуть на это рукой. Ведь мы уже не можем отказаться от пластик.

Куда уходит пластик...


  • Пластмасса - неестественный для природы материал и потому практически не разлагается. Пластик не "переварится" землей и не вернется в землю.

  • Полимеры изготавливают из не возобновляемого природного ресурса - нефти и газа.

  • Примерно 150 млн. тонн пластмассы производится ежегодно и этот объем увеличивается.

  • Практически 90% из того, что было произведено мы выбросим сразу или в течении нескольких месяцев (пакеты, бутылки, упаковки, зажигалки и тому подобное).

  • Пластиковые отходы нельзя складировать или закапывать. Пластик впитывает из воды токсичные вещества, эти соединения просачиваются в грунтовые воды.

  • Пластиковые отходы опасно жечь, при сжигании образуются токсичные газы, опасные для человека и атмосферы.

  • Пластиковые отходы можно перерабатывать, но на переработку идет лишь 5%, и предметы из переработанного пластика в третий раз переработать нельзя, они тоже не будут естественно разлагаться. Это лишь небольшая отсрочка и успокоение совести. Хотя это все-таки лучше.

  • "Биоразлагаемые" пластики - в большинстве маркетинговый ход, нет совершенно безопасных пластиковых отходов.

...в какие города

В мире есть города-свалки, куда из Европы и США свозят технологический и электронный мусор. Токсичные вещества в почве, воде и воздухе в этих местах превышают все мыслимые нормы. Но мы ведь этого не видим. Мы бросили мусор в мешок, мешок погрузили в машину, и мы наслаждаемся чистотой, удобством и одноразовыми вещами. А люди в городах-свалках редко доживают до 30 лет.

Пластиковая каша мирового океана

Но большинство отходов путешествуют сами по себе. В мировом океана существуют пять больших "мусороворотов", куда мировое течение сносит пластиковый мусор. Самое большое - Тихоокеанское мусорное пятно, или, как его называют, восточный мусорный континент. Это пятно взвеси крупных и мелких пластиковых частиц площадью около 700 - 1,5 млн квадратных километров, содержащие более ста миллионов тонн мусора.


  • В некоторых местах пластика в воде в несколько раз больше, чем планктона.

  • Пластик не разлагается, а рассыпается под воздействием води и солнца, и каждая его частичка становится токсичной. Сотни тысяч морских животных страдает от отравлений. Некоторые токсины вызывают гормональные сбои.

  • Черепахи погибают, глотая пластиковые пакеты, которые они принимают за медуз. Птицы кормят птенцов пластиковыми крышечками от бутылок.

Можно ли прожить без пластика

И пока ученые ищут более совершенные и коммерчески оправданные способы утилизации пластмассы и электронного мусора, мы его ежегодно и ежедневно пополняем. И мы уже не может отказаться от этого.

Для ребенка вся эта информация пока не понятна и сложна для восприятия. Но многие вопросы мы обсудили о том, что мы может сделать в кругу нашей семьи, нашего дома.

В стартовом ролике много преувеличений. Отсутствие пластмассы не вернет нас в каменный век, разумеется. Мы всегда покупали одежду только из хлопка и льна, мебель у нас деревянная, но мы не может отказаться от бытовой техники, зубной пасты и щетки, баночек для шампуней, выключателей и розеток, и сотни других вещей, наполняющих наш дом.

Мой муж, например, очень любит выкидывать. Для него легкость покупки и смены вещей - это что-то вроде символа удобства и состоятельности. И мои предложения, например, не выбрасывать бутылку, а налить воду дома и взять с собой, вместо того, чтобы покупать опять - он воспринимал только как скряжничество.

Но! наконец-то мы договорились обходиться без мелких игрушек из киндер-сюрпризов и Макдональдса! Я давно борюсь с ними. Как и вообще с частыми покупками мелких дешевых игрушек, большинство из которых не несут никакой пользы, кроме коммерческого дохода их создателям. Огромная индустрия псевдо-игрушек, направленных на коллекционирование, постоянные покупки, позволяющая нам "откупаться" от детей.

Мы постараемся чаще обращать внимание на альтернативы: деревянные и текстильные игрушки, жестяную и бумажную упаковку (например, яиц), не забывать брать с собой в магазин сумки, вместо десятка (!) пакетиков, которые здесь дают в супермаркетах, стараться продлить срок жизни вещей и вообще продуманно относиться к каждой новой вещи, переступающей порог нашего дома.

Да, это будет капля в море, вернее в океане с мусором. Но это ведь не оправдание не делать вообще ничего.

Пластмассы – это материальные ресурсы, ключевой составляющей которых является природный или искусственный полимер, а другими составляющими служат такие материалы, как смазки, пластификаторы, красители, стабилизаторы и прочие элементы.

Пластические массы при соответствующих условиях (под высокими температурными показателями и давлением) образовываются и сохраняют приданную им форму. Разные виды пластмасс и их применение имеют больше значение на современной стадии развития человечества.

Пластмассы – это полезное конструкционное сырье. Они применяются не только в качестве заменителей металла, но и также как главный ресурс для создания различных товаров, которые обладают положительными характеристиками.

Производство пластмассовых изделий расходует меньше энергии и является менее трудоемким, чем другая отрасль. Пластические массы способны стать идеальной альтернативой металлам, стали, древесине, бетону, что позволит существенно сэкономить материалы.

Продукция из пластмасс имеет такие характеристики:

  • низкую плотность;

  • высокие диэлектрические характеристики;

  • оптимальные теплоизоляционные качества;

  • не поддается атмосферным влияниям;

  • устойчива к вредным воздействиям;

  • не поддается влиянию резких температурных перепадов;

  • имеет низкие расходы энергии при обработке;

  • оптимальную эластичность;

  • практичность при создании изделий;

  • наличие богатого цветового спектра.

Пластические массы являются базовыми конструкционными ресурсами нынешней техники. Их сфера применения очень широкая.

Применение различных видов пластмасс

Пластмассы применяют:

  • В машиностроительной области (подшипники скольжения, элементы тормозных узлов, резервуары, технологическое оснащение, рабочие детали насосов и турбомашин, зубчатые и червячные колеса и другое).

  • В железнодорожной сфере и других средствах передвижения (элементы автомобилей, поездов, самолетов, кораблей, ракет; кузова различного транспорта; трубопроводы и прочее).

  • В электрической и радиотехнике (приборы телеграфных столбов, разные элементы и т. д.).

  • В отрасли сельского хозяйства (парники, теплицы и прочее).

  • В строительной индустрии (светопрозрачные ограждения, производство крупных панелей покрытия, вентиляционные установки, оболочки, навесы, в качестве отделочного материала, дымовые трубы).

  • В медицинском комплексе (аппараты, приборы, изготовление «запасных» частей человеческого организма).

  • При изготовлении оконных переплетов (светопрозрачные стены, перегородки и т. д.).

  • В быту (косметика, посуда, обувь, одежда и остальное).

Таким образом, разные виды пластмасс и их применение играют существенную роль в жизни каждого человека. Без этого материала сложно представить любую отрасль народного хозяйства.

Для того чтобы подробнее ознакомиться с пластическими массами, их видами и сферами использования, следует посетить выставку «Химия» . Это мероприятие проводится с целью предоставления обществу новых видов продукции, оборудования, методик и технологий в сфере химического производства.

Во время экспозиции идет обсуждение и решение важнейших вопросов индустрии. Сюда приезжают опытные специалисты практически со всех уголков планеты.

Благодаря выставке «Химия» заключаются договора и сделки между крупнейшими поставщиками, производителями и спонсорами со всего мира.

Проведение данной экспозиции является главным событием всей химической индустрии. «Экспоцентр» в свою очередь предоставляет полный комплекс услуг для качественного проведения мероприятия.

Количество изделий из пластмасс в современном мире очень велико. Пластмассовые изделия бывают различного объема, форм, назначения – это ведра, тазы, даже трубы для подачи воды в квартиры. Пластиковые изделия не только удобны в применении, но экологичны и доступны по цене.

Основным источником изготовления пластмасс является этилен. Из него производятся полистирол, полиэтилен и поливинилхлорид. Первые два материала подвергают плавлению, из полученного вещества создают посуду. Из тонких листов полиэтилена получают упаковку для продуктов (пакеты фасовочные, пакеты-майки).

Классификация пластмасс

В зависимости от состава:

  1. Листовые термопластмассы – винипласт, органическое стекло. Они состоят из смолы, стабилизатора и пластификатора небольшого объема.
  2. Слоистые пластики – гетинакс, стеклотекстолит, текстолит – пластмасса, в состав которой входят наполнители бумаги или ткани.
  3. Волокниты – стекловолокна, асбестовые волокна, хлопчатобумажные волокна. Наполнители в этой пластмассе волокнистые.
  4. Литьевые массы – пластики из смолы, являющейся единственным компонентом в массе.
  5. Пресс-порошки – пластмасса с порошкообразными наполнителями.

По области применения:

  1. Теплоизоляционные – применяются в строительстве (пенопласт, поропласт и другие. Это газонаполненная пластмасса).
  2. Химически стойкие – применяются в промышленности (полиэтилен, винипласт, полипропилен, фторопласт).
  3. Конструкционные (стеклотекстолит, текстолит и другие).
  4. Пресс-порошки – пластмасса общего назначения.

В зависимости от связующего материала:

  1. Эпоксипласты (для связки используются эпоксидные смолы).
  2. Фенопласты (связующее вещество – фенолформальдегдные смолы).
  3. Аминопласты (меламинофармальдегидные и мочевиноформальдегидные смолы используются как связующее вещество).

По тому, как связующее вещество реагирует на повышение температуры, пластмассы бывают:

  • термореактивными – при нагреве становятся мягкими и плавятся, но после проведения некой химической реакциипластмасса твердеет и становится нерастворимой и неплавкой. Ее нельзя будет использовать повторно, переплавка бесполезна. Такая пластмасса годна как наполнитель при создании пресс-порошков;
  • термопластичными – такие пластмассы легко плавятся при нагревании и твердеют при охлаждении. Этот материал можно переплавить и изготовить из него новое изделие, однако его качество будет несколько ниже.

Технология производства пластмасс

Полимер – связующее вещество, из которого изготавливают пластмассу. Кроме него, при производстве пластмассового материала используют наполнители и ускорители отвержения. Чтобы пластмасса стала цветной, в ее состав добавляют минеральные красители. В качестве связующего вещества выступают синтетические смолы, производные целлюлозы, синтетический каучук – все эти вещества являются высокомолекулярными полимерами.

Некоторые виды пластмассы можно использовать несколько раз. Основные способы переработки:

  • процесс прессования, давления, выдавливания при нахождении материала в вязком текучем состоянии;
  • вакуумное литье и пневмоформовка, штамповка высокоэластичного материала.

Оборудование для производства и переработки

Самым распространенным видом производства пластмасс является серийное и мелкосерийное литье под давлением . Это самый бюджетный способ, и с помощью него в стране изготавливается около трети пластмассового материала. В качестве сырья используются гранулы, подвергаемые процессу плавления, после чего они отправляются в специальные формы для литья.

Изготавливая пластмассы при помощи технологии литья под давлением, используют термопластавтоматы. Основные функции автоматических изготовителей: измельчение гранул, нагрев полимерной массы, литниковая система, отводящая разогретый полимер в форму для литья.

Большинство предприятий налаживают безотходное производство изделий из пластмасс и используют станки и оборудование как для изготовления, так и для переработки оставшихся гранул.

Виды оборудования для литья пластмасс под давлением:

  1. вертикальное – в процессе производства подача расплавленного полимера осуществляется вертикально, а форма для литья расположена горизонтально;
  2. горизонтальное – литьевая форма расположена вертикально, жидкая пластмасса поступает в термопластавтомат горизонтально.

Оборудование для литья под давлением малогабаритно, занимает небольшое пространство и легкоуправляемо.

Кроме литья под давлением, существует:

  1. литье с газом;
  2. литье с водяным паром;
  3. многокомпонентное литье.

Эти способы рациональны и способны повысить качество производимого материала.

Основные тенденции на рынке производства пластмасс

  • Ужесточение правил и норм на ТПА к производству, качеству и экологичности изделий и оборудованию.
  • Создание декора на пластиковых изделиях повышает спрос на них и увеличивает объемы продаж.
  • Создание и развитие смешанных технологий: гидравлика (сжатие) + электрическое (впрыск массы) ТПА.
  • В связи с переходом с гидравлики на электричество снижение энергоемкости ТПА.

Преимущества электрического оборудования:

  • малое электропотребление (по сравнению с гидравликой экономится до 60 % энергии);
  • разрешается использовать в стерильных условиях (медицина). Электрические ТПА практически не имеют смазки;
    простота в управлении;
  • увеличение производительности оборудования и его коэффициента использования посредством снижения времени цикла и повышения результатов пластификации и впрыска пластиковой массы;

Основной недостаток электрического ТПА – высокая стоимость.

Влияние производства на экологию Земли

В зависимости от сырья, использовавшегося для производства пластиковых масс, изменяется сила воздействия и состав выделяемых в окружающую среду газов. Но в любом случае изготовление изделий из пластмассы, таких как ведра, запасные детали оборудования, канистры, игрушки, тазы и прочие предметы народного потребления, отрицательно сказывается на человеке и природе. Вещества, выделяемые в процессе производства, являются ядовитыми , они переносятся на большие расстояния, выпадая с осадками, являются , подземные и поверхностные воды, растительность.

Основной компонент, входящий в состав пластиковых масс и способствующий загрязнению природной среды, – винилхлорид. Это вещество канцерогенно и способно вызвать у человека такое заболевание, как рак.

Утилизация отходов от пластмассового производства должна осуществляться на заводах по переработке в специальных кислостойких установках, но если существует возможность безотходного производства, то лучше пластмассовые отходы отправлять на переработку.

Узнать о проблемах экологии связанных с выбросами радиоактивных веществ можно .

Одно из самых популярных мест отдыха у российских туристов региона рассмотрены в нашем обзоре.

Влияние экологических катастроф на акваторию Мирового океана планеты читайте по ссылке.

Осуществляя производство пластиковых масс, изготовитель обязан наладить четкий контроль содержания винилхлорида в воздухе над предприятием . Прежде чем ввести пластик в медицину, промышленное хозяйство, необходимо осуществить квалифицированную экспертизу . Отходы следует подвергать вторичной переработке, а на произведенных пластмассовых изделиях обязательно штамповать маркировку, запрещающую утилизировать такие изделия в обычных мусоросжигательных печах.

Соблюдая требования в производстве пластиковых масс, предприниматели обеспечат здоровье не только себе и всему человечеству, но и окружающей среде.