Расчетные формулы. Основная теорема метода сеток

Теоретические основы метода сеток. Построение конечно-разностной схемы. Погрешность аппроксимации, устойчивость. Основная теорема метода сеток

2.3 Погрешность аппроксимации

При построении разностной схемы важно знать, насколько хорошо она аппроксимирует исходную дифференциальную задачу.

При замене дифференциальной задачи разностной допускается ошибка -- погрешность аппроксимации. Она характеризуется величиной невязок/

При замене интеграла приближенной квадратурной формулой вносится погрешность аппроксимации дифференциального уравнения разностным. Она характеризуется величиной невязки, если в конечно-разностном уравнении (5) подставить вместо значение точного решения:

Воспользовавшись соотношением (4), получаем простое выражение для вычисления:

которая зависит от шага сетки.

Говорят, что разностная схема (5) аппроксимирует исходную дифференциальную задачу с порядком p, если при. Из (6) следует, что порядок аппроксимации на 1 меньше, чем порядок погрешности используемой квадратурной формулы на интервале .

Чем больший порядок аппроксимации p , тем выше точность решения:

Для обеспечения близости решений разностной и дифференциальной задач необходимо, чтобы при стремлении шагов сетки к нулю разностная задача в пределе совпадала с дифференциальной. Если это требование выполняется, то говорят, что разностная схема аппроксимирует дифференциальную задачу.

Аппроксимация функции методом наименьших квадратов

Вычислительная математика

Существуют четыре источника погрешностей, возникающих в результате численного решения задачи. 1. Математическая модель. Погрешность математической модели связана с ее приближенным описанием реального объекта. Например...

Клеточные пространства

Теорема. Всякое непрерывное отображение одного клеточного пространства в другое гомотопно клеточному отображению. Мы будем доказывать следующее, более сильное утверждение ("относительный вариант" нашей теоремы). Теорема...

Клеточные пространства

Теорема. Если X - клеточное пространство с единственной вершиной (= нульмерной клеткой), не имеющее других клеток размерности

Линейное и нелинейное программирование

Методы аппроксимации функций

Методы аппроксимации функций

Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью. Можно показать, что погрешность Rn(x) определяется следующим выражением. Здесь - производная (n+1) порядка функции f(x) в некоторой точке...

Построение математической модели, описывающей процесс решения дифференциального уравнения

0 1 2,282894 1,282894 1,645818 0,1 1,470387 1,206049 -0,264338 0,069874 0,2 2,173681 1,146702 -1,026979 1,054685 0,3 3,205241 2,104853 -1,100388 1,210853 0,4 4,709109 4,080502 -0,628607 0,395146 0,5 6,894874 7,073649 0,178775 0,031961 0,6 10,066320 11,084294 1,017974 1,036271 0,7 14,663307 16,112437 1,449130 2,099978 0,8 21...

Практическое применение интерполирования гладких функций

По строению (). Но, в общем, это не так и (,), так как интерполирование предполагает приближенное нахождение: () И в связи с этим необходимо говорить о погрешности интерполирования. Заранее сказав, разность этого выражения нужно найти...

Приближенное решение алгебраических и трансцендентных уравнений. Метод Ньютона

Информация о предыдущих приближениях корня используется для нахождения последующих приближений не только в методе касательных. В качестве примера другого такого метода мы приведём метод...

Численные методы анализа

Погрешность вычисляется по формуле где h -- шаг сетки, а точка о расположена где-то между i-тым и (i + n)-тым узлами. Примером может служить известная формула (n = 2) . При n = 1 формула может быть получена и из определения производной...

Численные методы анализа

Окончательный результат многократного измерения содержит в себе как случайную, так и приборную погрешности. Случайная погрешность уменьшается с увеличением количества отдельных измерений, а приборная погрешность не меняется...

Погрешность аппроксимации

При построении разностной схемы важно знать, насколько хорошо она аппроксимирует исходную дифференциальную задачу.

При замене дифференциальной задачи разностной допускается ошибка -- погрешность аппроксимации. Она характеризуется величиной невязок/

При замене интеграла приближенной квадратурной формулой вносится погрешность аппроксимации дифференциального уравнения разностным. Она характеризуется величиной невязки, если в конечно-разностном уравнении (5) подставить вместо значение точного решения:

Воспользовавшись соотношением (4), получаем простое выражение для вычисления:

которая зависит от шага сетки.

Говорят, что разностная схема (5) аппроксимирует исходную дифференциальную задачу с порядком p, если при. Из (6) следует, что порядок аппроксимации на 1 меньше, чем порядок погрешности используемой квадратурной формулы на интервале .

Чем больший порядок аппроксимации p , тем выше точность решения:

Для обеспечения близости решений разностной и дифференциальной задач необходимо, чтобы при стремлении шагов сетки к нулю разностная задача в пределе совпадала с дифференциальной. Если это требование выполняется, то говорят, что разностная схема аппроксимирует дифференциальную задачу.

Устойчивость

Другой источник ошибок, вносимых в численное решение, связан с погрешностью округления, возникающей непосредственно при решении разностной задачи на ЭВМ. Ошибки округления неизбежны, так как любая вычислительная машина может оперировать лишь с конечным числом значащих цифр. Хотя в момент возникновения они невелики, однако при расчете больших рекуррентных формул, какими являются алгоритмы метода сеток, первоначальная величина этих ошибок может вырасти настолько, что полностью исказит смысл окончательного результата. Если это происходит, то говорят, что численный метод (алгоритм) неустойчив. При достаточно длительном счете неустойчивость метода приводит к авосту -- переполнению арифметического устройства машины. Если же в процессе счета ошибки округления затухают или хотя бы не возрастают, такой вычислительный алгоритм называют устойчивым. Для решения практических задач используются только устойчивые алгоритмы.

Более строго устойчивость трактуется как свойство непрерывной зависимости решения разностной задачи от входных данных, согласно которому всякое малое изменение входных данных (например, вследствие округления) приводит к малому изменению решения. Под входными данными обычно понимают правые части разностных уравнений, граничных и начальных условий.

Основная теорема метода сеток

Основная теорема теории метода сеток утверждает, что если схема устойчива, то при погрешность решения стремится к нулю с тем же порядком, что и погрешность аппроксимации:

где С0 - константа устойчивости.

Неустойчивость обычно проявляется в том, что с уменьшением h решение при возрастании k, что легко устанавливается экспериментально с помощью просчета на последовательности сеток с уменьшающимся шагом h, h/2, h/4… Если при этом, то метод неустойчив. Таким образом, если имеется аппроксимация и схема устойчива, то, выбрав достаточно малый шаг h, можно получить решение с заданной точностью. При этом затраты на вычисления резко уменьшаются с увеличением порядка аппроксимации p, т.е. при большем p можно достичь той же точности, используя более крупный шаг h.

При построении экономико-математических моделей возникают задачи замены табличных опытных значений результирующего показателя (зависимая переменная) и фактора (независимая переменная) аналитической аппроксимирующей функцией . Метод построения аппроксимирующей функции носит название метода наименьших квадратов. Опытные данные – это данные наблюдения над эконом-и процессами (стат. данные) в зависимости м/у 2мя переменными Вычисленные значения аппроксимирующей функции при соответствующих значениях фактора обычно отличаются от опытных значений. Эти аналитические значения считают теоретическими, а им соответствующие - опытными значениями. В дальнейшем опытные значения будем принимать за истинные. Для оценки Степень близости теоретических и опытных значений характеризуют погрешность аппроксимации функции. Различают абсолютную и относительную, локальную и среднюю погрешности.

Модуль разность между теоретическим и опытным значением результирующего показателя, вычисленной при конкретном задании фактора , называют абсолютной локальной погрешностью результирующего показателя и обозначают . Кроме абсолютной локальной погрешности рассматривают также относительную локальную погрешность как отношение абсолютной погрешности к модулю опытного значения результирующего показателя

.

Для характеристики погрешности на всем промежутке изменения фактора рассматривают среднюю абсолютную и относительную погрешности. Их вычисляют по следующим соотношениям:

и .

6. Функции спроса и предложения строительных услуг .1)Спрос , где С 0 , С 1 принадл. R.

1. Со>0, C1>0,α<0,p>0. 2 . Со>0, C1<0,α=1. 3 . Со<0, C1>0,α> 2) Предложение – зеркальное отображение теории спроса. Все продавцы стремятся получить на рынке самую высокую цену, и чем выше цена, тем активнее будет расти предложение товаров. Определяющий фактор, влияющий на предложение тов. – издержки пр-ват.е. сумма ден. расходов на пр-во прод-ции.Чем меньше издержки, тем меньше цена. Предложение – совокупность товаров, представленных к продаже по соотв-м, удовл-м товаропроизводителя ценам. Кривая предложения –это кривая предельных издержек фирмы на пр-во кажд. новой единицы продукции. Как видно из графика сниж-е цены p(x) ведет к соотв. измен-ю предлож-я товаров ч, повыш-е цен ведет к росту предл-я. .С2 и С3 зависят от цены товара, числа продавцов на рынке, налогов, технологии пр-ва, цен на ресурсы.

1. С2>0,C3>0,β>1, x>0,p>0. 2. С2>0,C3>0,β=1. 3. С2>0,C3>0,0<β<1. Общее св-во 1, 2, 3 – положительное значение p"(x).

7. Функция спроса по цене. 1)Спрос – это платежеспособная потребность покупателя, т.е. потребность покупателя, располагающего ден. ср-вами для приобретения тов. и усл. На спрос влияют 3 фактора: 1) потребность человека в продукте, 2) цена продукта, 3) уровень ден. доходов потребителя. В основе рыночного спроса на тов. или услугу есть правило(з-н убывающей полезности): Чем выше цена, тем меньше тех, кто согласиться купить данный товар, т.е. уменьшается уровень спроса и наоборот. График имеет вид убывающей кривой, а ее аналит. выр-е: , где С 0 , С 1 принадл. R.

1. Со>0, C1>0,α<0,p>0. 2 . Со>0, C1<0,α=1. 3 . Со<0, C1>0,α>0 (α≠1). Со и С1 – зависят от числа покупателей на рынке, от ден. доходов и вкусов потребителя, от цен конкурентов и цен на замещающие товары. Общее св-во 1, 2, 3 – отрицательное значение x"(p).

Функции спроса (предложения) по цене могут быть как линейными, так и нелинейными. В случае линейной функции она имеет следующий вид: Функция характеризует собой семейства прямых, каждая из которых характеризуется конкретными значениями коэффициентов a и b. Наилучшей для рассматриваемой выборки из всего множества прямых является, та прямая, которая на плоскости xoy расположена «ближе» всего, в определенном смысле, к опытным точкам. В качестве меры близости прямой и некоторой точки на плоскости можно выбрать расстояние между ними. При этом под расстоянием следует понимать модуль разности между опытным (наблюдаемым) значением результирующей величины и теоретическим, вычисленным по формуле при одном и том же значении фактора т.е. (i=1,2,...,n)

Лабораторная работа № 1

ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ С ПОМОЩЬЮ СПЛАЙНА

Цель работы

Ознакомление студентов с задачей интерполяции функций, с методом прогонки для решения систем линейных алгебраических уравнений с ленточной матрицей, с понятием сплайна, получение навыков решения задач вычислительной математики на ЭВМ.

Задачи работы

Закрепление, углубление и расширение знаний студентов при решении практических вычислительных задач. Овладение вычислительными методами и практическими методами оценки погрешности вычислений. Приобретение умений и навыков при программировании и отладке вычислительных задач на компьютере.

Вводная часть

Известны два способа представления функций: аналитический и табличный. Первый требует сравнительно длительного времени вычисления, но небольшого объема памяти. Второй – наоборот. Существует промежуточный способ - сплайн.

Теоретические основы

Постановка задачи

Пусть отрезок [a , b ] разбит на n частичных отрезков [x i , x i +1 ], где x i <x i +1 , i= 0,1, …, n- 1, x 0 =a , x n =b . Обозначим h i =x i -x i - 1 . В случае равномерного разбиения h= (b-a )/n , x i =a+ih .

Функция f (x ) задана своими значениями в узловых точках x i .

Рис. 2.4.1. Разбиение интервала при интерполяции сплайном

Сплайном называется функция, которая вместе с несколькими производными непрерывна на всём заданном отрезке [a,b ], а на каждом частичном отрезке [x i ,x i +1 ] в отдельности является некоторым алгебраическим многочленом.

Максимальная по всем частичным отрезкам степень многочленов называется степенью сплайна , а разность между степенью сплайна и порядком наивысшей непрерывной на [a , b ] производной – дефектом сплайна .

Например, непрерывная кусочно-линейная функция (ломанная) является сплайном первой степени с дефектом, равным единице, т.к. непрерывна только сама функция (нулевая производная), а первая производная уже разрывна.

На практике наиболее широкое распространение получили сплайны третьей степени, имеющие на [a, b ] непрерывную, по крайней мере, первую производную. Эти сплайны называются кубическими и обозначаются через . На каждом отрезке кубический сплайн имеет вид

S 3 (x )=а i 0 +а i 1 (x - x i )+а i 2 (x - x i ) 2 +а i 3 (x - x i ) 3 , x Î[x i , x i+ 1 ], (2.4.1)

и удовлетворяет условиям

S 3 (x i )=f (x i ), i= 0,...,n . (2.4.2)

Сплайн (2.4.1) на каждом из отрезков [x i , x i + 1 ], i= 0,...,n- 1 определяется четырьмя коэффициентами, и поэтому для его построения на всем промежутке [a,b ] необходимо определить 4n коэффициентов. Для их однозначного определения необходимо задать 4n уравнений.

Условие (2.4.2) дает 2n уравнений, т.к. каждый многочлен должен проходить через две заданные точки: начало и конец отрезка [x i , x i + 1 ]. При этом функция S 3 (x i ), удовлетворяющая этим условиям, будет непрерывна во всех внутренних узлах.

Условие непрерывности производных сплайна , во всех внутренних узлах x i , i= 1,...,n- 1 сетки дает 2(n- 1) равенств.

Вместе получается 4n- 2 уравнений.

Два дополнительных условия обычно задаются в виде ограничений на значение производных сплайна на концах промежутка [a,b ] и называются краевыми условиями.

Выбор краевых условий

Наиболее употребительны следующие типы краевых условий:

д) .

Через краевые условия в конструкцию сплайна включаются параметры, выбирая которые можно управлять его поведением, особенно возле концов отрезка [a,b ].

Если известны f" (x ). f" (x ) или f¢¢¢ (x ) в точках а и b , то естественно воспользоваться краевыми условиями типа а), б) или в).

Если производные неизвестны, то в большинстве случаев наилучшим решением будет применение краевых условий типа г).

Условия типа д) носят названия периодических. Естественно требовать их выполнения в том случае, когда интерполируемая функция периодическая с периодом (b-a ).

Вместо значений производных можно использовать их разностные аналоги. При этом точность интерполяции вблизи концов отрезка [a ,b ] падает.

Погрешность аппроксимации кубическим сплайном

Теорема. Если функция f (x ) при x Î[x 0 , x n ] j раз непрерывно дифференцируема и k =min{j , 4}, то для m £k -1

причем c m не зависит от h i и i .

Примечание 1. Допустим, вторая производная f (x ) непрерывна, а третья и четвертая – кусочно-непрерывны и могут иметь разрывы только первого рода в узлах сетки x i . Тогда оценка (2.4.3) остается в силе, если вместо символа max использовать sup . Дело в том, что рассматриваемый способ построения сплайна позволяет точно строить как любой многочлен третьей степени на всем интервале [x 0 ,x n ] (при этом обеспечивается непрерывность третьей производной), так и любую заданную функцию, составленную из многочленов третьей степени, если эта функция имеет непрерывную вторую производную.

Примечание 2. Если производная f"" (x ) имеет разрывы 1-го рода или граничные значения второй производной заданы с ошибкой, то оценка (2.4.3) остается справедливой при k =2, m £1.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19