Производство и использование электрической энергии сообщение. Производство, передача и распределение электрической энергии

>> Производство и использование электрической энергии

§ 39 ПРОИЗВОДСТВО и ИСПОЛЬЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

В nanie время уровень производства и потребления энергии - один из важнейших показателей развития производственных сил обпдества. Ведущую роль при этом играет электроэнергия - самая универсальная и удобная для использования форма энергии. Если потребление энергии в мире увеличивается в 2 раза примерно за 25 лет, то увеличение потребления электроэнергии в 2 раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию.

Производство электроэнергии. Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичны крупные тепловые паротурбинные электростанции (сокращенно: ТЭС). Большинство ТЭС нашей страны использует в качестве топлива уго.пьную пыль. Для выработки 1 кВт ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Из курса физики 10 класса известно, что КПД тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром. Превращения энергии показаны на схеме, приведенной на рисунке 5.5.

Тепловые электростанции - так называемые теплоэлектроцентрали (ТЭЦ) - позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60-70%. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией и теплом сотни городов.

На гидроэлектростанциях (ГЭС) для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды (напор) и от массы воды, проходящей через турбину в каждую секунду (расход воды). Превращения энергии показаны на схеме, приведенной на рисунке 5.6.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Значительную роль в энергетике играют атомные электростанции (АЭС). В настоящее время АЭС в России дают около 10% электроэнергии.

Использование электроэнергии. Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства.

Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов , электролиз и т. п.).

Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


1. Приведите примеры машин и механизмов, в которых совершенно не использовался бы электрический ток!
2. Находились ли вы возле генератора электрического тока на расстоянии, не превышающем 100 м!
3. Чего лишились бы жители большого города при аварии электрической сети!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Физика и астрономия за 11 класс бесплатно скачать , планы конспектов уроков, готовимся к школе онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Страница 1

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция(ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

по физике

на тему: "Производство, передача и потребление электроэнергии"

Выполнила:

Ученица 11А

Ходакова Юлия

Преподаватель:

Дубинина Марина Николаевна

1. Производство электроэнергии

Электроэнергия производится на электрических станциях зачастую при помощи электромеханических индукционных генераторов. Существует 2 основных вида электростанций -- тепловые электростанции (ТЭС) и гидроэлектрические электростанции (ГЭС) -- различающиеся характером двигателей, которые вращают роторы генераторов.

Источником энергии на ТЭС является топливо: мазут, горючие сланцы, нефть, угольная пыль. Роторы электрогенераторов приводятся во вращение при помощи паровых и газовых турбин либо двигателями внутреннего сгорания (ДВС).

Как известно, КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому пар, который поступает в турбину, доводят до порядка 550 °С при давлении около 25 МПа. КПД ТЭС достигает 40 %.

На тепловых электростанциях (ТЭЦ) большая часть энергии отработанного пара применяется на промышленных предприятиях и для бытовых нужд. КПД ТЭЦ может достигать 60-70 %.

На ГЭС для вращения роторов генераторов применяют потенциальную энергию воды. Роторы приводятся во вращение гидравлическими турбинами.

Мощность станции зависит от разности уровней воды, которые создаются плотиной (напора), и от массы воды, которая проходит через турбину за 1 секунду (расхода воды).

Часть электроэнергии, которая потребляется в России (примерно 10 %), производится на атомных электростанциях (АЭС).

2. Передача электроэнергии

В основном, этот процесс сопровождается существенными потерями, которые связаны с нагревом проводов линий электропередачи током. Согласно закону Джоуля-Ленца энергия, которая расходуется на нагрев проводов, является пропорциональной квадрату силы тока и сопротивлению линии, так что при большой длине линии передача электроэнергии может стать экономически невыгодной. Поэтому нужно уменьшать силу тока, что при заданной передаваемой мощности приводит к необходимости увеличения напряжения. Чем длиннее линия электропередачи, тем выгоднее применять большие напряжения (на некоторых напряжение достигает 500 кВ). Генераторы переменного тока выдают напряжения, которые не могут быть больше 20 кВ (что связано со свойствами используемых изоляционных материалов).

Поэтому на электростанциях ставят повышающие трансформаторы, которые увеличивают напряжение и во столько же раз уменьшают силу тока. Для подачи потребителям электроэнергии необходимого (низкого) напряжения на концах линии электропередачи ставят трансформаторы понижающие. Понижение напряжения обычно производится поэтапно.

3. Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

электрический энергия атомный тепловой

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

Использовать передовые технологии очень верное решение данной проблемы. К тому же необходимо избегать напрасных трат электроэнергии и свести неэффективное использование к минимуму.

Размещено на Allbest.ru

...

Подобные документы

    Особенности тепловых и атомных электростанций, гидроэлектростанций. Передача и перераспределение электрической энергии, использование ее в промышленности, быту, транспорте. Осуществление повышение и понижение напряжения с помощью трансформаторов.

    презентация , добавлен 12.01.2015

    История рождения энергетики. Виды электростанций и их характеристика: тепловая и гидроэлектрическая. Альтернативные источники энергии. Передача электроэнергии и трансформаторы. Особенности использования электроэнергетики в производстве, науке и быту.

    презентация , добавлен 18.01.2011

    Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация , добавлен 15.05.2016

    Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация , добавлен 23.03.2015

    Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.

    реферат , добавлен 25.10.2013

    Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация , добавлен 22.12.2011

    Генерация электроэнергии как ее производство посредством преобразования из других видов энергии, с помощью специальных технических устройств. Отличительные признаки, приемы и эффективность промышленной и альтернативной энергетики. Типы электростанций.

    презентация , добавлен 11.11.2013

    Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие , добавлен 19.04.2012

    Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат , добавлен 16.09.2010

    Мировые лидеры в производстве ядерной электроэнергии. Классификация атомных электростанций. Принцип их действия. Виды и химический состав ядерного топлива и суть получения энергии из него. Механизм протекания цепной реакции. Нахождение урана в природе.

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ НАУКИ
И ВЛИЯНИЕ НАУКИ НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ В ЖИЗНИ

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки.

Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на расстояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь.

Сейчас они используются во всех сферах деятельности человека: для записи и хранения информации, создания архивов, подготовки и редактирования текстов, выполнения чертежных и графических работ, автоматизации производства и сельского хозяйства. Электронизация и автоматизация производства - важнейшие последствия «второй промышленной» или «микроэлектронной» революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой.

Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-«интеллектуалы» третьего поколения будут «видеть», «чувствовать», «слышать». Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна. Основная часть роботов работают на электрической энергии, но увеличение потребления электроэнергии роботами компенсируется снижением энергозатрат во многих энергоемких производственных процессах за счет внедрения более рациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила». К электромагниту, «работающему ротором» (скорость его вращения достигает трех тысяч оборотов в минуту) электрический ток приходится подводить через проводящие угольные щетки и кольца, которые трутся друг о друга и легко изнашиваются. У физиков родилась мысль заменить ротор струей раскаленных газов, плазменной струей, в которой много свободных электронов и ионов. Если пропустить такую струю между полюсами сильного магнита, то по закону электромагнитной индукции в ней возникнет электрический ток - ведь струя движется. Электроды, с помощью которых должен выводится ток из раскаленной струи, могут быть неподвижными, в отличие от угольных щеток обычных электрических установок. Новый тип электрической машины получил название магнитогидродинамического генератора.

В середине ХХ столетия ученые создали оригинальный электрохимический генератор, получивший название топливного элемента. К электродным пластинкам топливного элемента подводится два газа - водород и кислород. На платиновых электродах газы отдают электроны во внешнюю электрическую цепь, становятся ионами и, соединяясь, превращаются в воду. Из газового топлива получается сразу и электроэнергия и вода. Удобный, бесшумный и чистый источник тока для дальних путешествий, например в космос, где особенно нужны оба продукта топливного элемента.

Другой оригинальный способ получения электроэнергии, получивший распространение в последнее время, заключается в преобразовании солнечной энергии в электрическую «напрямую» - с помощью фотоэлектрических установок (солнечных батарей). С ними связано появление «солнечных домов», «солнечных теплиц», «солнечных ферм». Такие солнечные батареи используются и в космосе для обеспечения электроэнергией космических кораблей и станций.

Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния.

Не обошла наука и сферу управления. По мере развития НТР, расширения производственной и непроизводственной сфер деятельности человека, все более важную роль в повышении их эффективности начинает играть управление. Из своего рода искусства, еще недавно основывавшегося на опыте и интуиции, управление в наши дни превратилось в науку. Наука об управлении, об общих законах получения, хранения, передачи и переработки информации называется кибернетикой. Этот термин происходит от греческих слов «рулевой», «кормчий». Он встречается в трудах древнегреческих философов. Однако новое рождение его произошло фактически в 1948 году, после выхода книги американского ученого Норберта Винера «Кибернетика».

До начала «кибернетической» революции существовала только бумажная Информатика, основным средством восприятия которой оставался человеческий мозг, и которая не использовала электроэнергию. «Кибернетическая» революция породила принципиально иную - машинную информатику, соответствующую гигантски возросшим потокам информации, источником энергии для которой служит электроэнергия. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру. Она включает АСУ (автоматизированные системы управления), информационные банки данных, автоматизированные информационные базы, вычислительные центры, видеотерминалы, копировальные и фототелеграфные аппараты, общегосударственные информационные системы, системы спутниковой и скоростной волокнисто-оптической связи - все это неограниченно расширило сферу использования электроэнергии.

Многие ученые считают, что в данном случае речь идет о новой «информационной» цивилизации, приходящей на смену традиционной организации общества индустриального типа. Такая специализация характеризуется следующими важными признаками:

· широким распространением информационной технологии в материальном и нематериальном производстве, в области науки, образования, здравоохранения и т.д.;

· наличием широкой сети различных банков данных, в том числе общественного пользования;

· превращение информации в один из важнейших факторов экономического, национального и личного развития;

· свободной циркуляцией информации в обществе.

Такой переход от индустриального общества к «информационной цивилизации» стал возможен во многом благодаря развитию энергетики и обеспечению удобным в передаче и применении видом энергии - электрической энергией.

ЭЛЕКТРОЭНЕРГИЯ В ПРОИЗВОДСТВЕ

Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.

При этом встает проблема эффективного использования этой энергии. При передаче электроэнергии на большие расстояния, от производителя до потребителя, потери на тепло вдоль линии передачи растут пропорционально квадрату тока, т.е. если ток удваивается, то тепловые потери увеличиваются в 4 раза. Поэтому, желательно, чтобы ток в линиях был мал. Для этого повышают напряжение на линии передач. Электроэнергия передается по линиям, где напряжение достигает сотен тысяч вольт. Возле городов, получающих энергию от линий передач, это напряжение с помощью понижающего трансформатора доводят до нескольких тысяч вольт. В самом же городе на подстанциях напряжение понижается до 220 вольт.

Наша страна занимает большую территорию, почти 12 часовых поясов. А это значит, что если в одних регионах потребление электроэнергии максимально, то в других уже окончен рабочий день и потребление снижается. Для рационального использования электроэнергии вырабатываемой электростанциями, они объединены в электроэнергетические системы отдельных районов: европейской части, Сибири, Урала, Дальнего Востока и др. Такое объединение позволяет эффективней использовать электроэнергию согласовывая работу отдельных электростанций. Сейчас различные энергосистемы объединены в единую энергетическую систему России.

Следующая возможность эффективного использования - снижение энергозатрат электроэнергии с помощью энергосберегающих технологий и современного оборудования, потребляющего минимальное ее количество. Таким примером может служить сталеплавильное производство. Если в 60-е годы основным методом выплавки стали был мартеновский способ (72% всей выплавки), то в 90-е годы эта технология выплавки заменена более эффективными методами: кислородно-конверторным и электросталеплавильным.

ЛИТЕРАТУРА:

1. Колтун М. Мир физики: Научно-художественная лит-ра. - М.: Дет. лит., 1984.- 271с.

2. Максаковский В.П. Географическая картина мира. Ч.1. Общая характеристика мира. - Ярославль: Верх.-Волж. кн. изд-во, 1995.- 320с.

3. Эллион Л., Уилконс У. Физика. - М.: Наука, 1967.- 808с.

4. Энциклопедический словарь юного физика /Сост. В.А. Чуянов. - М.: Педагогика, 1984.- 352с.