Основные виды технологических процессов. Групповой технологический процесс. Классификация технологических процессов

В основе любого производства лежит технологический процесс, под которыми понимаются совокупность действий по добыче и переработки сырья в готовую продукцию. В основе любых процессов лежат физические, химические, биологические процессы, различающиеся характером количественных и качественных изменений сырья в процессе его переработки.

Основная классификация технологических процессов является способ организации и кратность обработки сырья.

    Виды технологических процессов в зависимости от способа их организации : единичный, типовой, групповой, дискретный (прерывный, периодический), непрерывный и комбинированный.

Единичный технологический процесс (ЕТП) разрабатывается для изготовления или ремонта изделия одного наименования, типоразмера и исполнения независимо от типа производства. Разработка ЕТП включает в себя следующие этапы.

1. Анализ исходных данных и выбор действующего аналога ЕТП.

2. Выбор исходной заготовки и метода ее получения.

3. Определение содержания операций, выбор технологических баз и составление технологического маршрута (последовательности) обработки.

4. Выбор технологического оборудования, оснастки, средств автоматизации и механизации технологического процесса. Уточнение последовательности выполнения переходов.

5. Назначение и расчет режимов выполнения операции, нормирование переходов и операций ТП, определение профессий и квалификации исполнителей, установление требований к технике безопасности.

6. Расчет точности, производительности и экономической эффективности ТП. Выбор оптимального процесса.

7. Оформление рабочей технологической документации.

Необходимость каждого этапа, состава задач и последовательности решения устанавливается в зависимости от типа производства.

Типизация ТП позволяет устранить их многообразие с обоснованным сведением к ограниченному числу типов.

Типовой технологический процесс (ТТП) характеризуется единством содержания и последовательности большинства технологических операций и переходов для групп изделий с общими конструктивными признаками.

Типизацию начинают с классификации изделий. Классом называют совокупность деталей, характеризуемых общностью технологических задач. В пределах класса детали разбивают на группы, подгруппы и т.д. до типа. Практически к одному типу относят детали, для которых можно составить один технологический процесс.

ТПП разрабатывают с учетом последних достижений науки и техники, опыта передовых рабочих, что позволяет значительно сократить цикл подготовки производства и повысить производительность за счет применения более совершенных методов производства.

Групповой технологический процесс (ГТП) предназначен для совместного изготовления или ремонта групп изделий с разными конструктивными, но общими технологическими признаками.

При группировании одна из наиболее сложных деталей принимается за комплексную. Эта деталь должна иметь все поверхности, встречающиеся у деталей данной группы. Они могут быть расположены в иной последовательности, чем у комплексной детали. При отсутствии такой детали в группе создается условная комплексная деталь. По этому технологическому процессу можно обрабатывать любую деталь группы без значительных отклонений от общей схемы.

Групповые технологические процессы используют для механической обработки деталей на универсальном оборудовании, для электромонтажных, сборочных и других операций, что делает целесообразным применение высокопроизводительных автоматов и полуавтоматов в мелкосерийном производстве.

Периодические процессы (например, выплавка стали, литье в форму, термообработка и др.) проводятся на оборудовании, которое загружается исходными материалами или заготовками через определенные промежутки времени; после их обработки полученный продукт выгружается. Периодические или дискретные процессы характеризуются чередованием во времени рабочих и вспомогательных операций, выполняются они, как правило, на одном месте. Они компактны в пространстве и растянуты по времени. Основным недостатком таких процессов является то, что во время загрузки и выгрузки продукта оборудование не работает (простаивает) или работает не в полную мощность. Это приводит к потерям рабочего времени и большим затратам труда. Кроме того, непостоянство технологического режима в начале и конце процесса усложняет обслуживание, затрудняет автоматизацию и приводит к удлинению продолжительности производительного цикла. Все эти причины и побуждают заменять периодические процессы более рациональными при наличии экономической и технической возможности.

Непрерывные процессы (например, разливка стали, прокатка или волочение профилей из металлов и сплавов, переработка нефти, производства цемента) осуществляются в аппаратах, где поступление сырья и выгрузка конечных продуктов производятся непрерывно. Однако все стадии процесса могут протекать одновременно как в различных частях аппарата (например, перегонка нефти в ректификационной колонне), так и в различных аппаратах, составляющих данную установку. Они характеризуются непрерывным и одновременным выполнением рабочих и вспомогательных технологических действий, но на разных местах. Параллельность выполнения операций позволяет значительно повысить производительность, но требует увеличения пространства.

Комбинированные процессы являются сочетанием стадий периодических и непрерывных процессов (например, поточные линии механической обработки деталей, коксование угля, работа доменной печи или стана периодической прокатки металлических профилей). Комбинированные технологические процессы позволяют удачно сочетать преимущества периодических и непрерывных действий и устранить их недостатки.

По сравнению с комбинированными и периодическими процессами непрерывные отличаются отсутствием простоев оборудования, перерывов в выпуске конечных продуктов, возможностью полной автоматизации и механизации, устойчивостью технологического режима и соответственно большей стабильностью качества выполняемой работы, в т. ч. и готовой продукции. Например, слитки металлов и сплавов, изготовленные в установках непрерывной разливки, отличаются более высоким качеством и отсутствием дефектов, характерных для слитков, полученных в изложницах (обычное литье). Большая компактность оборудования обеспечивает меньшие капитальные затраты и эксплуатационные расходы на ремонт и обслуживание, уменьшает потребность в рабочей силе, увеличивает производительность труда, позволяет полнее и эффективнее использовать энергетические ресурсы. По этим причинам основной тенденцией промышленного производства массового типа является замена периодических процессов непрерывными. Но, как правило, технологическое оборудование для непрерывных процессов является более сложным и дорогим.

Сейчас периодические процессы сохраняют свое значение в производствах относительно небольшого масштаба (в том числе опытных) с разнообразным ассортиментом продукции. Там применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших затратах.

2. По кратности обработки сырья различают процессы: с разомкнутой (открытой) схемой, в которой сырье или материал подвергается однократной обработке; с замкнутой (круговой, циркуляционной или циклической) схемой, в которой сырье или вспомогательные материалы неоднократно возвращаются в начальную стадию процесса для повторной обработки, а иногда и регенерации (восстановление потерянных свойств); комбинированные (со смешанной схемой).

Примером процесса с разомкнутой (открытой) схемой является конвертерный способ получения стали. Примером процесса с замкнутой схемой может служить циркуляция специальной жидкой смеси для охлаждения резца токарного станка при скоростной механической обработке металлов резанием. В такой замкнутой схеме охлаждающая жидкость постоянно циркулирует между бачком, резцом, сборником для жидкости и насосом для ее перекачивания в бачок. Другим примером процесса с замкнутым циклом может быть химическая переработка нефтяных фракций, где для непрерывного восстановления активности катализатора последний постоянно циркулирует между реакционной зоной крекинга и прокалочной печью для выжигания углерода с его поверхности.

Процессы с замкнутой схемой более компактны, чем процессы с разомкнутой схемой, требуют по сравнению с ними меньшего расхода сырья, вспомогательных материалов и энергии на транспортировку реагентов. Циклические (с замкнутой схемой) процессы широко используются во многих производствах для многократного или частичного возвращения тепловых или материальных потоков в начальную стадию процесса. Это позволяет рационально и экономно расходовать энергию, сырье, материалы и водные ресурсы, получать продукцию высокого качества. Наиболее совершенные технологические процессы – процессы с замкнутой схемой – являются основой создания безотходных, материало- и энергосберегающих производств.

В промышленности часто применяют комбинированные процессы (со смешанной схемой), являющиеся сочетанием процессов с открытой и закрытой схемой (например, производство серной кислоты нитрозным способом). В таких процессах одни промежуточные продукты (оксиды серы) обрабатываются по открытой схеме, проходя последовательно ряд аппаратов, а другие (оксиды азота) – циркулируют по замкнутой схеме.

3. Классификация технологических процессов по способам переработки сырья . В основе переработки сырья лежат физические, механические, химические и биологические процессы, различающиеся между собой характером качественных изменений и превращений вещества.

Физические технологические процессы. Так, использование физических процессов для переработки сырья характеризуется изменением состояния (твердое, жидкое газообразное), внешней формы и физических свойств. Эти ТП могут быть реализованы при изменении параметров окружающей предмет труда условий, например температуры, давления, электромагнитного поля, ионизирующего и радиоактивного излучений и т.п. Как правило, физические технологические процессы в чистом виде редко реализуются, часто они вызывают и химические превращения, тогда такие процессы превращаются в физико-химические. Чистые физические процессы – превращение воды в пар или лед и наоборот; превращение графита под действием температуры и давления в алмаз, расплавление или затвердевание чистых металлов или веществ. Физико-химический процесс – это расплавление руды или металлолома и получение жидкого сплава, который при затвердевании не только переходит в твердое тело, но и претерпевает химическое превращение, изменяется кристаллическая решетка и структура сплава.

Часто использование физических технологических процессов при изготовлении некоторых изделий позволяет существенно повысить качество и эффективность работы. В частности, в современном машиностроении получают все большое распространение материалы, которые отличаются высокой твердостью и вязкостью, трудно поддающиеся традиционным способам обработки. Все возрастающее количество применяемых штампов и пресс-форм отличается высокой сложностью внутренних полостей. Это послужило основанием создания и внедрения в производство высокоэффективных электрофизических (ЭФ) и электрохимических (ЭХ) методов обработки, сущность которых заключается в том, что обработка облегчается благодаря ослаблению связей между элементарными объемами заготовки за счет их нагрева, расплавления и удаления из зоны обработки или перевода сплава в легко удаляемое соединение.

При электрофизической обработке используют инструмент – электрод, который может быть изготовлен из легкообрабатываемого материала (меди, графита, медно-графитовой композиции и т. п.). При сближении в жидком диэлектрике электродов, инструмента и заготовки возникает электрический разряд, и через зазор между ними начинает течь электрический ток. Электроны, соударяясь с анодом (заготовкой), интенсивно его разогревают и расплавляют микрообъемы заготовки. Расплавленные частички сплава охлаждаются жидким диэлектриком и удаляются из зазора между инструментом и заготовкой. Электрофизические методы отличаются высокой концентрацией энергии (1000–100000000 Вт/см 2) на локальных участках обрабатываемой заготовки, частицы материала удаляются с поверхности в расплавленном или парообразном состоянии. На электроэрозионных станках можно выполнять сложные полости в заготовках, резать и сверлить их, шлифовать и полировать. При полировке отпадает необходимость в применении инструмента, достаточно обеспечить мощный разряд между полируемым изделием и водным раствором поваренной соли.

Разновидностями ЭФ являются электроэрзионная, электроискровая, электроимпульсная, электроконтактная и плазменная обработка.

Характерной особенностью электроэрозионной (электроразрядной) обработки является то, что электрический пробой происходит по кратчайшему пути, что предопределяет разрушение (оплавление) наиболее близкорасположенных участков заготовки. Поэтому при выполнении углублений (полостей) или отверстий обрабатываемая поверхность заготовки принимает форму электрода. Известно, что механическая обработка наружных поверхностей заготовки значительно проще, производительнее и экономичнее, может быть выполнена более качественно, чем внутренних поверхностей, при этом может использован простой инструмент и универсальные оборудование.

Механические технологические процессы. В производстве более 80% технологических процессов – это механические, в результате которых изменяются форма, качество поверхности, геометрические размеры и свойства предмета обработки. Так при пластической деформации металлической заготовки придают требуемую форму и геометрические размеры, параллельно изменяются и физические свойства сплава заготовки (наклеп и упрочнение). Применяя механические технологические процессы, получают листы, сортовой прокат, поковки, трубы, проволоку и многое другое. При обработке резанием путем снятия стружки заготовке придают определенную форму и размеры, превращают ее в будущую деталь, которая в результате такой обработки приобретает заданную точность геометрических размеров с соответствующей шероховатостью поверхностей. При такой обработке свойства материала заготовки не изменяются.

При выполнении разъемных соединений деталей и узлов изделия реализуется типичный механический технологический процесс, большинство сборочных ТП базируются на чисто механических процессах (завернуть винт или гайку, запрессовать подшипник или втулку, выполнить клепанное соединение, развальцевать, зашплинтовать и т. д.), причем выполнение операций по соединению отдельных деталей или узлов не требуют высокой квалификации исполнителей и эти операции могут быть легко автоматизированы, особенно при массовом типе производства.

Механические технологические процессы широко используются в горнодобывающей промышленности, при измельчении, смешивании, дозировке, сортировке, уплотнении, формовки, упаковки сырья и материалов.

Химические процессы , в отличие от физических и механических, характеризуются изменением не только физических свойств, но и агрегатного состояния, химического состава и внутреннего строения веществ. Например, химической переработкой природного газа из метана получают водород, этилен, ацетилен, метиловый спирт и другие продукты; гидролизом древесины – скипидар, деготь, камфару, ванилин, спирты, канифоль.

Химические процессы лежат в основе жизнедеятельности живых организмов. В технологии промышленного производства термин ”химические процессы” следует понимать в широком смысле и не отождествлять с производством только химических веществ. Химико-технологические процессы являются основой производства многих строительных материалов, металлов и пищевых продуктов, используются в машиностроении, при производстве радиоэлектронной аппаратуры, измерительной техники, изделий легкой промышленности. Химические технологические процессы играют важную роль в развитии электроники, биотехнологии и создании новых материалов с уникальными свойствами, без которых немыслимо современное производство многих товаров с высокими качественными показателями.

Химические технологические процессы. Основухимического ТПсоставляют химические реакции (простые сложные, обратимые и необратимые, экзотермические и эндотермические) различных веществ при создании определенных условий. При этом образуются новые вещества, которые уже имеют совершенно другие свойства. Как правило, большая часть из них представляет основной продукт, а часть– побочный и отходы. ТП состоит из трех стадий: подготовки сырья или материалов, химической реакции, выделение (отвод) полученных веществ из реактора.

В зависимости от используемого сырья ТП могут быть разделены на процессы по переработке растительного, животного и минерального сырья. Химические технологические процессы (ХТП) могут быть низкотемпературные, протекающие при температуре до 500 °С и высокотемпературные (выше 500 °С); каталические и не каталические; происходящие под вакуумом, под высоким или атмосферном давлении и др.

Благодаря развитию химической технологии и совершенствованию ХТП в последние 50 лет появилось десятки тысяч новых материалов и веществ, имеющих уникальные свойства, это – различные клеи, фторопласты, полиуретаны, краски, лаки, полиэтилены, полипропилены, полиамиды, эпоксидные смолы, поликарбонаты, винипласты, полистиролы, поливинилхлориды (ПВХ),текстолиты, гетинаксы и т.д. Материалы, полученные с помощь. ХТП в значительной степени изменили качество жизни человека и сейчас уже трудно представить жизнь без них. Производство одежды, обуви, жилых зданий, бытовой техники, автомобилей, приборов и много другого стало благодаря ХТП более технологично, производительно, рентабильно и качественно. Роль химической промышленности трудно переоценить, валовый внутренний продукт Республики Беларусь более чем 50% наполняется за счет продукции ХТП.

Биологические процессы связаны либо с использованием живых микроорганизмов с целью получения требуемых продуктов (традиционная биотехнология), либо с воспроизведением в искусственных условиях процессов, протекающих в живой клетке (современная биотехнология).

Биологические технологические процессы. Биологические процессы протекают благодаря микроорганизмам, которые перерабатывают исходное сырье в полезные материалы (органическое удобрение, вино, спирт, медпрепораты, металлы, горючий газ, кисломолочные продукты, витамины, белки, органические кислоты и т. д.). Вторая половина XX столетия отмечена интенсивным развитием биотехнологий. Биотехнологией называют промышленную технологию получения ценных продуктов из исходного сырья с помощью микроорганизмов. Биотехнологические процессы известны с древних времен: хлебопечение, приготовление вина и пива, сыра, уксуса, молочнокислых продуктов, биоочистка воды, борьба с вредителями растительного и животного мира, обработка кожи, растительных волокон, получение органических удобрений и т.д. Научные основы были заложены в 19 веке французским ученым Л. Пастером (1822-1895г.), положившим начало микробиологии. Этому способствовало, с одной стороны, бурное развитие молекулярной биологии и генетики, биохимии и биофизики, с другой стороны, возникновение проблемы нехватки продовольствия, минеральных ресурсов, энергии, медпрепаратов, ухудшения экологической ситуации. В современном понимании в сферу биотехнологии включают генетическую и клеточную инженерию, цель которых – изменение наследственных механизмов функционирования организмов для управления деятельностью живых существ. Биотехнология тесно связана с технической микробиологией и биохимией. В ней также применяются многие методы химических технологии, особенно на конечных этапах производственного процесса, при выделении веществ, например, из биомассы микроорганизмов.

В основе биотехнологии лежит микробиологический синтез, т.е. куль­тивирование выбранных микроорганизмов в питательной среде определенного состава. Мир микроорганизмов – мельчайших, преимущественно одноклеточных организмов (бактерии, микроскопические грибы, водоросли и др.) – чрезвычайно обширен и разнообразен. Размножаются они чаще всего простым делением клеток, иногда почкованием или другими бесполыми способами.

Микроорганизмы характеризуются самыми разнообразными физиологическими и биохимическими свойствами. Для некоторых из них, так называемых анаэробов, не нужен кислород воздуха, другие отлично растут на дне океана в сульфидных источниках при температуре 250 о С, третьи выбрали себе в качестве среды обитания ядерные реакторы. Есть микроорганизмы, сохраняющие жизнеспособность в глубоком вакууме, а есть и такие, которым ни почем давление в 1000–1400 ат. Необычайная устойчивость микроорганизмов позволяет им занимать крайние границы биосферы: их обнаруживают в грунте океана на глубине 11 км, в атмосфере на высоте более 20 км. Микроорганизмы широко распространены в природе, в грамме почвы их может содержаться до 2–3 млрд. В микроорганизмах многие процессы биосинтеза и энергетического обмена, например, транспорт электронов и синтез белка, протекает аналогично тем же процессам, что в клетках высших растений и животных.

Однако микроорганизмам присущи и специфические ферментные и биохимические реакции, на которых основана их способность разлагать целлюлозу, лингин, углеводороды нефти, воск и другие вещества. Существуют микроорганизмы, способные усваивать молекулярный азот, синтезировать белок, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины и др.). На этом основано применение микроорганизмов для получения самых разнообразных продуктов. Причем в современной биотехнологии все активнее применяются не целые организмы, а их составляющие: живые клетки, различного рода структуры, являющиеся их частями, и биологические молекулы.

Сейчас с помощью биотехнологий получают антибиотики, витамины, аминокислоты, белки, спирты, кормовые добавки для животных, кисломолочную продукцию и многое другое. Интерес к использованию биотехнологий постоянно возрастает в различных отраслях деятельности человека: в энергетике, пищевой промышленности, медицине, сельском хозяйстве, химической промышленности и т. д. Это объясняется в первую очередь возможностью применения в качестве сырья возобновляемых ресурсов (биомассы), а также экономией энергии. Например, такие вещества, как аммиак, глицерин, метанол, фенол, производить выгодней биотехнологией, чем химическими способами.

Перспективным направлением развития биотехнологии является разработка и внедрение в практику микробиологических способов получения различных металлов. Как известно, микроорганизмы играют важную роль в круговороте веществ в природе. Установлено, что они причастны к процессу образования рудных ископаемых. Так в начале двадцатого столетия на одном старом отработанном медном руднике было обнаружено в откаченном из шахты водном растворе огромное количество меди, которая была произведена бактериями из сернистых соединений меди. Окисляя нерастворимые в воде сульфиды меди, бактерии превращают их в легко растворимые соединения, причем процесс протекает очень быстро. Микроорганизмы способны перерабатывать не только медные соединения, но и извлекать из руды железо, цинк, никель, кобальт, титан, алюминий, свинец, висмут, уран, золото, германий, рений и многие др. Особенно эффективно использование бактерий на завершающей стадии эксплуатации рудников, при переработки отвалов. Внедрение геомикробиологической технологии позволит вовлечь в промышленное использование труднодоступные, глубинные залежи полезных ископаемых. После соответствующих подготовительных работ достаточно будет погрузить на нужную глубину трубы и подвести по ним к рудной породе биораствор. Проходя через породу, раствор обогатиться теми или иными металлами, и поднятый на поверхность вынесет необходимые природные ископаемые. Отпадает необходимость строительства дорогостоящих шахт, уменьшиться нежелательная нагрузка на экологическую ситуацию, высвобождаются большие площади земли, занимаемыми шахтами, отвалами и обогатительными предприятиями, сократятся расходы на очистку атмосферы, земли и сточных вод, значительно снизится себестоимость добытых полезных ископаемых.

Интенсивное развитие и расширение применения биологических процессов при производстве медицинских препаратов, белков и кормов, органических удобрений, продуктов питания на основе брожения, горючих газов и жидкостей, микроорганизмов для очистки жидкой и воздушной среды обитания живого мира является весьма актуальной и высокоэффективной задачей экономики Республики Беларусь. Нельзя пренебрегать возможностью использования биотехнологий при разработке нетрадиционных способов получения энергетических ресурсов. Превращение биомассы в биогаз дает возможность получить 50-80% потенциальной энергии, не загрязняя окружающую среду.

Биотехнология сегодня имеет следующие направления: 1) промышленную биотехнологию (микробиологический синтез); 2) генетическую и клеточную инженерию; 3) инженерную энзимологию (белковую инженерию). Промышленная биотехнология реализует процессы, которые проводятся в искусственных производственных условиях с целью получения пекарских, винных и кормовых дрожжей, вакцин, белково-витаминных концентратов (БВК), средств защиты растений, заквасок для кисломолочных продуктов и силосования кормов, почвоудобрительных препаратов, антибиотиков, гормонов, ферментов, аминокислот, витаминов, спиртов, органических кислот, растворителей. Кроме того эти процессы позволяют утилизировать отходы, целлюлозу и получать биогаз.

Генетическая инженерия позволяет создавать искусственные генетические структуры посредством воздействия на материальные носители наследственности (ДНК), с ее помощью можно формировать совершенно новые организмы и производить физиологически активные вещества белковой природы для медицинских и сельскохозяйственных нужд (производить интерферон, инсулин, гормон роста живых организмов). Генная инженерия считается самой перспективной областью современной биотехнологии, с ее помощью возможно исправлять наследственные заболевания человека, создавать стимуляторы регенерации тканей для лечения ран, ожогов, переломов.

Инженерная энзимология является перспективным направлением развития промышленной биотехнологии, представляет собой науку, разрабатывающей основы создания высокоэффективных ферментов для промышленной интенсификации технологических процессов при значительной экономии материальных и энергетических ресурсов. Ферменты используются при производстве сахара для диабетиков, гормональных препаратов, обработки кож, получении тканей, бумаги, синтетических материалов, глюкозы, улучшения качества молочных продуктов и т. п.

Вывод: Деление процессов переработки сырья на физические, механические химические и биологические часто является условным из-за невозможности проведения четкой границы между ними. Так, например, изменение формы и внешнего вида материала сопровождается химическими процессами (электрохимическая и электроэрозионная обработка поверхностей, металлургические процессы получения металлов и сплавов, термомеханическое упрочнение материалов и т. д.), а химические процессы почти во всех производствах сопровождаются механическими. Но, несмотря на условность подобной классификации, деление процессов на физические, биологические, химические и механические способствует типизации процессов промышленного производства и облегчает выбор наиболее эффективного способа переработки сырья. Выбор технологического процесса зависит от многих факторов: доступности сырья, вида используемой энергии, степени сложности аппаратурного оформления, затрат на производственные здания, сооружения, оборудование, их монтаж и эксплуатацию, а также от качества и себестоимости готовой продукции.

В зависимости от условий производства и назначения ТП можно выделить ТП для изготовления одного или нескольких изделий. В связи с этим, в соответствии с классификацией технологических процессов, по назначению можно выделить единичный и унифицированный (типовой или групповой) технологические процессы.

Классификация технологических процессов

Единичные - это ТП изготовления или ремонта изделия одного наименования, типоразмера и исполнения независимо от типа производства.

Типовые технологические процессы

Типовой ТП – это ТП изготовления группы изделий, для которых содержание и последовательность большинства технологических операций и переходов совпадают. Они применяются как информационная база для разработки единичных ТП, а также стандартов на типовые ТП. Автором идеи типизации технологии был профессор А.П. Соколовский.

Типизация ТП базируется на классификации деталей по признакам общности конфигурации и сходства технологических процессов. Например, проф. А.П. Соколовский выделял следующие классы деталей: валы, оси, втулки, диски, плиты, станины, рамы и т. д. Типизация ТП позволяет обобщить существующие передовые ТП, распространять опыт внедрения прогрессивной оснастки, инструмента. Эта идея внедрена на многих предприятиях. Множество форм технологических процессов позволяет максимально описать процесс производства.

Групповой технологический процесс

Согласно классификации технологических процессов, групповой ТП – процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками. Автор групповой технологии - проф. С.П. Митрофанов. Групповая технология развитием идей типизации и ставит своей задачей такое построение технологии изготовления или сборки изделий, при которой резко снижаются затраты времени на переналадку оборудования. В основе групповой технологии также возложена классификацию изделий и комплектования групп. Но конструктивная сходство изделий при этом является вторичной признаку. При групповой технологии технологический процесс проецируется на комплексную деталь, есть или реально существующей наиболее сложной деталью группы, или искусственно создается как деталь, содержащую все поверхности отдельных деталей группы, например (см. Рисунок 1.10). Комплексная деталь - А.

Разработан для комплексной детали ТП является, как правило, избыточным для конкретных деталей, так как может содержать технологические операции и переходы для обработки отсутствующих у нее поверхностей. На основе группового ТП разрабатывают единичные технологические процессы путем исключения из группового лишних операций и переходов, уточняя технологическую оснастку. На этом принципе построен одно из направлений САПР ТП - проектирование единичных технологических процессов на основе унифицированного.

Рисунок 1.10 - Схема формирования комплексной детали

По уровню достижений науки и техники ТП можно классифицировать на рабочие и перспективные.

Рабочий - это ТП выполняемый при рабочей документацией, отражающей возможности конкретного производства.

Перспективный - это ТП, соответствует техническим решениям, которые полностью или частично еще должны быть внедрены на предприятии (новые станки, способы обработки, оснащение и др.).

Временный - это ТП, применяемый на предприятии в течение ограниченного периода из-за ремонта оборудования, оснастки или в связи с аварией.

Комплексный - это ТП, который содержит не только технологические операции, но и операции перемещения, контроля, очистки заготовок и т. Д.

Формы технологической документации

Все перечисленные в классификации технологических процессов ТП могут быть разработаны с разной степенью детализации технических решений. В зависимости от этого технологические процессы записывают на различных формах бланков технологической документации. Наиболее распространенными из них являются: маршрутные карты (МК), карты технологического процесса (КТП), операционные карты (ОК), карты эскизов (КЭ).

Виды описания технологических процессов

Согласно ГОСТ 3.1109-82 могут быть выполнены следующие виды описания технологических процессов:

Маршрутный технологический процесс – форма технологической документации, представляет собой краткое описание на бланках МК всех технологических операций в последовательности их выполнения без указания переходов и технологических режимов. При этом указываются номера и наименования операций, применяемое оборудование, разряд работы, норма времени на выполнение операции. Применяется как самостоятельный документ в единичном, мелкосерийном и опытном производствах.

Маршрутно-операционный технологический процесс предполагает как краткое описание всех операций в последовательности их выполнения. Но при этом наиболее сложные операции выкладывают до уровня переходов с указанием получаемых размеров и режимов обработки. Такое описание выполняется на бланках КТП или МК. Для описанных на уровне переходов операций оформляют карты эскизов на бланках КЭ. Такое описание применяется в единичном, мелкосерийном, среднесерийном и даже в опытном производстве для сложных деталей.

Карты эскизов - технологический документ, на котором изображают заготовку в положении обработки на данной операции, проставляют условными обозначениями схему ее базирования с указанием формы учредительных элементов приспособления и количеством лишенных при этом степеней свободы, а также получаемые на данной операции размеры с допусками, шероховатость поверхностей и другие технические требования.

Операционный технологический процесс содержит описание всех технологических операций на уровне переходов с указанием применяемого оснащения (приспособления, режущих, вспомогательных и измерительных инструментов), а также режимов обработки, основной, вспомогательный и искусственный времена. Выполняется на бланках ОК. Операционное описание технологических процессов всегда дополняется маршрутным описанием и картами эскизов. Применяется в серийном и массовом производствах, а для особо сложных деталей - и в более мелких типах производства.

Каждое производство состоит из последовательных целенаправленных действий, которые носят название «технологические процессы». Любой этап можно назвать технологическим элементом или операцией.

Что такое технологический процесс?

Технологический процесс - эточасть чего-либо на определенном этапе изменения и усовершенствования данного изделия либо заготовки. Этапы изготовления продукта могут, в свою очередь, также подразделяться на отдельные ступени деятельности. Как правило, единичные технологические процессы характеризуются их выполнением одним работником на отдельном Из таких звеньев или операций поэтапного изготовления изделия и собирается полный производственный изготовительный цикл. Между операциями деталь проходит промежуточные переходы, являющиеся вместе с технологическим этапом законченной частью производственного процесса. Ступень производства считается отдельно выделенной еще по признаку применяемых орудий труда и средств оснащения данного технологического цикла. Они должны быть неизменными. Это могут быть изменение размеров либо формы заготовки, соединение нескольких деталей, изменение структуры исходного вещества, свойств материалов, перемещения заготовки.

Технологические процессы, исходя из ГОСТ 3.1109—82, можно разделить на несколько категорий:

  1. Типовые.
  2. Перспективные.
  3. Маршрутные.
  4. Операционные.
  5. Маршрутно-операционные.
  6. Временные.
  7. Стандартные.
  8. Проектные.
  9. Рабочие.
  10. Единичные.

Разработка технологического процесса

Процессы разрабатываются на начальном Для этого изготавливаются чертежи будущего изделия и отдельных деталей. Это - проектный процесс.

Затем определяется последовательность поэтапного выполнения технологических операций (маршрутно-операционный процесс). Например, если нам нужно произвести механическую обработку заготовки, то, чтобы добиться наиболее полной рациональности, разрабатывается план обработки. В нем указывается последовательность обработки поверхностей, точность, взаимное расположение частей и способы. Затем начинается рабочий процесс. Его можно разбить на отдельные технологические операции.

Например, на первом этапе изготавливаются с помощью литья, ковки, штамповки или прокатки отдельные элементы. Затем они обрабатываются на станках по резке металла. В итоге на выходе получаются детали с определенной формой и размерами согласно чертежам. На следующем этапе производства идет сборка элементов, механизмов и узлов. Наконец, производится операция по сборке всего изделия. Следующими действиями будут технологические процессыпо его испытанию и подгонке, далее - по отделке и покраске продукта. Все поэтапно выполняемые операции после своего завершения проходят контроль над качеством и соблюдением

Разработка технологического процесса предусматривает три его вида.

  1. Единичный процесс, подразумевающий изготовление одноименных типовых изделий.
  2. Типовой процесс, применяющийся при производстве группы деталей с одинаковыми технологическими и конструктивными особенностями.
  3. использующийся при изготовлении продукта с разными конструктивными особенностями, но с общими технологическими возможностями.

Проектирование производственных технологических процессов делается для того, чтобы обеспечить более качественное изготовление будущего изделия. Технологические операции должны быть направлены на повышение производительности труда и качества продукта, а также снижение себестоимости, расширение механизации и автоматизации производственных этапов и улучшение условий труда. Изготовление или ремонт изделия должны быть безопасными для рабочих.

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Технологические процессы содержат описание всех выполняемых работ при изготовлении сварного изделия с указанием всех приемов, режима, последовательности выполнения операций и переходов. Основные требования к техпроцессу - это обеспечение качества изделия и производительности, наличие всех данных для нормирования трудовых затрат и обеспечение безопасности выполняемых работ.

Технологические операции описываются на специальных бланках в определенной последовательности и сшиваются, образуя технологический процесс. Все эти разновидности бланков соответствуют различным стандартам по форме.

Технологический процесс состоит из следующих бланков:

  1. Титульный лист ГОСТ 3,1105-84.
  2. Ведомость оснастки ГОСТ 3.1122-84.
  3. Маршрутная карта ГОСТ 3.1118-82.
  4. Карта эскизов ГОСТ 3.1105-84.
  5. Операционная карта ГОСТ 3.1404-86.
  6. Комплектовочная карта ГОСТ 3.1123-84.
  7. Правила отражения техники безопасности ГОСТ 3.1120-83.
  8. Формы и правила оформления документов на технологические процессы раскроя материалов ГОСТ 3.1402-84.

В зависимости от типа технологического процесса употребляются определенные бланки, но, как правило, в каждом технологическом процессе всегда присутствуют бланки номеров: 1; 2; 3; 5; 6; 7.

Стандартом ГОСТ 3.1705-81 установлены правила записи операций и переходов сварки и определены термины (слова, которыми нужно пользоваться, а также допустимые термины) при написании в технологических процессах, например, «паять», «сварить», «прихватить», «приварить», «заварить» и т. д.

Стандарт ГОСТ 3.1129-93 определяет общие правила записи технологической информации в технологических документах на технологические процессы и операции, а также правила оформления маршрутных карт (ГОСТ 3.1118-82).

ГОСТ 3.1109-82 предусматривает термины и определения операций и переходов технологических процессов изготовления и ремонта изделий машиностроения.

Общие понятия

  1. Технологический процесс - это часть производственного процесса, содержащая действия по изменению состояния предмета труда. К предметам труда относятся заготовки и изделия.
  2. Технологическая операция - это законченная часть технологического процесса, выполняемая на одном рабочем месте.

По степени подробности описания технологического процесса употребляется:

  1. Маршрутное описание технологического процесса (маршрутный техпроцесс) - это сокращенное описание всех технологических операций в маршрутной карте в последовательности их выполнения без указания переходов и технологических режимов.
  2. Операционное описание технологического процесса - это полное описание всех технологических операций в последовательности их выполнения с указанием переходов и технологических режимов, с выполнением иногда необходимых эскизов.
  3. Маршрутно-операционное описание технологического процесса - это сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других технологических документах.

По организации производства технологические процессы и операции подразделяются на:

Единичный технологический процесс - это процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства, т. е. персональный техпроцесс на конкретный сварной узел.

Типовой технологический процесс - это процесс изготовления группы изделий с общими конструктивными и технологическими признаками. Например, технологический процесс изготовления гаек, болтов, пайка, сварка или зачистка группы однотипных деталей.

Групповой технологический процесс - это процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками, например трубопроводы гидросистем для экскаватора, разные по конфигурации, расположению гибов, разной длины, но у всех них на концах привариваются ниппели шаровые, и т. д.

Типовая технологическая операция - это операция, характеризуемая единством содержания и последовательности технологических переходов для группы изделий с общими конструктивными и технологическими признаками.

Групповая технологическая операция - это операция совместного изготовления группы изделий с разными конструктивными, но общими технологическими признаками.

Раскрой металла - это разделение металла на отдельные заготовки, иногда разные по форме, размерам, но одинаковой толщины - по комплектности на одну единицу изделия, на машинокомплект.

Технологический переход - это законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке.

Технологический режим - это совокупность значений параметров технологического процесса в определенном интервале времени работы. К параметрам режима сварки относится сила тока, диаметр электрода, скорость сварки, напряжение на дуге и т. д.

Техническое нормирование, технологическая норма - это установление технически обоснованных норм расхода производственных ресурсов, например, расход сварочных и основных (на изделие) материалов, электроэнергии, вспомогательных материалов и т. п.

Средства выполнения технологического процесса

Средства технологического оснащения - это совокупность орудий производства, необходимых для осуществления технологического процесса.

В технологических процессах сборки, сварки описывают по переходам весь порядок работ, последовательность собираемых деталей, способ их установки и закрепления, количество и размеры прихваток, способы и средства зачистки узла, а также операции и объем контроля. Сварщик должен понимать технологический процесс и грамотно уметь читать его.

К вспомогательному сварочному оборудованию относится все то оборудование, которое напрямую не связано с образованием сварного шва или реза.

Слово "технология" в переводе с греческого языка означает наука о производстве. По классическому определению технологией называют науку, которая изучает способы и процессы получения (производства) сырья и его переработки сырья в предметы потребления и средства производства для человека. Важным признак современной технологии является то, что она изучает преимущественно методы массового производства. В современных условиях технологизация различных сторон производственной деятельности стремительно возрастает, в то же время глубоких изменений претерпевает само понятие технологии. Современный уровень производства наполняет его новым содержанием.

Технология - это процесс последовательного изменения состояния, свойств, структуры, формы и других характеристик предметов труда с целью изготовления определенной продукции. В современном обществе применяются различные предметы труда, различные производства, а, следовательно, различные виды технологий. Технология - это наука о наиболее экономичных способах и процессах производства продукции, а также предоставления услуг.

Процесс - это развитие определенного явления, последовательная смена стадий, этапов, операций (видов деятельности), которые осуществляются над исходными материалами, увеличивая их ценность, и приводят к определенному результату. Ценность исходного материала увеличивается за счет применения квалифицированного труда и знаний.

Технологический процесс - это совокупность операций по использованию сырья и материалов и изготовления готовой продукции. Каждый технологический процесс можно разделить на типовые технологические цепи или операции и представит технологическую схему.

Основными принципами проектирования и организации технологических процессов являются следующие:

Специализация - повышение однородности технологии производства через сознательное ограничение разнообразия операций;

Пропорциональность - согласованность пропускной (производственной) способности производственных подразделений, отдельных стадий производственного процесса;

Параллельность - одновременное выполнение отдельных операций и процессов с целью их совмещения во времени;

Прямолинейность - на всех стадиях и операциях технологического процесса предметы труда должны передвигаться по кратчайшим маршрутам;

Непрерывность - минимизация пробелов в структуре технологического цикла в дискретном производстве путем синхронизации операций, внедрение прогрессивных методов оперативного управления производством;

Ритмичность - обеспечение работы всех подразделений предприятия по определенным ритмом и с планомерной повторяемостью для равномерного (в одинаковые промежутки времени) производства продукции;

Автоматичность - экономически обоснованное освобождение человека от непосредственного участия в выполнении операций технологического процесса;

Гибкость - оперативная адаптация технологического процесса к переходу на изготовление другой продукции;

Гомеостатичність - способностью технологической системы стабильно выполнять свои функции в пределах допустимых отклонений.

Производственный процесс невозможен без реализации одного или нескольких технологических процессов. Технологический процесс является частью производственного процесса, охватывает действия, направленные на изменение состояния предмета труда. Для осуществления технологического процесса составляется схема, в которой описываются все технологические операции по производству продукции или создания определенного вида услуг.

Технологический процесс представляет собой совокупность менее сложных процессов, называются стадиями, или операциями.

Каждый технологический процесс можно изобразить в виде технологической схемы - последовательного описания или изображения процесса и соответствующего оборудования, устройств, оборудования. Заведения ресторанного хозяйства пользуются стандартами на выполнение технологических схем.

Технологические процессы, обеспечивающие преобразование материалов на готовую продукцию, называются основными. То технологические процессы, которые обеспечивают качественное выполнение основных процессов, операций, их используют для обслуживания основного производства, называются вспомогательными. Например, транспортировка, упаковка готовой продукции и т.д.

Технологические процессы проектируют. Процесс проектирования технологических процессов является одним из важнейших этапов любого производства. Именно на этапе проектирования выбирается наиболее эффективный технологический процесс.

Основными технико-экономическими показателями, на основании которых определяют эффективность каждого технологического процесса, расхода сырья и энергии на единицу продукции; капитальные затраты на организацию производства; производительность оборудования (процесса); качество и себестоимость продукции; интенсивность процесса, степень его механизации и автоматизации.

Любой технологический процесс можно рассматривать как систему, имеет входы (состав сырья, его количество и т.д.) и выходы (готовая продукция, сырье, количество, качество и другие параметры).