Промышленный 3d принтер печать металлом. D-печать металлом - технологии. D-печать: область применения металлических изделий

Крайне редко в индустрии 3D-печати появляется 3D-принтер, принцип действия которого строится на абсолютно новом подходе. Сегодня мы можем печатать изделия из сотен различных материалов, но если речь заходит о металлах, цены на 3D-принтеры становятся просто заоблачными. «Металлические» 3D-принтеры могут себе позволить только очень крупные компании, потому что их стоимость начинается от 250000 долларов. Но прогресс не стоит на месте, и когда-нибудь любой желающий сможет приобрести такое чудо техники и печатать металлические изделия, не выходя из дома.

Первые шаги уже сделаны. Взять, например, проект аргентинского инженера Гастона Аккарди. Аккарди увлекается 3D-печатью уже более 12 лет и одним из первых привнес эту технологию в Южную Америку. Как-то у него появилась идея сделать абсолютно новый 3D-принтер, но в связи с напряженным графиком он откладывал работу над проектом в течение пяти лет. И вот пару недель назад ему, наконец, удалось выкроить время.

«Это устройство представляет собой гальванический 3D-принтер для работы с металлом, – рассказывает Аккарди. – Послойное наплавление металла в нужных местах происходит за счет электрохимической реакции. Можно использовать самые разные металлы, а также сплавы, проводящие материалы и полупроводники. Но что самое главное – это очень дешевый метод».

Под «дешевым» Аккарди подразумевает «очень дешевый». Дело в том, что он собрал рабочий прототип принтера всего за… 2 доллара (нет-нет, это не опечатка). Так как же работает этот уникальный 3D-принтер?

Итак, гальванизация – это процесс покрытия одного металла другим путем электролиза. В 3D-принтере Аккарди нет и намека на технологию лазерного спекания, стереолитографии или наплавления филамента. Вместо этого здесь используется самая обычная металлизация электрическим способом.
Фактически гальванизация становится возможной при наличии источника питания и двух полюсов. Одно поле подключается к детали, которую вы хотите покрыть металлом, другое – к металлу, который будет электроосаждаться. Также вам потребуется электропроводящий раствор, обычно для этих целей используют серную кислоту или лимонный сок. Если гальванизация производится медью, то для достижения наилучших результатов ее нужно просто добавить в раствор.

«Через несколько минут после того как вы начали пропускать ток через раствор, медь начинает покрывать изделие, – объясняет Аккарди. – Оба электрода, которые вы используете, обязательно должно быть электропроводящими».

Принцип действия 3D-принтера Аккарди строится именно на методе гальванизации, однако он еще усовершенствовал его. Он взял маркер, вытащил из него стержень и залил в него раствор кислой меди. Потом он завел одно поле (медную электродную проволоку) внутрь маркера. Под воздействием электрического тока ионы меди выходят из кислоты в маркере, проходят через его кончик и оседают на поверхности платформы для печати, которая покрыта проводящим серебром и подсоединена к другому полю. В результате получается слой металла.

«Фактически вы можете писать медью, – рассказывает Аккарди. – И если вы продолжаете писать одни и те же буквы, снова и снова, они постепенно вырастают в высоту и становятся объемными».

Маркер можно наполнить практически любым проводящим и полупроводящим металлом, будь то титан, золото, железо, платина, никель, хром или сплавы вроде бронзы. Аккарди сказал, что он купил 4-осевой станок с ЧПУ и планирует установить на него свою гальваническую систему. В результате у него должно получиться что-то вроде обычного FFF 3D-принтера, только вместо расплавленного пластика здесь будет использоваться металл.

Хотя прототип обошелся Аккарди всего в 2 доллара, он ищет инвесторов, которые помогут ему создать более современное устройство, достойное внимания покупателей.

«Я изобретатель, работающий в самых разных направлениях, – говорит он. – Жизнь похожа на пазл. Вы должны найти столько кусочков головоломки, сколько сможете, а потом начать складывать их».

Аккарди считает, что ему хватит 100000 долларов для реализации своей идеи и последующего запуска принтера в производство и продажу. Если у него все получится, то стоимость 3D-принтера будет колебаться в районе 1000-2000 долларов.

В планах у Аккарди собрать устройство с несколькими маркерами, которое сможет одновременно печатать разными металлами. Также ему хочется попробовать наполнить один из маркеров проводящей серебряной краской, чтобы принтер мог наносить металлы и на непроводящие поверхности. Расшифровываем: берется пластиковый предмет и помещается внутрь принтера; на него наносится проводящая серебряная краска; на серебряную краску наносятся разные металлы за счет процесса гальванизации.
Аккарди считает, что его принтер поможет людям создавать уникальные электронные устройства, например, «умные протезы», которые будут определять температуру и давление. Хотя в этом принтере заложен гигантский потенциал, у него есть один существенный недостаток: он очень медленно работает. Сейчас прототип Аккарди наращивает 0,2 мм по оси Z за час. При этом энергопотребление довольно высокое – около 17 В.

О гальванизации известно давно, однако идея ее использования для изготовления металлических изделий может произвести настоящую революцию в мире 3D-печати. Это абсолютно безопасная технология, которую можно применять в домашних условиях. Такой принтер смогут позволить себе небольшие компании, которые давно мечтают перейти к производству металлических изделий, а также простые пользователи, которым не терпится поэкспериментировать с металлами.

На SLS-принтерах чаще всего печатают изделия из полиамидного порошка, отливая затем металлический аналог. Сперва конструктор проектирует модели в CAD-софте.

Затем 3D-оператор готовит машину к запуску. Полиамидный порошок закладывают в две емкости. Слои полиамида наносятся с интервалом в 30 секунд. Принтер спекает полиамидный порошок с помощью теплового лазера.

Процесс печати длится от 5 до 12 часов и зависит от размера детали. Принтер печатает как гладкие, так и рельефные поверхности. Готовые изделия из полиамида получаются прочными и функциональными. Производство автоматизировано и не требует присутствия человека.

На SLS-принтерах можно печатать пластиковые прототипы медицинских протезов. Конструктор моделирует протез на основе томографии. 3д-оператор печатает пластиковый протез, в который в последствии вносятся необходимые правки врачами, получая в результате конечный прототип.

На основе этого прототипа печатается итоговый металлический протез из титана. Такой имплантат не нужно обтачивать, так как он соответствует форме кости человека.

Era-3D предлагает комплексные решения в области аддитивного производства. Мы поставляем и обслуживаем 3Д-оборудование, а также самостоятельно моделируем проекты и выполняем 3D-печать металлом под заказ.

Большой выбор материалов, высокое качество готовых металлических изделий и оптимальные цены услуг – наши главные преимущества. Прямое сотрудничество с ведущими производителями отрасли позволяет делать 3Д-технологии более доступными. Подробнее ознакомиться с материалами и оборудованием для 3D-печати металлом можно в соответствующих разделах на сайте или в нашем демо-зале в Москве.

3D-печать: область применения металлических изделий

Технологии послойного синтеза активно применяются в современной промышленности:

    .в аэрокосмической и авиационной отрасли;
    .в автопроме;
    .на предприятиях ОПК.

3D-печать способствует повышению энергоэффективности производства, сокращению отходов и оптимизации веса готового металлического изделия.

В медицине особо востребованы импланты, стоматологические съемные и несъемные протезы, которые выполняются по аддитивной технологии. С применением 3Д-печати металлом, цены изделий становятся ниже, степень детализации значительно выше, а сам процесс производства значительно ускоряется.

Технологические особенности и материалы

Основные технологии, применяемые для построения 3D-моделей и готовой продукции из металла:

    .выборочная лазерная плавка SLM (Selective Laser Melting);
    .выборочное лазерное спекание SLS (Selective Laser Sintering);
    .прямое лазерное спекание DLMS (Direct Laser Metal Sintering);
    .прямая печать металлом DMP (Direct Metal Printing);
    .лазерное сплавление LC;
    .наплавление: Directed Energy Deposition (при помощи лазера) и Electron Beam Manufacturing (посредством электронного луча).

При необходимости опытные консультанты помогут подобрать подходящий порошковый металл, исходя из выбранной технологии и актуальных производственных задач. Это может быть:

    .кобальт-хром;
    .титан;
    .алюминий;
    .нержавеющая сталь и так далее.

Заказы на 3D-принтеры по металлу и расходные материалы принимаются онлайн, в телефонном режиме, а также непосредственно в демонстрационном зале в Москве.

Промышленный 3D принтер по металлу SLM 280HL - это мощное производственное решение для предприятий, где требуется быстрая и качественная 3D-печать готовых изделий из разных типов металла. Установка SLM 280HL активно используется в самых разных сферах промышленности для производства мастер-моделей, вставок для пресс-форм, прототипов деталей, готовых изделий из нержавеющей стали, инструментальной стали, кобальта-хрома, алюминия, титана, сплавов на основе никеля.

3D-принтер для печати металлом SLM 280HL работает по технологии селективного лазерного плавления металлического порошка (или 3D-печать по металлу). Сегодня эта технология получает все более широкое распространение в самых разных отраслях производства. Производитель 280HL - немецкая компания SLM Solutions , основоположник технологии SLM (selective laser melting) и один из мировых лидеров в производстве 3D-принтеров по металлу.


.

Преимущества лазерного 3D принтера по металлу SLM 280HL

SLM 280HL - это наиболее популярная модель в линейке металлических 3D-принтеров
компании SLM Solutions . Она обладает целым рядом неоспоримых достоинств.

- Уникальная двулучевая технология. Использование двух разных лазеров (400 и 1000 Вт) позволяет SLM 280HL печатать изделия еще быстрее и качественнее. Там, где требуется максимальная точность, установка использует более тонкий лазер, а для увеличения скорости на простых участках - более мощный и «толстый».
- Большая камера построения. Установка лазерного плавления SLM 280HL позволит вам создавать объекты размером до 280х280х350 мм. Вы сможете печатать большие изделия не по частям, а за один раз. Или разместить в камере построения сразу несколько мелких изделий и вырастить их за одну сессию.
- Высокая скорость и точность печати. 3D принтер по металлу SLM 280HL способен производить до 35 см 3 готовых металлических изделий в час. Это в 1,5-2 раза больше, чем другие установки этого класса. При этом минимальная толщина стенки составляет всего 180 микрон.
- Широкий выбор материалов. Нержавеющая сталь, инструментальная сталь, кобальт-хром, сплав на основе никеля, алюминий, титан. В вашем распоряжении - самые надежные, проверенные и универсальные материалы.
- Специальное программное обеспечение. Установка для лазерного плавления SLM 280HL поставляется в комплекте со специальным программным обеспечением - SLM AutoFabMC. Оно не только упрощает процесс 3D-печати, но и позволяет максимально оптимизировать производственные процессы, сократить время построения и экономить расходные материалы.

3D печать — это одно из самых сложных направлений в сфере современных технологий и является важным элементом в области современного производства. С помощью принтеров, осуществляющих трехмерную печать, открываются широкие возможности, в том числе для предпринимательской деятельности. Имеются все предпосылки для того, что такая технология в недалеком будущем заменит стандартные методы производства: литье, ковка и т. п. Данная статья ответит на вопросы: что такое 3D печать по металлу и каковы главные направления развития этой технологии.

Это специальное устройство, которое дает возможность создавать металлические изделия и наносить специальные слои на формирующиеся детали. То есть формирование объекта принтером происходит послойно.

Первым делом при помощи компьютера и специальной программы создается виртуальная модель в трех плоскостях, разделенная на цифровые слои. В процессе печати объекта, из головки принтера на печатающую платформу выделяется жидкий металл или порошок, тем самым создавая начальный слой. Далее автоматически формируется следующий слой металла. Итак, слой за слоем, создается готовое изделие.

Данное устройство дает возможность для изготовления самых разнообразных изделий. Используемые современные разработки очень конкурентоспособны на фоне стандартных методик производства металлических объектов.

Какие работы могут выполняться

Технология 3D печати является многофункциональной. Ее применяют в своей деятельности как профессионалы, так и обычные любители. Спектр применения довольно обширен: изготовление сложных по форме металлических изделий, имитирование обычной ковки. Для этих целей не нужно привлекать дополнительное оборудование и устройства.

промышленный 3Д принтер

Промышленный 3D принтер способен напечатать даже двигатель для ракеты, который будет трудно отличить от оригинала, изготовленного стандартным способом. Отсюда следует вывод – эта технология может изготавливать почти любые металлические предметы.

Технологии печати

На данный момент используется всего 2 основных способа печати изделий из металла: струйная и лазерная технология. В обоих случаях происходит последовательное нанесение слоев металла (аддитивная технология), пока на выходе не получится требуемый объект. Но технологии не стоят на месте, разработчики развивают новые методы печати.

1. Струйная печать

Эта разновидность печати одновременно является и самой ранней и успешной в аддитивной технологии. Но здесь нужно четкое понимание того, что данный подход может применяться лишь для создания композитных (смесь металла с полимерами) деталей из-за специфики производства. Такой способ формирует любой трехмерный объект из порошковых материалов. Порошок смешивается с полимерами, которые помогают сырью связываться во время печати. Поэтому изготавливаемые по данной технологии изделия нельзя считать полностью металлическими.

Существует вариант, при котором композитный предмет переплавляется в цельнометаллический. Из-за пористости, данные изделия не обладают хорошей прочностью. Для ее повышения можно прибегнуть к пропитке модели бронзой или другим металлом.

Из-за невысокой прочности изделий данную технологию используют, прежде всего, при изготовлении сувениров.

2. Печать методом ламинирования

В данной технологии тонкие листы металла постепенно наносятся на платформу. Формирование происходит при помощи резки листов (металлической или лазерной) и их склеивания, в результате чего получается 3Д модель. В качестве расходного материала использоваться фольга.

Полученное изделие не является на 100 процентов металлическими. Это объясняется тем, что для придания целостности предмету применяется клей.

Главным достоинством является экономичность и близкое сходство получаемых деталей с макетом. Часто данный подход применяют для создания макетов.

3. Наплавка слоями

В данном случае в качестве сырья используются легкоплавкие металлы. Но чистые металлы или сплавы не используются, поскольку применение такого сырья влечет понятные проблемы из-за необходимости работы принтера при высоких температурах.

Учитывая это, разработчики остановились на композитных материалах, подобных тем, что используются в струйной печати. Например, BronzeFill – материал из термической пластмассы и бронзового порошка. Выполненные на его основе предметы, имеют высокую схожесть с оригиналом и податливы к шлифовке. Данные изделия нельзя считать цельнометаллическими, и их характеристики ограничены используемые в сырье композитами.

Этот метод активно применяется в промышленности. С его помощью можно создавать проводники и экранирующие материалы, что может сделать значительный прорыв в печати электронных плат.

4. Выборочная лазерная и электронно-лучевая плавка

Несмотря на хорошее качество элементов, изготавливаемых при помощи лазерного плавления, их использование не столь обширно из-за значительной пористости получаемых изделий, и следовательно, их малой прочности. Данная продукция может применяться в некоторых отраслях, но совершенно не может использоваться там, где требуется противостоять большим нагрузкам.

Проблему решает замена лазерного спекания на лазерную плавку, которая отличается лишь температурной обработкой. Последняя технология активно используется в области получения однородных деталей, которые почти не отличаются от литых аналогов.

Схожий метод имеет электронно-лучевое плавление. Такие принтеры поставляет шведская компания Arcam. Данная технология почти как и предыдущая, но имеет ряд преимуществ: отсутствие электромеханических зеркальных комплексов и высокоскоростная манипуляция с электронными пучками. По остальным критериям она мало превосходит предшественника.

На видео представлена презентация печати методом селективного лазерного спекания.

Использование различных металлов и сплавов дает возможность для создания мелких партий изделий из металла, аналогичных оригиналу. Здесь не нужна развитая инфраструктура, за счет чего достигается существенная финансовая и ресурсная экономия. Технология активно применяется при изготовлении ортопедических протезов, газовых турбин и даже форсунок для реактивных двигателей.

5. Прямое лазерное аддитивное построение (CLAD)

Это не совсем технология для трехмерной печати, а скорее для 3D ремонта. Она применяется только в промышленности из-за узкого спектра применения.

Принцип работы заключается в нанесении порошка на дефектные участки детали с дальнейшим лазерным наплавлением.

Головка может перемещаться по пяти осям, меняя угол наклона и вращаясь относительно вертикальной плоскости. Это позволяет работать под любыми углами.

Данную технологию можно задействовать для ремонта крупных изделий, в том числе при обнаружении в них брака. К примеру, во Франции компания Beam использует данный подход для ремонта авиадвигателей и других крупных изделий.

Технология CLAD может использовать в работе герметичную камеру с инертной атмосферой, что необходимо для работы с металлами, которые поддаются оксидации (титан и т.п.).

6. Произвольная электронно-лучевая плавка (EBF3)

Данная технология нашла применение у специалистов НАСА. Так как в невесомости не представляется возможным работа с порошками, вместо них используются металлические нити. Работа аналогична послойной 3Д печати, но происходит с применением электронно-лучевой пушки для плавки.

Данная технология поможет создавать запасные детали на орбите, что избавит от необходимости их доставки с Земли.

Стоимость 3D принтера

Сейчас на рынке представлено большое количество 3D принтеров, позволяющих печатать трехмерные объекты из металла. Наиболее качественные промышленные принтеры могут стоить несколько десятков тысяч долларов США. Конечно, есть и более дешевые образцы, но их качество печати соответственно хуже. При этом разработчики постоянно совершенствуют свою продукцию, и следует ожидать, что в ближайшем будущем будут появляться все более дешевые принтеры, позволяющие печатать все более качественные изделия.

На видео представлена струйная технология 3D печати по металлу.