Что дымовые газы. Воздействие отходящих дымовых газов котельных агрегатов на окружающую среду. Насадные дымовые трубы

ДЫМОВЫЕ ГАЗЫ

ДЫМОВЫЕ ГАЗЫ

(Flue gases) - газообразные продукты горения.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ДЫМОВЫЕ ГАЗЫ" в других словарях:

    Дымовые газы - Газы, образующиеся в источниках выделения при горении органических веществ Источник: ОНД 90: Руководство по контролю источников загрязнения атмосферы … Словарь-справочник терминов нормативно-технической документации

    дымовые газы - Продукты горения топлива органич. происхождения, отходящие из рабочего пространства отапливаемых металлургич. агрегатов. Тематики металлургия в целом EN fume …

    дымовые газы - продукты горения топлива органического происхождения, отходящие из рабочего пространства отапливаемых металлургических агрегатов; Смотри также: Газы печные газы газы в металлах отходящие газы инертные газы …

    дымовые газы - топочные газы … Cловарь химических синонимов I

    влажные дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN wet flue gases … Справочник технического переводчика

    рециркулирующие дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN recycled flue gas es … Справочник технического переводчика

    усреднённые по составу дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN average flue gases … Справочник технического переводчика

    Газы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико термической обработке металлов, создании инертной или специальной атмосферы, в некоторых… …

    I Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь… … Большая советская энциклопедия

    дымовые трубы - сооружение для создания тяги и отвода газообразных продуктов сгорания топлива из разных металлургических печей и котлоагрегатов. В небольших печах дымовые трубы предназначаются для создания естественной тяги, под действием… … Энциклопедический словарь по металлургии

ГАЗ, топочный и дымовой . 1) Топочными газами называются продукты сгорания топлива в топке. Различают полное и неполное сгорание топлива. При полном сгорании имеют место следующие реакции:

Нужно иметь в виду, что SО 2 - сернистый газ - не есть, собственно, продукт полного сгорания серы; последнее возможно также и по уравнению:

Поэтому, когда говорят о полном и неполном сгорании топлива, то имеют в виду только углерод и водород топлива. Здесь не отмечены также реакции, имеющие иногда место при весьма неполном сгорании, когда в продуктах сгорания, кроме окиси углерода СО, содержатся углеводороды C m H n , водород Н 2 , углерод С, сероводород H 2 S, так как подобное сгорание топлива не должно иметь места на практике. Итак, сгорание можно практически считать полным, если в продуктах сгорания не содержится иных газов, кроме углекислого СО 2 , сернистого ангидрида SО 2 , кислорода О 2 , азота N 2 и водяного пара Н 2 О. Если сверх этих газов содержится окись углерода СО, то сгорание считается неполным. Присутствие дыма и углеводородов в продуктах сгорания дает основание говорить о неотрегулированной топке.

Очень большую роль в подсчетах играет закон Авогадро (см. Атомная теория): в равных объемах газов, как простых, так и сложных, при одинаковых температурах и давлениях, содержится одинаковое число молекул, или, что то же: молекулы всех газов при равных давлениях и температурах занимают равные объемы. Пользуясь этим законом и зная химический состав топлива, легко вычислить количество К 0 кг кислорода, теоретически необходимого для полного сгорания 1 кг топлива данного состава, по следующей формуле:

где С, Н, S и О выражают содержание углерода, водорода, серы и кислорода в % веса рабочего топлива. Количество G 0 кг сухого воздуха, теоретически необходимое для окисления 1 кг топлива, определяется по формуле:

Приведенное к 0° и 760 мм ртутного столба, это количество может быть выражено в м 3 следующей формулой:

Д. И. Менделеев предложил весьма простые и удобные для практики соотношения, дающие с достаточной точностью для ориентировочных расчетов результат:

где Q рaб. - низшая теплопроизводительность 1 кг рабочего топлива. На практике расход воздуха при сгорании топлива бывает больше теоретически необходимого. Отношение количества воздуха, фактически поступившего в топку, к количеству воздуха, теоретически необходимому, называется коэффициентом избытка и обозначается буквой α. Величина этого коэффициента в топке α m зависит от конструкции топки, размеров топочного пространства, расположения поверхности нагрева относительно топки, характера топлива, внимательности работы кочегара и пр. Наименьшую величину коэффициента избытка воздуха - около 1,1 - имеют пылевидные топки, а наибольшую, до 2 и более, - ручные топки для пламенного топлива без вторичного впуска воздуха. От величины коэффициента избытка воздуха в топке зависят состав и количество топочных газов. При точном вычислении состава и количества топочных газов следует также учитывать влагу, внесенную с воздухом за счет его влажности, и водяной пар, расходуемый на дутье. Первая учитывается введением коэффициента, который есть отношение веса водяных паров, заключенных в воздухе, к весу сухого воздуха и м. б. назван коэффициентом влажности воздуха. Второй учитывается величиною W ф. , которая равна количеству пара в кг, поступающего в топку, отнесенному к 1 кг сжигаемого топлива. Пользуясь этими обозначениями, состав и количество топочных газов при полном сгорании можно определить из приведенной таблицы.

Обычно принято учитывать водяные пары Н 2 О отдельно от сухих газов CО 2 , SО 2 , О 2 , N 2 и СО, причем состав последних вычисляют (или определяют экспериментально) в % по объему сухих газов.

При расчете новых установок искомым является состав продуктов сгорания СО 2 , SО 2 , СО, О 2 и N 2 , а данными величинами считаются: состав топлива (C, О, H, S), коэффициент избытка воздуха α и потеря от химической неполноты сгорания Q 3 . Последними двумя величинами задаются на основании данных испытания аналогичных установок или берут их по оценке. Наибольшие потери от химической неполноты сгорания получаются в ручных топках для пламенного топлива, когда Q 3 достигает величины 0,05Q paб. Отсутствие потери от химической неполноты сгорания (Q 3 = 0) можно получить в хорошо работающих ручных топках для антрацита, в топках для нефти и для пылевидного топлива, а также в правильно сконструированных механических и шахтных топках. При экспериментальном исследовании существующих топок прибегают к анализу газов, причем чаще всего пользуются прибором Орса (см. Анализ газов), дающим состав газов в % по объему сухих газов. Первый отсчет по прибору Орса дает сумму СО 2 + SО 2 , т. к. раствор едкого кали КОН, предназначенный для поглощения углекислого газа, одновременно с ним поглощает и сернистый ангидрид SО 2 . Второй отсчет, после промывки газа во втором сифоне, где находится реактив для поглощения кислорода, дает сумму СО 2 +SО 2 +О 2 . Разница их дает содержание кислорода О 2 в % объема сухих газов. Все остальные величины находятся путем совместного решения вышеуказанных уравнений. При этом нужно иметь в виду, что уравнение (10) дает величину Z, которая м. б. названа характеристикой неполноты сгорания. В эту формулу входит коэффициент β, определяемый по формуле (8). Так как коэффициент β зависит только от химического состава топлива, а последний в процессе сгорания топлива все время меняется за счет постепенного ококсования топлива и неодновременного выгорания его составных частей, то величина Z может дать правильную картину протекающего в топке процесса только при условии, что величины (СО 2 +SО 2) и (СО 2 +SО 2 +О 2) суть результат анализа непрерывно берущихся средних проб за определенный достаточно долгий промежуток времени. Судить о неполноте сгорания по отдельным единичным пробам, взятым в какой-нибудь произвольный момент, никоим образом нельзя. Зная состав продуктов сгорания и элементарный анализ топлива, можно по нижеследующим формулам определить объем продуктов сгорания, условно отнесенный к 0° и 760 мм ртутного столба. Обозначив через V n.o. полный объем продуктов сгорания 1 кг топлива, V c.г. - объем сухих газов, a V в.n. - объем водяных паров, будем иметь:

продукты сгорания в произвольном сечении газохода, но такое распространительное толкование неправильно. На основании закона Бойля-Мариотта-Гей-Люссака, объем продуктов сгорания при температуре t и барометрическом давлении P б. найдется по формуле:

Если обозначим через G n.c. вес продуктов сгорания, G c.г. - вес сухих газов, С в.п. - вес водяных паров, то будем иметь следующие соотношения:

2) Дымовые газы . По пути от топки к дымовой трубе к топочным газам примешивается воздух, присасываемый через неплотности в обмуровке газоходов. Поэтому газы при входе в дымовую трубу (называемые дымовыми газами) имеют состав, отличный от состава топочных газов, т. к. представляют смесь из продуктов сгорания топлива в топке и воздуха, присосанного в газоходах по пути от топки до входа в дымовую трубу.

Величина присоса воздуха бывает на практике весьма различна и зависит от конструкции кладки, ее плотности и размеров, от величины разрежений в газоходах и многих других причин, колеблясь при хорошем уходе от 0,1 до 0,7 теоретически необходимого. Если обозначить коэффициент избытка воздуха в топке через α m. , а коэффициент избытка воздуха газов, уходящих в дымовую трубу, через α у. , то

Определение состава и количества дымовых газов ведется по тем же формулам, что и для определения топочных газов; разница лишь в численной величине коэффициента избытка воздуха α, от которого, конечно, зависит %-ный состав газов. На практике весьма часто под термином «дымовые газы» понимают вообще продукты сгорания в произвольном сечении газохода, но такое распространительное толкование неправильно.

Положительные качества :

· более высокая, чем у воздуха, теплоотдача к теплообменным поверхностям (за счёт большей излучательной способности частиц продуктов сгорания).

Отрицательные качества :

Следствия :

· использование дымовых газов в качестве теплоносителя возможно только при применении промежуточных теплообменных устройств для нагрева теплоносителя, поступающего непосредственно к потребителю;

· обеспечивается утилизация (сбережение и использование) теплоты выбросных дымовых газов;

· при наличии веществ с высокой коррозионной активностью (например – сернистых соединений) резко сокращается долговечность теплопроводов и теплообменных устройств;

· при охлаждении дымовых газов ниже точки росы возможно выпадение конденсата и в итоге - отсыревание конструкций и образование наледей в зимнее время.

Классификация отопительных печей:

По теплоёмкости :

· Нетеплоёмкие

Обладаю малой тепловой инерцией. Отапливают помещение только в процессе горения топлива. Предназначены для кратковременного обогрева. К таким печам относятся:

1) металлические (из стали или чугуна)

2) печи, сложенные из малого количества кирпичей (до 300 шт.),

3) камины (кирпичные ниши для открытого сжигания топлива).

· Теплоёмкие

Обладают большой тепловой инерсцией. Материал печи накапливает тепло и по окончании горения топлива передаёт его в помещение в течении длительного времени (до 12 часов). Используется для постоянного обогрева помещений.

Теплоёмкие печи конструктивно различаются посхеме движения дымовых газов

· Канальные . Движение газов осуществляется по внутренним каналам, которые могут быть соединены параллельно или последовательно.

· Безканальные (колпаковые). Движение газов осуществляется свободно, а по окончании топки печь не расхолаживается, поскольку горячие дымовые газы скапливаются выше входа в дымовую трубу. Верхняя зона при этом несколько перегревается.

· Комбинированные . Дымовые газы перед поступлением в колпак проходят по каналам, расположенным ниже топки, что позволяет прогреть нижнюю зону и достичь более равномерного распределения температуры в помещении.

Как известно, от дымовых газов к стенкам дымоходов передача тепла происходит за счет трения, которое возникает при движении этих же газов. Под влиянием тяги скорость газа снижается и высвобожденная энергия (то есть тепло) переходит стенкам . Получается, что процесс передачи тела напрямую зависит от скорости движения газа по каналам очага. А от чего же тогда зависит скорость газов?

Тут ничего сложного нет – на скорость движения дым.газов влияет площадь сечения дым.каналов. При малом сечении скорость увеличивается, при большей же площади – наоборот, скорость снижается, и дымовые газы передают больше энергии (тепла), при этом теряя свою температуру. Кроме сечения, на эффективность передачи тепла влияет и расположение дымового канала. К примеру, в горизонтальном дым. канале тепло «впитывается» намного эффективней, быстрей. Это происходит за счет того, что горячие дымовые газы легче и всегда находятся выше, эффективно отдавая тепло верхним стенкам дым. канала.

Давайте рассмотрим разновидности систем дымооборотов, их особенности, отличия и показатели эффективности:

Виды дымооборотов

Дымообороты являют собой систему спец-каналов внутри печи (камина), соединяющие топливник с дым. трубой. Основное их предназначение – это отвод газов из топки печи и отдача тепла самой печке. Для этого их внутреннюю поверхность делают гладкой и ровной, что снижает сопротивляемость движению газов. Дымовые каналы могут быть длинными – у печек, короткими – у каминов, а также: вертикальными, горизонтальными и смешанными (подъемными/опускными).

Согласно своим конструктивным особенностям, системы дымооборотов делятся на:

  • канальные (подвиды: много- и мало- оборотные)
  • бесканальные (подвид: с системой камер, разделенных перегородками),
  • смешанные.

Все они имеют свои отличия, и, конечно же – плюсы и минусы. Наиболее негативны многооборотные системы с горизонтальным и вертикальным расположением дым.каналов, их применять в печах вообще не желательно! А вот самой приемлемой и экономичной системой дымооборотов считается смешанная система с горизонтальн. каналами и вертикальными колпаками прямо над ними. Другие системы также широко применяются в строительстве печей, но тут нужно знать нюансы их конструкции. О чем мы и «поговорим» далее, рассматривая каждую систему по отдельности:

Однооборотные системы дымовых каналов

Конструкция данной системы предполагает выход дымовых газов из топливника в восходящий канал, далее их переход в опускной канал, из опускного – в подъемный канал, а уже от туда — в дымоход. Данная система обеспечивает печам совсем малую теплопоглащающую поверхность, от чего газы намного меньше отдают тепла печи и ее КПД понижается. Кроме этого из-за очень высокой температуры в первом канале происходит неравномерный нагрев массива печи и растрескивание ее кладки, то есть разрушение. А отходящие газы достигают свыше 200градусов.

Однооборотная система дымооборотов с тремя опускными каналами

В данной системе чад из топливника переходит в 1-й восходящий канал, далее опускается по трем каналам опускным, переходит в подъемный канал, и лишь потом выходит в дым.трубу. Основной ее недостаток – перегрев 1-го восходящего канала и нарушение правила равномерности всех площадей сечения каналов. Дело в том, что опускные каналы (их всего 3) образуют в сумме такую площадь сечения, которая аж в три раза превышает S сечения в подъемн. каналах и подвертках, что приводит к снижению тяги в очаге. А это существенный минус.

Кроме названных недостатков в работе системы с тремя опускн. каналами, можно выделить еще один – это очень плохое растапливание печи после долгого перерыва.

Бесканальные системы

Тут дымовые газы начинают свой путь из топливника через хайло (отверстие для выхода дым.газов в дымообороты), потом переходят в колпак, далее вверх – до самой перекрыши очага, там остывают, передают тепло печи, опускаются вниз и выходят в дым.трубу в нижней области печи. Вроди все понятно и просто, но недостаток у такой бесканальной системы все же имеется: это очень сильный нагрев верхней области печи (перекрыши), чрезмерные отложения сажи и копоти на стенках колпака, а также высокие температуры отходящих дым.газов.

Бесканальные системы дымооборотов с 2-мя колпаками

Схема работы такой системы заключается в следующем: сначала из топливника дым.газы поступают в 1-вый колпак, затем поднимаются до перекрыши, опускаются, и потом переходят во второй колпак. Тут опять они поднимаются к перекрыши, снижаются и внизу через канал уходят в дымоход. Все это намного эффективней, нежели у одно-колпаковой бесканальной системы. С двумя колпаками стенкам передается намного больше тепла, а также намного заметнее снижается темпер-ра отходящих газов. Однако, перегрев верхней области печи и осадок сажи – не меняются, то есть не уменьшаются!

Бесканальные колпаковые системы – с контрфорсами на внутр. поверхностях печи

В данной колпаковой системе путь дыма следующий: из топливника переход в колпак, подъем к перекрыши, и передача части тепла самой перекрыше, боковым стенкам очага и контрфорсам. Она также имеет некий минус – это чрезмерный осадок сажи (и на стенках печи, и на контрфорсах), от чего может возникнуть возгорание этой копоти и разрушение печи.

Многоооборотные сис-мы дымооборотов с горизонтальными дым.каналами

Тут дым из топливника попадает в горизонтальные каналы, проходит по ним и отдает много тепла внутренней поверхности печи. После этого уходит в дым.трубу. При этом дымовые газы переохлаждаются, спадает сила тяги и печь начинает дымить. В результате, откладывается сажа, копоть, выпадает конденсат…. и, можно сказать, неприятности начинаются. Поэтому, перед использованием данной системы, дважды все взвесьте.

Многоооборотные сис-мы с вертикальными дым. каналами

Отличаются тем, что дым.газы из топливника сразу попадают в вертикальные подъемные и опускные дымовые каналы, также отдают тепло внутренним поверхностям очага, а потом уходят в дымоход. При этом недостатки такой сис-мы аналогичны предыдущей, плюс добавляется еще один. Первый восходящий канал (подъемный) перегревается, от чего неравномерно нагреваются наружные поверхности очага и начинается растрескивание его кирпичной кладки.

Смешанные сис-мы дымооборотов с горизонтальными и вертикальными дым.каналами

Отличаются тем, что дымовые газы переходят сначала в горизонтальные каналы, потом в вертикальные подъемные, в опускные, и лишь потом – в дымовую трубу. Недостаток данного процесса таков: из-за сильного переохлаждения газов происходит снижение тяги, она ослабевает, что приводит к чрезмерному отложению сажи на стенах каналов, появлению конденсата, и, конечно же, – к сбою работы печи и к ее разрушению.

Смешанная система дымооборотов со свободным и принудительным движением газов

Принцип работы данной сис-мы следующий: когда во время горения образуется тяга, она выталкивает дым.газы в горизонтальные и вертикальные каналы. Эти газы отдают тепло внутренним стенкам печи и уходят в дымоход. При этом часть газов поднимается в замкнутые вертикальные каналы (колпаки), которые находятся над горизонтальн. каналами. В них дымовые газы остывают, тяжелеют и уходят снова в горизонтальн. каналы. Такое движение происходит в каждом колпаке. В результате дым. газы передают все свое тепло, по максимуму, положительно влияя на КПД печи и повышая его до 89%!!!

Но есть одно «но»! В данной системе очень развита тепловосприимчивость, потому газы очень быстро остывают, даже переохлаждаются, ослабляя тягу и нарушая работу печи. На самом деле, такая печь не смогла бы работать, однако есть в ней спец-устройство, которое регулирует данный негативный процесс. Это инжекционные (подсосные) отверстия или сис-ма авторегуляции тяги и температуры выходящих газов. Для этого, при кладке очага, из топливника и в горизонтальных каналах проделываются отверстия с сечением 15-20см2. Когда тяга начинает падать и снижается температура газов, в горизонт. каналах образуется разряжение и через данные отверстия «засасываются» горячие газы из нижних дым.каналов и из топливника. В результате происходит повышение температуры и нормализация тяги. Когда же тяга, давление и температура дыма в норме, он не заходит в подсосный канал – для этого необходимо разряжение, снижение его тяги и температуры.

Опытные печники уменьшая/увеличивая протяженность горизонтальн. каналов, сечение и количество инжекционных каналов регулируют эффективность работы печи, тем самым достигая самых лучших результатов ее качества, экономичности и повышая КПД до 89 %!!!

С такой сис-мой дымооборотов у практически нет недостатков. Они отлично прогреваются – от пола до самого верха, при этом равномерно! В помещении не наблюдаются резкие перепады температуры. Если дом теплый, а на улице -10 мороза, то печку можно топить через 30-48часов!!! Если же на улице до -20, то придется топить почаще, регулярно! Именно регулярные топки и являются ее недостатком. Периодические же топки в смешанных дым.системах приводят к значительному накоплению сажи.

Как оптимизировать печь с многооборотной системой дымовых каналов?

1). Сделать подсосный канал в каждом горизонтальн. канале – сечением 15-20см2.

2). Установить подсосные каналы через каждых 0,7м длины канала.

В итоге, ваша печь станет намного эффективней: будет быстрей растапливаться, поддерживать стабильную температуру исходящих дымовых газов и менее накапливать сажу.

Регулирование процесса горения (Основные принципы горения)

>> Вернуться к содержанию

Для оптимального горения необходимо использовать большее количество воздуха, чем следует из теоретического расчёта химической реакции (стехиометрический воздух).

Это вызвано необходимостью окислить всё имеющееся в наличии топливо.

Разница между реальным количеством воздуха и стехиометрическим количеством воздуха называется избытком воздуха. Как правило, избыток воздуха находится в пределах от 5% до 50% в зависимости от типа топлива и горелки.

Обычно, чем труднее окислить топливо, тем большее количество избыточного воздуха требуется.

Избыточное количество воздуха не должно быть чрезмерным. Чрезмерное количество подаваемого воздуха для горения снижает температуру дымовых газов и увеличивает тепловые потери теплогенератора. Кроме того, при определённом предельном количестве избыточного воздуха, факел слишком сильно охлаждается и начинают образовываться CO и сажа. И наоборот, недостаточное количество воздуха вызывает неполное сгорание и те же самые проблемы, указанные выше. Поэтому, чтобы обеспечить полное сгорание топлива и высокую эффективность горения количество избыточного воздуха должно быть очень точно отрегулировано.

Полнота и эффективность сгорания проверяются измерениями концентрации угарного газа CO в дымовых газах. Если угарного газа нет, значит сгорание произошло полностью.

Косвенно уровень избыточного воздуха можно рассчитать, измеряя концентрацию свободного кислорода O 2 и/или двуокиси углерода СO 2 в дымовых газах.

Количество воздуха будет примерно в 5 раз больше, чем измеренное количество углерода в объёмных процентах.

Что касается СO 2 , то его количество в дымовых газах зависит только от количества углерода в топливе, а не от количества избыточного воздуха. Его абсолютное количество будет постоянным, а процент от объёма будет изменяться в зависимости от количества избыточного воздуха, находящегося в дымовых газах. При отсутствии избыточного воздуха количество СO 2 будет максимальным, при увеличении количества избыточного воздуха, объёмный процент СO 2 в дымовых газах понижается. Меньшее количество избыточного воздуха соответствует большему количеству СO 2 и наоборот, поэтому горение идет более эффективно, когда количество СO 2 близко к своему максимальному значению.

Состав дымовых газов можно отобразить на простом графике с помощью "треугольника горения" или треугольника Оствальда, который строится для каждого типа топлива.

С помощью этого графика, зная процентное содержание СO 2 и O 2 , мы можем определить содержание CO и количество избыточного воздуха.

В качестве примера на рис. 10 приведен треугольник горения для метана.

Рисунок 10. Треугольник горения для метана

По оси X указано процентное содержание O 2 , по оси Y указано процентное содержание СO 2 . гипотенуза идет от точки А, соответствующей максимальному содержанию СO 2 (в зависимости от топлива) при нулевом содержании O 2 , до точки В, соответствующей нулевому содержанию СO 2 и максимальному содержанию O 2 (21%). Точка А соответствует условиям стехиометрического горения, точка В -отсутствию горения. Гипотенуза - это множество точек, соответствующих идеальному горению без CO.

Прямые линии, параллельные гипотенузе, соответствуют различному процентному содержанию CO.

Предположим, что наша система работает на метане и анализ дымовых газов показал, что содержание СO 2 составляет 10%, а содержание O 2 составляет 3%. Из треугольника для газа метана мы находим, то содержание CO равно 0, а содержание избыточного воздуха равно 15%.

В таблице 5 показано максимальное содержание СO 2 для разных видов топлива и значение, которое соответствует оптимальному горению. Это значение рекомендованное и рассчитано на основе опыта. Следует отметить, что когда из центральной колонки берётся максимальное значение необходимо произвести измерение выбросов, по процедуре описанной в главе 4.3.