Камерное сжигание топлива в котлах. Методы сжигания газа. Камерные пылеугольные топки

Топочные устройства или топка является основным элементом котельного агрегата или огневой печи и служит для сжигания топлива наиболее экономичным способом и превращении наиболее экономичным способом и превращении его химической энергии в тепло. Существуют следующие основные способы сжигания твердого топлива: 1) слоевой; 2) факельный (камерный); 3) вихревой; 4) сжигание в кипящем слое. Для сжигания жидких и газообразных топлив применяют только факельный способ. 1. Слоевой способ – процесс сжигания осуществляется в слоевых топках. Слоевые топки можно разделить на 3 группы: 1) топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней плотным слоем топливом. При возрастании скорости топлива, проходящего через слой топлива. Последний может стать кипящим. Такой слой топлива горит более интенсивно вследствие увеличения контактной поверхности с воздухом. 2. Топки с неподвижной колосниковой решеткой и перемещающихся по ней слоев топлива. 3. Топки с движущимся вместе с колосниковой решеткой слоем топлива.

1 – зольник; 2 – колосниковая решетка; 3 – слой топлива; 4 – топочная камера; 5 – фурма для подачи воздуха; 6 – окно для подачи топлива.

Топка предназначена для сжигания всех видов топлива.

Стандартная колосниковая решетка типа РПК – Состоит из колосников, набранных в несколько рядов и насаженных валы прямоугольного сечения. При повороте валов на поворотный угол 30 0 ряды колосников наклоняются под тем же углом, и через образовавшиеся просветы шлак с решетки просыпается в зольник. Решетки имеют размеры в ширину от 900 до 3600 мм и в длину от 915 до 3660 мм. Наиболее распространенным типом слоевых топок является механизированная слоевая топка с цепной механической передачей. Механическая решетка выполняется в виде бесконечного колосникового полотна движущегося глубину топки вместе с лежащим на нем слоем горящего топлива. Топливо проходит, все стадии горения и в виде пыли ссыпается в шлаковый бункер. Скорость движения решетки можно изменять в зависимости от расхода топлива от 2 до 16 м/ч. Эти топки применяются для сжигания сортированного антрацита с размером кусков до 40 мм. Особенностью слоевых топок является наличие запаса топлива на решетке что позволяет регулировать мощность топки изменением количества подаваемого воздуха и обеспечивает устойчивость процесса горения. Слоевой способ не пригоден для крупных энергетических установок, а в установках малой и средней мощности данный способ находит широкое применение. 2. Факельный способ. В отличие от слоевого характеризуется непрерывностью движения в топочном пространстве частичек топлива вместе с потоком воздуха и продуктов горения, в котором они находятся во взвешенном состоянии. На рисунке показана камерная топка с факельным сжиганием топлива. Она состоит из горелки 1. топочной камеры 2, кипятильных труб3, труб заднего экрана 4, шламовой воронки 5. Предварительно измельченное топливо виде угольной пыли и газовая смесь подаются в горелку 1, туда же через ряд отверстий вдувается вторичный воздух. Газовоздушный поток с взвешенными частицами твердого топлива зажигается на выходе из горелки в топку 2. В топочной камере топливо сгорает с образованием горящего факела. Тепло выделяемое при сжигании топлива в виде излучения и конвективным путем передается воде циркулирующей в кипятильных трубах и трубах заднего экрана. Остаток от сгоревшего топлива поступает, шлаковую воронку, а затем выводится. Основным достоинством данного способа сжигания является возможность создания мощных топок паропроизводительностью до 2000 т/ч и возможность экономичного и надежного сжигания зольных, влажных и отбросных топлив под котлами различной мощности. К недостаткам данного способа можно отнести: 1) Высокую стоимость системы пылеприготовления; 2) Высокий расход электрической энергии на размол; 3) Несколько пониженные тепловые нагрузки камеры сгорания, чем у слоевых топок, что способствует условию объемов топочных пространств. Пылеприготовление из кускового топлива состоит из следующих операций: 1. Удаление из топлива металлических предметов с помощью магнитных сепараторов. 2. Дробление крупных кусков топлива в дробилках до размера 15-25 мм. 3. Сушка и размол топлива в специальных мельницах и классификация топлив. 4. Классификация. Для дробления крупных кусков можно использовать шаровые, валковые, конусные дробилки. В качестве размалывающего оборудования в системе пылеприготовления используется тихоходные шаровые барабанные мельницы, быстроходные молотковые мельницы с аксиальным и тарельчатым подводом сушильного агента. Для сжигания пылевидного топлива применяются круглые и щелевые горелки. Они размещаются фронтально передней стенке топки, встречно на боковых стенках, а также по углам топки. Для фронтального и встречного распыления применяют круглые турбулентные горелки, создающие короткий факел.

Горение топлива представляет собой химический про­цесс соединения его горючих элементов с кислородом воздуха, протекающий при высокой температуре и со­провождающийся выделением значительного количества теплоты. В зависимости от вида топлива раз­личают гомогенное, гетерогенное горение и пульсирующее (ПУЛЬСАР). Гомогенное горение происходит в объеме (в массе), при этом топливо и окислитель находятся в одинаковом агрегатном со­стоянии (например, газообразное топливо и воздух). Гетерогенное горение протекает на поверхности раздела двух фаз, то есть при горении твердого и жидкого топ­лива. Различают два способа горения: в слое кускового топлива и в факеле пылевидного топлива (слоевой и факельный способы сжигания). Газообразное и жидкое топливо сжигают только в факеле. Способ подвода воздуха к топливу имеет существен­ное значение при сжигании его в факеле. Полное время сгорания т определяется временем смесеобразования tд и временем проте­кания химических реакций горения tк. Поскольку возможно наложение этих стадий процессов, полное время сгорания t = tд+tк.

Устройство, предназначенное для сжигания топлива, называется топкой . Классификация: по способу сжигания топлива - слоевые, камерные (факельные) и циклонные; в слое сжигают только твер­дое топливо, а в остальных случаях - твердое, жидкое и газообразное; по режиму подачи топлива - с периодической и не­прерывной подачей; по взаимосвязи с котлом - внутренние, т. е. находя­щиеся внутри котла, выносные, устраиваемые вне обо­греваемой поверхности котла; по способу подачи топлива и организации обслужи­вания - ручные, полумеханические и механические. Топки для слоевого сжигания топлива могут быть следующих раз­новидностей: а) топки с неподвижной колосниковой ре­шеткой и неподвижно лежащим на ней слоем топлива; б) топки с неподвижной колосниковой решеткой и слоем топлива, перемещающимся на ней; в) топки с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топ­лива. Ручная топка с горизонтальной неподвижной колос­никовой решеткой позволяет сжигать все виды твердого топлива при ручном обслуживании операций загрузки, шурования и удаления шлака, при­меняется в котлах паропроизводительностью 1-2 т/ч. Топки с шурующей планкой: при ходе вперед пе­ремещает топливо из загрузочного бункерав глубь топки и сбрасывает с решетки шлак, а при обратном хо­де ворошит слой топлива.а - ручная с горизонтальной колосниковой решеткой; б - топка с забрасыва­телем на неподвижный слой; в - топка с шурующей планкой; г - топка с наклонной колосниковой решеткой; д - топка системы Померанцева; е - топ­ка с цепной механической решеткой; ж - то же обратного хода и забрасыва­телем; з - камерная топка для пылевидного топлива; к - топка для сжига­ния жидкого и газообразного топливаТопки с наклонной колосниковой решеткой . В них топливо загружается в топку сверху, по мере сгорания под действием силы тяжести сползает в нижнюю часть топки, создавая возможность для поступления в топку новых порций топлива (2,5-20 т/ч). Скоростные шахтные топки системы В. В. Померан­цева применяются для сжигания куско­вого торфа под котлами паропроизводительностью до 6,5 т/ч. Топки с движущейся колосниковой решеткой . К ним относятся топки с механической цепной решеткой пря­мого и обратного хода. Цепная решетка прямого хода движется от передней стенки топки к задней, при этом топливо самотеком по­ступает на колосниковую решетку. (10-150 т/ч). В камерных топках топли­во сжи­гается в виде угольной пыли. Его подают в смеси с воздухом в топку, где оно сгорает во взвешенном состоянии. Камерные топки для жидкого и газообразного топлива. Применяют прямоточные и вихревые го­релки. Работа топок характеризуется следующими показа­телями: тепловой мощностью, тепловыми нагрузками ко­лосниковой решетки и топочного объема, коэффициен­том полезного действия.

Различают три способа сжигания топлива: слоевой, при котором топливо в слое продувается воздухом и сжигается; факельный, когда топливно-воздушная смесь сгорает в факеле во взвешенном состоянии при перемещении по топочной камере, и вихревой (циклонный), при котором топливно-воздушная смесь циркулирует по обтекаемому контуру за счет центробежных сил. Факельный и вихревой способы могут быть объединены в камерный.

Процесс слоевого сжигания твердого топлива происходит в неподвижном или кипящем слое (псевдосжиженном). В неподвижном слое (рис. 2.6, а ) куски топлива не перемещаются относительно решетки, под которую подается необходимый для горения воздух. В кипящем слое (рис. 2.6, б )частицы твердого топлива под действием скоростного напора воздуха интенсивно перемещаются одна относительно другой. Скорость потока, при которой нарушается устойчивость слоя и начинается возвратно-поступательное движение частиц над решеткой, называется критической . Кипящий слой существует в границах скоростей от начала псевдосжижения до режима пневмотранспорта.

Рис. 2.6. Схемы сжигания топлива: а – в неподвижном слое; б – в кипящем слое; в – факельный прямоточный процесс; г – вихревой процесс; д – структура неподвижного слоя при горении топлива и изменение a, О 2 , СО , СО 2 и t по толщине слоя: 1 – решетка; 2 – шлак; 3 – горящий кокс;
4– топливо; 5 – надслойное пламя

На рис. 2.6, д показана структура неподвижного слоя. Топливо 4, ссыпаемое на горящий кокс, прогревается. Выделяющиеся летучие сгорают, образуя надслойное пламя 5. Максимальная температура (1300 – 1500 °С) наблюдается в области горения коксовых частиц 3.В слое можно выделить две зоны: окислительную, a > 1; восстановительную, a < 1.
В окислительной зоне продуктами реакции горючего и окислителя являются как СО 2 , так и СО . По мере использования воздуха скорость образования СО 2 замедляется, максимальное ее значение достигается при избытке воздуха a = 1. В восстановительной зоне ввиду недостаточного количества кислорода (a < 1) начинается реакция между СО 2 и горящим коксом (углеродом) с образованием СО . Концентрация СО в продуктах сгорания возрастает, а СО 2 уменьшается. Длина зон в зависимости от среднего размера d к частиц топлива следующая: L 1 = (2 – 4) d к ; L 2 = (4 – 6) d к . На длины зон L 1 и L 2 (в сторону их уменьшения) влияют увеличение содержания летучих горючих ,уменьшение зольности А р , рост температуры воздуха.

Поскольку в зоне 2 кроме СО содержатся Н 2 и СН 4 , появление которых связано с выделением летучих, то для их дожигания часть воздуха подается через дутьевые сопла, расположенные над слоем.



В кипящем слое крупные фракции топлива находятся во взвешенном состоянии. Кипящий слой может быть высокотемпературным и низкотемпературным. Низкотемпературное (800 – 900 °С) сжигание топлива достигается при размещении в кипящем слое поверхности нагрева котла. В отличие от неподвижного слоя, где размер частиц топлива достигает 100 мм, в кипящем слое сжигается дробленый уголь с d к £ 25 мм.
В слое содержится 5 – 7 %топлива (по объему). Коэффициент теплоотдачи к поверхностям, расположенным в слое, довольно высок и достигает 850 кДж/(м 2 ×ч×К). При сжигании малозольных топлив для увеличения теплоотдачи в слой вводят наполнители в виде инертных зернистых материалов: шлак, песок, доломит. Доломит связывает оксиды серы
(до 90 %), в результате чего снижается вероятность возникновения низкотемпературной коррозии. Более низкий уровень температур газов в кипящем слое способствует уменьшению образования в процессе горения оксидов азота, при выбросе которых в атмосферу загрязняется окружающая среда. Кроме того, исключается шлакование экранов, т. е. налипание на них минеральной части топлива.

Характерной особенностью циркулирующего кипящего слоя является приближение к работе слоя в режиме пневмотранспорта.

Камерный способ сжигания твердого топлива осуществляется преимущественно в мощных котлах. При камерном сжигании размолотое до пылевидного состояния и предварительно подсушенное твердое топливо подают с частью воздуха (первичного) через горелки в топку. Остальную часть воздуха (вторичный) вводят в зону горения чаще всего через те же горелки или через специальные сопла для обеспечения полного сгорания топлива. В топке пылевидное топливо горит во взвешенном состоянии в системе взаимодействующих газовоздушных потоков, перемещающихся в ее объеме. При большем измельчении топлива значительно возрастает площадь реагирующей поверхности, а следовательно, химических реакций горения.



Характеристикой размола твердого топлива является удельная площадь F пл поверхности пыли или суммарная площадь поверхности частиц пыли массой 1 кг (м 2 /кг). Для частиц сферической формы одинакового (монодисперсного) размера величина F пл обратно пропорциональна диаметру пылинок.

В действительности получаемая при размоле пыль имеет полидисперсный состав и сложную форму. Для характеристики качества размола полидисперсной пыли наряду с удельной площадью поверхности пыли используют результаты ее просеивания на ситах различных размеров. По данным просеивания строят зерновую (или помольную) характеристику пыли в виде зависимости остатков на сите от размераячеек сита.Наиболее часто используют показатели остатков на ситах 90 мкм и 200 мкм – R 90 и R 200 . Предварительная подготовка топлива и подогрев воздуха обеспечивают выгорание твердого топлива в топке за относительно небольшой промежуток времени (несколько секунд) нахождения пылевоздушных потоков (факелов) в ее объеме.

Технологические способы организации сжигания характеризуются определенным вводом топлива и воздуха в топку. В большинстве систем пылеприготовления транспортирование топлива в топку осуществляется первичным воздухом, являющимся только частью общего количества воздуха, необходимого для процесса горения. Подача вторичного воздуха в топку и организация взаимодействия его с первичным осуществляются в горелке.

Камерный способ в отличие от слоевого также применяется для сжигания газообразного и жидкого топлива. Газообразное топливо поступает в топочную камеру через горелку, а жидкое – через форсунки в пульверизированном виде.

Слоевые топки

Топка с неподвижным слоем может быть ручной, полумеханической или механической с цепной решеткой. Механической топкой называют слоевое топочное устройство, в котором все операции (подача топлива, удаление шлака) выполняются механизмами. При обслуживании полумеханических топок наряду с механизмами используется ручной труд. Различают топки с прямым (рис. 2.7, а ) и обратным (рис. 2.7, б )ходом решеток 1, приводимых в движение звездочками 2. Расход топлива, подаваемого из бункера 3, регулируется высотой установки шибера 4 (см. рис. 2.7, а )или скоростью движения дозаторов 7(рис. 2.7, б ). В решетках с обратным ходом топливо подается на полотно забрасывателями 8 механического (рис. 2.7, б, в )или пневматического (рис. 2.7, г )типа. Мелкие фракции топлива сгорают во взвешенном состоянии, а крупные – в слое на решетке, под которую подводится воздух 9. Прогрев, воспламенение и горение топлива происходят за счет теплоты, передаваемой излучением от продуктов сгорания. Шлак 6 с помощью шлакоснимателя 5(рис. 2.7, а ) или под действием собственного веса (рис. 2.7, б )поступает в шлаковый бункер.

Структура горящего слоя представлена на рис. 2.7, а. Область III горения кокса после зоны II подогрева поступающего топлива (зона I ) расположена в центральной части решетки. Здесь же находится восстановительная зона IV. Неравномерность степени горения топлива по длине решетки приводит к необходимости секционного подвода воздуха. Большая часть окислителя должна подаваться в зону III , меньшая – в конец зоны реагирования кокса и совсем небольшое количество – в зону II подготовки топлива к сжиганию и зону V выжига шлака. Этому условию отвечает ступенчатое распределение избытка воздуха a 1 по длине решетки. Подача одинакового количества воздуха во все секции могла бы привести к повышенным избыткам воздуха в конце полотна решетки, в результате чего его будет не хватать для горения кокса (кривая a 1) в зоне III .

Основным недостатком топок с цепными решетками являются повышенные потери теплоты от неполноты сгорания топлива. Область применения таких решеток ограничена котлами паропроизводительностью D = 10 кг/с и топливами с выходом летучих = 20 %и приведенной влажностью .

Топки с кипящим слоем отличаются пониженным выбросом таких вредных соединений, как NO х , SO 2 , малой вероятностью шлакования экранов, возможностью (ввиду низкой температуры газов) насыщения объема топки поверхностями нагрева. Недостатками их являются повышенная неполнота сгорания топлива, высокое аэродинамическое сопротивление решетки и слоя,узкий диапазон регулирования паропроизводительности котла.

Рис. 2.7. Схемы работы цепных решеток и типы забрасывателей топлива: а , б – топки с прямым и обратным ходом решеток соответственно; в , г – механический и пневматический забрасыватели;
1 – решетка; 2 – звездочки; 3 – бункер; 4 – шибер; 5 – шлакосниматель; 6 – шлак; 7 – дозатор топлива; 8 – забрасыватель; 9 – подвод воздуха; I – зона свежего топлива; II – зона подогрева топлива;
III – область горения (окисления) кокса; IV – восстановительная зона; V – зона выжига топлива

Слоевой способ сжигания топлива характеризуется относительно невысокими скоростями процесса горения, пониженной его экономичностью и надежностью. Поэтому он не нашел применения в котлах большой производительности.

Камерные пылеугольные топки

Камерные пылеугольные топки состоят из пылеугольных горелок и топочной камеры.

Топочной камерой называется устройство, предназначенное для завершения процесса горения и изоляции его от внешних условий.

Горелки предназначены для ввода в топку и перемешивания топлива и воздуха, обеспечения устойчивого воспламенения и выгорания смеси. Они должны отвечать следующим требованиям: герметичность соединения с топкой; ремонтопригодность; обеспечивать устойчивое горение на сниженной нагрузке и при использовании резервного топлива (газа или мазута).

Топки для сжигания твердых топлив по способу вывода шлака разделяют на топки с сухим шлакоудалением (рис. 2.8) и топки с жидким шлакоудалением (рис. 2.9).

На рис. 2.8 приведена принципиальная схема факельной (пылеугольной) топки с сухим шлакоудалением, где топливо сгорает во взвешенном состоянии в объеме топочной камеры.

б
а

В топках с сухим шлакоудалением ядро факела располагается несколько ниже топочной камеры, покрытой экранными поверхностями нагрева, воспринимающими излучаемую продуктами сгорания и горящим факелом теплоту и защищающими стены топочной камеры от воздействия высоких температур. Такие топки выполняются однокамерными с холодной воронкой в нижней части. В зоне холодной воронки и в верхней части топки температуры продуктов горения более низкие, чем в ядре факела. Взвешенные в потоке топочных газов частички золы, попадая из ядра факела в области относительно пониженных температур, охлаждаются и затвердевают. Небольшая часть золы (10 – 15 % общей зольности топлива) выпадает в шлаковый бункер, расположенный под холодной воронкой. Остальная зола уносится с продуктами сгорания в газоходы котла.

Топки с жидким шлакоудалением бывают однокамерные и двухкамерные.
В однокамерных низ топочной камеры выполняют в виде горизонтального или наклонного пода. На высоте 4 – 5 м от пода экраны закрывают теплоизоляционным материалом для снижения тепловосприятия, что позволяет поддерживать вблизи пода топки высокие температуры 1500 – 1600 о С, при которых шлак находится в жидком состоянии. Жидкий шлак непрерывно удаляется через летку в шлаковую ванну, заполненную водой.
В двухкамерных топках процессы сгорания топлива и охлаждения продуктов сгорания разделены.

Принципиальные схемы двухкамерных циклонных топок с жидким шлакоудалением показаны на рис. 2.9.Основными составляющими циклонным топок являются вихревая камера горения, представляющая собой цилиндр с тангенциальным сосредоточенным или рассредоточенным вводом топлива и воздуха, и камера охлаждения призматической формы.

Топливо подают в вихревую камеру с первичным воздухом. Топливно-воздушную смесь через завихритель (улитку) вводят в центральную часть камеры. По оси вводится дробленка. Через тангенциально расположенные сопла поступает угольная пыль. Вторичный воздух подают в камеру тангенциально через сопла-щели с большой скоростью (более 100 м/с), обеспечивая движение топливных частиц к стенкам камеры. Образующиеся в циклонной камере вихри способствуют интенсивному образованию топливно-воздушной смеси и горению топлива как в объеме циклона, так и на его стенках. Между камерами сгорания и охлаждения располагается шлакоулавливающий пучок футерованных (закрытых теплоизоляционным материалом) труб, предназначенный для улавливания расплавленных капелек шлака, содержащихся в продуктах сгорания. Неуловленные частички золы затвердевают в камере охлаждения.

Стены камеры горения для утепления выполняются из ошипованных экранов, покрытых огнеупорной обмазкой (рис. 2.10), а стены камеры охлаждения имеют неутепленные гладкотрубные или плавниковые экраны.

В зависимости от принципа организации процесса ввода пылевоздушной смеси пылеугольные горелки можно разделить на три типа: вихревые, прямоточные и плоскофакельные.

Принцип работы вихревой горелки (рис. 2.11, а ) следующий. Потоки первичного I и вторичного II воздуха вводят в топку через кольцевые концентрические каналы, в которых установлены завихрители. Направление крутки потоков одинаковое. Характерной особенностью такого течения является сопоставимость по величине всех трех составляющих скорости: аксиальной (продольной) w а , касательной w t (окружной) и радиальной w r . Наличие касательной составляющей скорости приводит к заметному расширению струи, образующей в пространстве параболическое тело вращения. В центральной внутренней части 1струи образуется зона разрежения, величина которой определяется втулочным отношением т=D о /D a и скоростью потоков на выходе из горелок.

Под действием перепада давлений возникают обратные токи высокотемпературных продуктов сгорания,обеспечивающие стабилизацию воспламенения пылевоздушной смеси. При движении первичный I и вторичный II воздух перемешиваются, и процесс горения распространяется на внешнюю поверхность 2струи.

В зависимости от конструкции завихрителей различают горелки улиточно-лопаточные (рис. 2.12, в ), улиточно-улиточные (рис. 2.12, а ), лопаточно-лопаточные, прямоточно-улиточные (рис. 2.12, б ) и прямоточно-лопаточные. В названии сначала указывают тип завихрителя по первичному воздуху.

Рис. 2.12. Виды вихревых пылеугольных горелок: а – улиточно-улиточная горелка;
б – прямоточно-улиточная горелка ОРГРЭС; в – улиточно-лопаточная горелка ЦКТИ – ТКЗ;
1 – улитка пылевоздушной смеси; 1" – входной патрубок пылевоздушной смеси; 2 – улитка вторичного воздуха; 2" – короб ввода вторичного воздуха; 3 – кольцевой канал для выхода пылевоздушной смеси в топку; 4 – то же для вторичного воздуха; 5 – основная мазутная форсунка;
5" – растопочная мазутная форсунка; 6 – рассекатель на выходе пылевоздушной смеси;
7 – завихривающие лопатки для вторичного воздуха; 8 – подвод третичного воздуха по осевому каналу; 9 – управление положением рассекателя; 10 – завихритель осевого потока воздуха;
11 – обмуровка топки; АБ – граница воспламенения пылевоздушной смеси; В – подсос топочных газов к корню факела

В вихревой горелке подводы первичного I и вторичного II воздуха индивидуальные (рис. 2.11). Подвод вторичного воздуха может быть как верхним, так и нижним, а подвод первичного воздуха – только верхним, что объясняется необходимостью предупреждения отложений пыли в пылепроводе. Каналы первичного и вторичного воздуха выполняются кольцевыми концентрическими.

Раскрытие факела, количество эжектируемых газов, распределение скоростей, дальнобойность в вихревой горелке определяются интенсивностью закручивания потоков, которая оценивается параметром п крутки, зависящим от конструкции завихрителя.

Через вихревые горелки целесообразна подача всех видов топлива, кроме фрезерного торфа. К недостаткам этих горелок следует отнести: повышенное гидравлическое сопротивление, конструктивную сложность, необходимость выполнения выходной части из жаростойких материалов во избежание ее выгорания, повышенную склонность к сепарации топлива, несколько больший (по сравнению с горелками других конструкций) выброс оксидов азота в атмосферу.

В прямоточных горелках в отличие от вихревых потоки первичного I и вторичного II воздуха не закручиваются и имеют однонаправленное (попутное) движение (рис. 2.11, б ). Касательная составляющая скорости отсутствует, а радиальная намного меньше продольной составляющей.

Стабилизация воспламенения осуществляется благодаря эжекции продуктов сгорания 1 по периферии 2струи. Нужная степень перемешивания воздуха достигается соответствующим соотношением скоростей первичного I и вторичного II воздуха.

Сопротивление прямоточных горелок меньше, чем вихревых, они проще в изготовлении, количество образующихся оксидов азота меньше. К недостаткам прямоточных горелок следует отнести более высокую дальнобойность и худшие условия перемешивания смеси по сравнению с вихревыми.

Область применения прямоточных горелок – каменные и бурые угли. Горелки предварительного перемешивания, имеющие камеру смешения,применяют в основном для торфа и бурых углей.

Принцип работы плоскофакельных горелок (рис. 2.13) основан на использовании эффекта соударения двух струй воздуха, направленных под углом друг к другу. Дальнобойность факела плоскофакельных горелок меньше, чем у прямоточных. Между струями вторичного воздуха и горелкой образуется «треугольник», в который подается топливо, воспламеняемое эжектируемыми в него раскаленными продуктами сгорания. В результате раздавливания струй после соударения образуется плоская струя, обладающая большой поверхностью. Вследствие расширения струи в одной плоскости и интенсивной эжекции ею продуктов сгорания снизу и сверху скорость струи резко падает. Наклон факела регулируется изменением соотношения расходов вторичного воздуха, подаваемого в верхние и нижние сопла. Это свойство горелки используется при изменении качества сжигаемого топлива, а также нагрузки котлоагрегата или режима его работы.

Топки для сжигания жидкого топлива (мазута)

В качестве жидкого топлива для промышленных котлов применяется в основном мазут. Для того чтобы сжечь мазут, его необходимо предварительно распылить для улучшения условий испарения, поскольку при сжигании мазута горят газообразные продукты его испарения. Для распыливания и ввода мазута в топку используют специальные устройства, называемые форсунками .

Топка для сжигания мазута состоит из топочной камеры, лучевоспринимающих поверхностей нагрева и форсунок.

Топочная камера и лучевоспринимающие поверхности нагрева при сжигании мазута выполнены так, что низ камеры ограничен горизонтальным или слегка наклонным поддоном. Сама камера выполнена относительно меньших размеров, так как мазут можно сжигать при значительно более высоком тепловом напряжении топочного пространства, чем пылевидное топливо. В котлах небольшой паропроизводительности под топки часто не экранируют, чтобы упростить выполнение экранной системы.

Топочное устройство, или топка, являясь основным элементом котельного агрегата, предназначена для сжигания топлива с целью выделения заключенного в нем тепла и получения продуктов сгорания с возможно большей температурой. В то же время топка служит теплобменным устройством, в котором происходит теплоотдача излучением из зоны горения на более холодные окружающие поверхности нагрева котла, а также устройством для улавливания и удаления некоторой части очаговых остатков при сжигании твердого топлива.

По способу сжигания топлива топочные устройства делятся на слоевые и камерные. В слоевых топках осуществляется сжигание твердого кускового топлива в слое, в камерных топках - газообразного, жидкого и пылевидного топлива во взвешенном состоянии.

Современные котлы обычно используют три основных способа сжигания твердого топлива: слоевой, факельный, вихревой.

Слоевые топки. Топки, в которых производится слоевое сжигание кускового твердого топлива, называются слоевыми. Эта топка состоит из колосниковой решетки, поддерживающей слой кускового топлива, и топочного пространства, в котором сгорают горючие летучие вещества. Каждая топка предназначена для сжигания определенного вида топлива. Конструкции топок разнообразны, и каждая из них соответствует определенному способу сжигания. От размеров и конструкции топки зависят, производительность и экономичность котельной установки.

Слоевые топки для сжигания разнообразных видов твердого топлива делят на внутренние и выносные, с горизонтальными и наклонными колосниковыми решетками.

Топки, расположенные внутри обмуровки котла, называют внутренними, а расположенные за пределами обмуровки и дополнительно пристроенные к котлу,- выносными.

В зависимости от способа подачи топлива и организации обслуживания слоевые топки подразделяют на ручные, полумеханические и механизированные.

Ручными топками называют те, в которых все три операции - подача топлива в топку, его шуровка и удаление шлака (очаговых остатков) из топки - производятся машинистом вручную. Эти топки имеют горизонтальную колосниковую решетку.

Полу механическими топками называют те, в которых механизированы одна или две операции. К ним относят шахтные с наклонными колосниковыми решетками, в которых топливо, загруженное в топку вручную, по мере прогорания нижних слоев перемещается по наклонным колосникам под действием собственной массы.

Механизированными топками называют те, в которых подача топлива в толку, его шуровка и удаление из топки очаговых остатков производятся механическим приводом без ручного вмешательства машиниста. Топливо в топку поступает непрерывным потоком.

Слоевые топки для сжигания твердого топлива делят на три класса:

  • топки с неподвижной колосниковой решеткой и неподвижнолежащим на ней слоем топлива, к которым относят топку с ручной горизонтальной колосниковой решеткой. На этой решетке можно сжигать все виды твердого топлива, но вследствие ручного обслуживания ее применяют под котлами паропроизводительностью до 1-2 т/ч. Топки с забрасывателями, в которые непрерывно механически загружают свежее топливо и разбрасывают его по поверхности колосниковой решетки, устанавливают под котлами паропроизводительностью до 6,5-10 т/ч;
  • топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива, к которым относят топки с шурующей планкой и топки с наклонной колосниковой решеткой. В топках с шурующей планкой топливо перемещается вдоль неподвижной горизонтальной колосниковой решетки специальной планкой особой формы, совершающей возвратно-поступательное движение по колосниковой решетке. Применяют их для сжигания бурых углей под котлами паропроизводительностью до 6,5 т/ч; в топках с наклонной колосниковой решеткой свежее топливо, загруженное в топку сверху, по мере сгорания под действием силы тяжести сползает в нижнюю часть топки. Такие топки применяют для сжигания древесных отходов и торфа под котлами паропроизводительностью до 2,5 т/ч; скоростные шахтные топки системы В. В. Померанцева применяют для сжигания кускового торфа под котлами паропроизводительностью до 6,5 т/ч для сжигания древесных отходов под котлами паропроизводительностью 20 т/ч;
  • топки с движущимися механическпми цепными колосниковыми решетками двух типов: прямого и обратного хода. Цепная решетка прямого хода движется от передней стенки в сторону задней стенки топки. Топливо на колосниковую решетку поступает самотеком. Цепная решетка обратного хода движется от задней к передней стенке топки. Топливо на Колосниковую решетку подается забрасывателем. Топки с цепными колосниковыми решетками применяют для сжигания каменных, бурых углей и антрацитов под котлами паропроизводительностью от 10 до 35 т/ч.

Камерные (факельные) топки. Камерные топки применяют для сжигания твердого, жидкого и газообразного топлива. При этом твердое топливо должно быть предварительно размолото в тонкий порошок в специальных пылеприготовительных установках - углеразмольных мельницах, а жидкое топливо - распылено на очень мелкие капли в мазутных форсунках. Газообразное топливо не требует предварительной подготовки.

Факельный способ позволяет сжигать с высокой надежностью и экономичностью самые различные и низкосортные виды топлива. Твердые топлива в пылевидном состоянии сжигают под котлами паропроизводительностью от 35 т/ч и выше, а жидкое и газообразное под котлами любой паропроизводительности.

Камерные (факельные) топки представляют собой прямоугольные камеры призматической формы, выполняемые из огнеупорного кирпича или огнеупорного бетона. Стены топочной камеры изнутри покрывают системой кипятильных труб - топочными водяными экранами. Они представляют собой эффективную поверхность нагрева котла, воспринимающую большое количество тепла, излучаемого факелом, в то же время предохраняют кладку топочной камеры от износа и разрушения под действием высокой температуры факела и расплавленных шлаков.

По способу удаления шлака факельные топки для пылевидного топлива разделяют на два класса: с твердым и жидким шлакоудалением.

Камера топки с твердым шлакоудалением снизу имеет воронкообразную форму, называемую холодной воронкой. Капли шлака, выпадающие из факела, падают в эту воронку, затвердевают вследствие более низкой температуры в воронке, гранулируются в отдельные зерна и через горловину попадают в шлакоприемное устройство. Камеру топки б с жидким шлакоудалением выполняют с горизонтальным или слегка наклонным подом, который в нижней части топочных экранов имеет тепловую изоляцию для поддержания температуры, превышающей температуру плавления золы. Расплавленный шлак, выпавший из факела на под, остается в расплавленном состоянии и вытекает из топки через летку в шлакоприемную ванну, наполненную водой, затвердевает и растрескивается на мелкие частицы.

Топки с жидким шлакоудалением делят на однокамерные и двухкамерные.

В двухкамерных топка разделена на камеру горения топлива и камеру охлаждения продуктов горения. Камеру горения надежно покрывают тепловой изоляцией для создания максимальной температуры с целью надежного получения жидкого шлака. Факельные топки для жидкого и газообразного топлива иногда выполняют с горизонтальным или слегка наклонным подом, который иногда не экранируют. Расположение горелок в топочной камере делают на передней и боковых стенках, а также по углам ее. Горелки бывают прямоточными и завихривающими.

Способ сжигания топлива выбирается в зависимости от вида и рода топлива, а также паропроизводительности котельного агрегата.

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рисунок ниже):

  • на диффузионные;
  • смешанные;
  • кинетические.

Методы сжигания газа

а - диффузионный; б - смешанный; в - кинетический; 1 - внутренний конус; 2 - зона первичного горения; 3 - зона основного горения; 4 - продукты сгорания; 5 - первичный воздух; 6 - вторичный воздух

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух — из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа диффундирует воздух, а из струи газа в воздух - газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся: высокая устойчивость пламени при изменении тепловых нагрузок, отсутствие проскока пламени, равномерность температуры по длине пламени.

Недостатками этого метода являются: вероятность термического распада углеводородов, низкая интенсивность горения, вероятность неполного сгорания газа.

При смешанном методе сжигания горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле. Достоинство этого метода сжигания - малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок. Недостаток - необходимость стабилизации газового пламени.