Что такое LTE в смартфоне, для чего предназначена эта система. Технология LTE в смартфонах – развитие, использование и особенности

Сотовые сети стандарта GSM по своей структуре изначально не были предназначены для мобильного интернета. Соответственно, в наши дни операторы сотовой связи вынуждены с целью удовлетворения потребностей населения вкладывать огромные деньги в модернизацию своих сетей до 3G (UMTS), а теперь уже и до 4G (LTE). Само собой, данные капиталовложения сотовые компании щедро заимствуют из наших с вами карманов, однако их работа тоже при этом весьма не легка.

Сейчас, когда внедрение сетей третьего поколения еще до конца в России не закончено, операторы уже приступили к работе над сетями следующего поколения - 4G или LTE.

На фото первая базовая станция LTE от Yota в Сочи:

Сам термин LTE расшифровывается как Long Term Evolution и в переводе на русский означает «долгосрочная эволюция». Длительное время на роль связи 4G претендовал стандарт WiMAX, однако впоследствии был отодвинут на задний план как менее востребованный вариант быстрого беспроводного интернета.

LTE является следующим после 3G поколением мобильной связи и работает на базе IP-технологий. Основное отличие LTE от предшественников - высокая скорость передачи данных. Теоретически она составляет до 326,4 Мбит/с на прием (download) и 172,8 Мбит/с на передачу (upload) информации. При этом в международном стандарте указаны цифры в 173 и 58 Мбит/с, соответственно. Данный стандарт связи четвертого поколения разработало и утвердило Международное партнерское объединение 3GPP.

Система кодирования последнего поколения - OFDM

Давайте разберемся, в чем же состоит главная особенность стандарта LTE. Так же как и в сетях 3G главным звеном в LTE можно назвать технологию кодирования и передачи данных OFDM-MIMO.

OFDM расшифровывается как Orthogonal Frequency-division Multiplexing и по-русски означает ортогональное частотное разделение каналов с мультиплексированием. Это цифровая схема модуляции, использующая близко расположенные друг от друга ортогональные поднесущие в большом количестве. Все поднесущие моделируются по стандартной схеме модуляции, такой как квадратурная амплитудная модуляция на небольшой символьной скорости с соблюдением общей скорости передачи данных, как и в простых схемах модуляции одной несущей в этой же самой полосе пропускания. В действительности сигналы OFDM генерируются благодаря применению "Быстрого преобразования Фурье".

Данная технология описывает направление сигнала от базовой станции (БС) к вашему мобильному телефону. Что же касается обратного пути сигнала, т.е. уже от телефонного аппарата к базовой станции, техническим разработчикам пришлось отказаться от системы OFDM и воспользоваться другой технологией под названием SC-FDMA. В расшифровке она читается как Single-carrier FDMA и в переводе означает мультиплексирование на одной несущей. Смысл ее в том, что при сложении большого количества ортогональных поднесущих образуется сигнал с большим пик-фактором (отношением амплитуды сигнала к своему среднеквадратичному значению). Для того чтобы такой сигнал мог передаваться без помех необходим высококлассный и довольно дорогой высоколинейный передатчик.

Именно это устройство создало некоторые сложности с получением лицензии на территории России под сети LTE. И, тем не менее, как обычно бывает в нашей стране, несмотря на искусственно созданные сложности, Минкомсвязи России признал перспективным направлением развития сотовых сетей именно стандарт LTE. Однако при проведении тендера на распределение часто 2,3 - 2,4 ГГц в 40 регионах Российской Федерации методом радиодоступа была указана лишь технология OFDMA, что исключает, непосредственно, LTE, т.к. в последнем случае кроме OFDMA необходимо еще и SC-FDMA. Из этого в очередной раз следует полная некомпетентность российских чиновников в тех вопросах, которыми они занимаются.

MIMO - Multiple Input Multiple Output - представляет собой технологию передачи данных с помощью N-антенн и приема информации M-антеннами. При этом принимающие и передающие сигнал антенны разнесены между собой на такое расстояние, чтобы получить слабую степень корреляции между соседними антеннами.

Положение LTE в эфире

На данный момент под сети 4G уже зарезервированы диапазоны частот. Наиболее приоритетными принято считать частоты в районе 2,3 ГГц. Здесь главным примером является Китай со своим сотовым оператором China Mobile, уже выделившим нужный частотный диапазон и проводящий тестовое вещание. С учетом огромного объема местного потребления сотовой связи использование данной частоты обречено на успех и преобладание в Китае.

Другой перспективный диапазон частот - 2,5 ГГц применяется в США, Европе, Японии и Индии. Имеется еще частотная полоса в районе 2,1 ГГц, но она сравнительно небольшая - доступны лишь 15 МГц в диапазоне 2,1 ГГц, а большинство европейских мобильных операторов ограничивают в этом диапазоне полосы до 5 МГц. В будущем, скорее всего, наиболее используемым будет частотный диапазон 3,5 ГГц. Это связано с тем, что на данных частотах в большинстве стран уже используются сети беспроводного широкополосного доступа в интернет и благодаря переходу в LTE операторы получат возможность вновь применять свои частоты без необходимости приобретения новых дорогих лицензий. В случае необходимости под сети LTE могут быть выделены и другие диапазоны частот.

В отношении используемых полос частот и методов распределения в LTE все довольно непонятно и противоречиво, т.к. сам стандарт достаточно гибкий. В разных структурах сети четвертого поколения могут базироваться на полосах частот в диапазоне от 1,4 до 20 МГц, в отличие от фиксированных 5 МГц в 3G (UMTS). Также имеется возможность применения как временного разделения сигналов TDD (Time Division Duplex - дуплексный канал с временным разделением), так и частотного - FDD (Frequency Division Duplex - дуплексный канал с частотным разделением). Например, сеть LTE, строящаяся в Китае, стандарта TD-LTE.

Зона обслуживания базовой станции сети LTE может быть разной. Обычно она составляет около 5 км, но в ряде случаев она может быть увеличена до 30 и даже 100 км, в случае высокого расположения антенн (секторов) базовой станции.

Другое позитивное отличие LTE - большой выбор терминалов. Помимо сотовых телефонов, в сетях LTE будут использоваться многие другие устройства, такие как ноутбуки, планшетные компьютеры, игровые устройства и видеокамеры, снабженные встроенным модулем поддержки сетей LTE. А так как технология LTE обладает поддержкой хендовера и роуминга с сотовыми сетями предыдущих поколений, все данные устройства смогут работать и в сетях 2G/3G.

Структура сетей четвертого поколения

Схема сетей 4G (LTE) выглядит следующим образом:

Как видно из данной схемы, сети LTE включают в себя модули сетей 2,75G (EDGE) и 3G (UMTS). Из-за данной особенности строительство сетей четвертого поколения будет достаточно специфичным и походит скорее на следующую ступень развития сегодняшних технологий, нежели на что-то принципиально новое.

К примеру, в соответствии с такой структурой, звонок или интернет-сессия в зоне действия сети LTE может быть без разрыва соединения передана в сеть 3G (UMTS) или 2G (GSM). Кроме того, сети LTE довольно легко интегрируются с сетями WI-FI (обозначение WLAN Access NW на вышеприведенной схеме) и Интернет.

Остановимся на подсистеме радиодоступа более подробно. По своей структуре сеть радиодоступа RAN - Radio Access Network - выглядит аналогично сети UTRAN UMTS, или eUTRAN, но имеет одно дополнение: приемо-передающие антенны базовых станций взаимосвязаны по определенному протоколу X2, который объединяет их в сотовую сеть - Mesh Network - и дает возможность базовым станциям обмениваться данными между собой напрямую, не задействуя для этого контроллер RNC - Radio Network Controller.

К тому же взаимосвязь базовых станций с системой управления мобильными устройствами MME - Mobility Management Entity - и сервисными шлюзами S-GW - Serving Gateway - осуществляется путем «многих со многими», что позволяет получить большую скорость связи с небольшими задержками.

Технология LTE против WiMAX

Наверняка многим из вас стало интересно, почему будущее именно за LTE? Ведь буквально год-два назад все считали стандартом 4G технологию WiMAX, хорошо известную такими провайдерами широкополосного беспроводного интернета, как Yota и Комстар.

В действительности стандарты LTE и WiMAX достаточно близки между собой. Они оба используют технологию кодирования OFDM и систему передачи данных MIMO. И в том, и в другом стандарте применяются FDD и TDD-дуплекирование при пропускной способности канала до 20 МГц. И обе из систем связи используют в роли своего протокола IP. Соответственно, обе технологии в реальности одинаково хорошо применяют свой частотный диапазон и обеспечивают сравнимую скорость передачи данных интернет-доступа. Но, конечно, есть у них и кое-какие отличия.

Одним из таких отличий является гораздо более простая инфраструктура сети WiMAX, а, следовательно, и более надежная технически. Данная простота стандарта обеспечивается его предназначением исключительно для передачи данных. С другой стороны, «сложности» LTE нужны для обеспечения ее совместимости со стандартами предыдущих поколений - GSM и 3G. И данная совместимость нам с вами, безусловно, потребуется.

Существуют и другие детали в различии между LTE и WiMAX. Например, диспетчеризация радиочастотных ресурсов. В WiMAX она производится по технологии Frequency Diversity Scheduling, согласно которой поднесущие, предоставляемые абоненту, распределяются по всему спектру канала. Это необходимо для рандомизации и усреднения влияния частотно-селективных замираний на широкополосный канал.

В сетях LTE применена другая технология устранения частотно-селективных замираний. Она называется частотно-селективной диспетчеризацией ресурсов - Frequency Selective Scheduling. При этом для каждой абонентской станции и каждого частотного блока несущей создаются индикаторы качества канала CQI - Channel Quality Indicator.

Еще одним очень важным моментом, связанным с планированием сетей связи массового использования - коэффициент переиспользования частот. Его роль - показывать эффективность использования доступной полосы радиочастот для каждой базовой станции в отдельности.

Базовая структура переиспользования частотного диапазона WiMAX состоит из 3-х частотных каналов. При использовании трехсекторной конфигурации сайтов (базовых станций определенного частотного диапазона), в каждом из секторов реализован один из 3-х частотных каналов. При этом коэффициент переиспользования частот равняется 3-м. Иными словами, в каждой из точек пространства имеется лишь треть радиочастотного диапазона.

Работа сотовой сети LTE (4G) производится с коэффициентом переиспользования частот равном 1. То есть, получается, что все базовые станции LTE работают на одной несущей. Внутрисистемные помехи в подобной системе сводятся к минимуму благодаря частотно-селективной диспетчеризации, гибкому частотному плану и координации помех между отдельными сотами. Абонентам в центре каждой соты могут даваться ресурсы из всей полосы свободного канала, а пользователям на краях сот предоставляются частоты только из определенных поддиапазонов.

Перечисленные выше особенности сетей LTE и WiMAX оказывают большое влияние на одну из их главных характеристик - степень радиопокрытия. Отталкиваясь от данного параметра определяется необходимое количество базовых станций для качественного покрытия конкретной территории. Соответственно, он напрямую влияет и на конечную стоимость строительства сетей LTE.

Согласно расчетом, сеть LTE способна обеспечить лучшую зону покрытия при одинаковом числе базовых станций, что является несомненным плюсом для всех операторов сотовой связи.

Термины LTE и 4G уже давно на слуху и постепенно становятся частью словарного запаса современного человека, а с появлением нового поколения Android-смартфонов и выходом iPhone 5 нам просто необходимо знать об этой технологии побольше, просто чтобы не возникало путаницы, ну и для общего развития.

В этой статье мы постараемся дать максимально простые ответы на самые популярные вопросы об LTE.

Что такое LTE?

Разработанный консорциумом 3GPP Long Term Evolution (если переводить дословно, то «долгосрочное развитие»), в общепринятом сокращенном варианте — LTE — это новый стандарт мобильных сетей с увеличенными пропускной способностью и скоростью передачи данных. LTE использует различные частоты, однако функционирует на основе используемых сетей GSM/HSPA, фактически являясь их усовершенствованной версией. Термин 4G, или «беспроводная связь четвертого поколения» употребляется как синоним LTE, подчеркивая отличия этого стандарта от 3G. По предварительным прогнозам к 2016-му году общее количество абонентов мобильных широкополосных сетей может достичь 5 млрд. человек.

Чем LTE (4G) отличается от 3G

Прежде всего необходимо понимать, что 4G LTE — это эволюционный, а не революционный путь развития, предполагающий использование возможностей имеющейся инфраструктуры. 3G-сети еще долго и с не меньшей эффективностью будут выполнять задачи по доставке широкополосных сервисов миллиардам пользователей мобильных устройств. Но 4G, тем не менее, уверенно пророчат роль общепринятого стандарта мобильной связи в виду целого ряда очевидных преимуществ технологии 4G LTE, основные из которых:

  • более высокие производительность и пропускная способность;
  • простота — LTE поддерживает гибкие варианты полосы пропускания с несущей частотой от 1.4 MHz до 20 MHz, а также дуплексную передачу данных с возможностью разделения по частоте (FDD) и по времени (TDD).
  • задержка — в LTE существенно меньшая задержка в передаче данных для протоколов плоскости пользователя в сравнении c существующими технологиями третьего поколения (преимущество крайне важное, к примеру, для обслуживания многопользовательских онлайн-игр ).
  • широкий диапазон конечных устройств — LTE-модулями планируется оснащать не только смартфоны и планшеты, но также ноутбуки, игровые приставки, видеокамеры и другие портативные и бытовые устройства.

Скорость LTE

Возможностями технологии LTE предусматривается скорость передачи данных до 299.6 Мбит/с на загрузку (download) и до 75.4 Мбит/с — на отдачу (upload). Однако в LTE скорость в каждом конкретном случае во многом зависит как от местонахождения пользователя, так и от текущей нагрузки в сети. Но LTE развивается: еще два года назад на конгресе MWC-2010 был продемонстрирована возможная пиковая пропускная способность до 1.2 Гбит в секунду. Тем не менее, к примеру, в Сингапуре, где национальное LTE-покрытие обеспечивает оператор M1, средняя скорость загрузки в LTE не превышает 75 Мбит/с. В ближайшее время компания собирается увеличить скорость до 150 Мбит/с за счет использования частот, которые на данный момент используются для поддержки устаревшего стандарта 2G.

Почему LTE-частоты различны в разных странах?

Не смотря на то, что LTE очень активно развивается во всем мире, нет единого частотного диапазона, на котором работаю 4G-операторы в разных странах мира. Это связано с тем, что радиочастотный спектр во многих государствах находится под контролем правительственных структур, а деятельность операторов лицензируется. В разных странах определенные частоты уже используются другими сервисами (вроде цифрового ТВ), потому телекоммуникационным компаниям приходится пользоваться теми, которые доступны на данный момент и ждать возможности доступа к новым диапазоном, как в случае с сингапурским M1.

Наиболее часто используемый LTE-частоты

В станах Азии — это 1800 MHz или 2600 MHz. Именно на этих частотах работают операторы в Сингапуре, Гонг Конге и Южной Корее. В Японии и США — 700 MHz или 2100 MHz. В Европе — 1800 MHz или 2600 MHz.

В России LTE-лицензии получили компании «Ростелеком» (791-798.5/832-839.5 MHz, Band 20), «МТС» (798.5-806/839.5-847 MHz, Band 20), «Мегафон» (806-813.5/847-854.5 MHz, Band 20) и «Вымпелком» (« «) (813.5-821/854.5-862 MHz, Band 20), которые приступят к оказанию 4G LTE-услуг с июлю следующего года.

В Украине LTE-сети только начинают развиваться, и, по мнению специалистов, до начала ее полноценной коммерческой эксплуатации пройдет не менее полутора лет. Причины такого отставания — в проблемах с регулированием и лицензированием, а также в недостаточной емкости транспортной сети.

Универсальный LTE-смартфон?

Такого устройства пока нет, поскольку производители еще не разработали такую компактную антенну, которая могла бы обеспечивать прием-передачу сигнала хотя бы на самых популярных LTE-частотах одновременно. Потому и говорят, что купленный в Штатах iPhone 5 может не работать в азиатских и европейских LTE-сетях. Но расстраиваться особо все-таки не стоит, всегда остается универсальный , доступный во всех странах мира. Однако, если учитывать глобальную тенденцию к смещению операторов связи в сторону стандарта LTE и темпы освобождения ранее занятых частотных диапазонов, то в перспективе можно ожидать появления общего частотного диапазона в разных странах и регионах мира. Значит проблема разработки универсального LTE-смартфона может несколько упроститься и его создание — это лишь вопрос времени. Будем надеяться, что это произойдет очень скоро.

4G LTE — это дорого

Как и стандарт 3G в свое время, новый 4G тоже пока не отличается демократичностью в тарифообразовании. Дешевого 4G LTE пока не предлагают, потому за скорость и быстродействие пользователям приходится платить больше. Однако по-настоящему LTE становится дорогим, если не обращать внимания на объемы скачиваемых или передаваемых данных.

LTE-смартфоны в продаже

Кроме упомянутого iPhone 5, который Apple начнет продавать с 21 сентября этого года, с LTE-сетями могут работать еще несколько смартфонов: HTC One XL, Samsung Galaxy S II LTE, LG Optimus True HD LTE и the Galaxy Note LTE. Также в скором времени в продаже должны появиться LG Optimus G и Galaxy S3 LTE.

Новости LTE технологии

В нашей стране 4G LTE стандарт — это пока только перспектива, при том не самая близкая. Однако для тех, кто часто бывает за границей, возможностей ощутить все преимущества LTE предостаточно. О росте популярности данного стандарта связи говорит также и тот факт, что новый iPhone 5 от Apple выпускается сразу в трех различных вариантах, каждый из которых разработан для определенного диапазона LTE частот. Так модель A1428 (GSM) iPhone 5 поддерживает LTE только в США и Канаде и работает на частоте 700MHz. Модель A1429 (CDMA) ориентирована на сети Штатовских операторов Sprint и Verizon, а также японского KDDI.

И, наконец, A1429 (GSM) iPhone 5 работает на частотах 850 MHz, 1800 MHz и 2100 MHz и является наиболее универсальной, поскольку именно эти частоты используются для LTE-связи во многих странах мира (кроме США и Канады). На сайте Apple support указано, что модель A1429 (GSM) совместима с LTE в Австралии, Гонконге, Германии, Корее, Японии, Сингапуре и Великобритании. Другими словами, это означает, что если вы живете в Украине и часто бываете в Европе, то заказывая iPhone 5 из других стран, выбирайте именно A1429 (GSM). Соответственно, тем кто чаще посещает США лучше купить A1428 (GSM) iPhone 5. Также не стоит забывать, что такое разграничение по региональному признаку касается только LTE-специфики аппаратов, в 3G-сетях каждый из них будет работать в любом регионе планеты.

Samsung может приобрести Nokia Siemens Networks (3 августа 2012)
Южнокорейская корпорация Samsung изучает возможность приобретения одного из крупнейших производителей универсального оборудования для сетей связи NSN. По словам независимых аналитиков и экспертов, сумма данной сделки может составить пятьдесят пять миллиардов долларов. Официальный представитель компании NSN заявил, что интерес руководство корпорации Samsung относится к массовым поставкам и глобальному производству оборудования для уникальных беспроводных сетей мобильной связи.

Следует напомнить, что на сегодняшний день мобильных компаний, способных совершить данную покупку, в мире не так много, а на международном рынке операторского оборудования подобный актив был бы по карману только корпорациям Ericsson или Huawei. Однако в стратегическую политику компании Ericsson подобная финансовая сделка не укладывается, а у второй корпорации уже есть аналогичная инфраструктура. Необходимо упомянуть, что в качестве потенциального покупателя компании NSN рассматривается китайская корпорация . Что же касается южнокорейского производителя мобильной аппаратуры, то ранее компания Samsung выпускала фирменные станции для модели WiMAX, но данный сервис уступил лидирующие позиции инновационной технологии LTE.

Раньше вопросов про LTE задавали много. Сегодня остался самый главный: когда ? Когда это счастье придет к нам, в Россию? Еще месяц назад я не знал, что отвечать людям. Сильно комплексовал по этому поводу, ведь так близок к теме. Сомневался, то ли конец 2012-го, то ли начало 2013-го. Никакой определенности! Но сейчас, после исторического решения ГКРЧ от 8 сентября , всё, наконец, стало ясно.

Я слоупок, что такое LTE?

LTE - Long Term Evolution (англ., долгосрочная эволюция). Когда ученые доводили до ума 3G (он же UMTS, он же WCDMA) в рамках проекта 3GPP, они «рассчитались на первый-второй». Половина стала «докручивать» 3G до HSPA: это были минорные доработки радиоинтерфейса при сохранении основы - принципа кодового разделения каналов (CDMA). Планировали закончить быстро, поэтому называли между собой краткосрочной эволюцией. Другую половину озаботили вопросом: а что, если абоненты захотят мобильного интернета на скоростях на порядок выше, чем в 3G? Такие вопросы быстро не решаются. Тут думать нужно, крепко и долго. Отсюда и эволюция долгосрочная - LTE. Маркетологи, кстати, часто называют LTE 4G.

Про железо

Базовые станции LTE не содержат ничего сверхъестественного. Там есть радиомодули (они же приемопередатчики, TRXы), блок цифровой обработки сигнала (BBU), интерфейсные платы (FE/GE порты, электрические, оптические). Радиомодули бывают выносные - RRU. Монтируются вблизи антенны (для уменьшения потерь в ВЧ-фидере), к BBU подключаются по отпике (стандарт CPRI). Всё как в БС 3G, но называются красиво - evolved NodeB (дословно - продукт эволюции «узла Б», т.е. собственно БС 3G).


Базовая станция

Базовая станция

А поскольку БС разных стандартов больше похожи, чем отличаются, производители быстро догадались делать всё «в одном флаконе». Решение называется SingleRAN. Одна БС на 3 стандарта: GSM, 3G и LTE. Очень удобно оператору с точки зрения экономии места и питания на сайте, сокращения времени на монтаж и так далее. Мы такие уже начали закупать и устанавливать на сети. Так что, как только, так сразу…

Для LTE не нужны какие-то особенные антенны. Вполне подойдут обычные панельные антенны с кросс-поляризацией. Они, например, используются в сетях GSM и в 3G. Правда, если в GSM и 3G две поляризации обычно используются на прием, а на передачу только одна (схема 2Rx/1Tx), то в LTE обе поляризации задействованы по полной, и на прием, и на передачу (схема 2Rx/2Tx). Это необходимо для реализации технологии MIMO2х2. На первом этапе внедрения LTE этого будет достаточно. Дальше пропускную способность сектора можно будет увеличить, добавив еще по одной кросс-пол антенне. Получится схема 4Rx/4Tx и MIMO4х4. Главное разнести антенны в пространстве на достаточное расстояние (порядка 10 длин волн).

Что еще из «железа»? Контроллера сети доступа (как BSC в GSM, или RNC в 3G), как отдельного физического и логического узла в сети LTE, нет, БС подключаются напрямую к узлам Core, причем исключительно по IP. Core используется только пакетный. Называется EPC (evolved Packet Core). К нашему счастью, относительно новый обычный Packet Core превращается в EPC путем апгрейда софта. Функционал MME (узел управления мобильностью в LTE) можно накатить на используемый для GPRS/3G узел SGSN, а с функциями PGW/SGW должен уметь справляться GGSN. Не скажу, что все SGSN/GGSN-ы «Билайна» HW-ready к LTE, но мы уверенно движемся в этом направлении.

Плюс SAE-HSS (хранилище абонентских профайлов), который также поднимается на существующей HW-платформе ngHLR"a. Вот, собственно, и вся сеть LTE.


Архитектура LTE

Про транспорт

GE-порты на БС. Это, как любил говаривать Винни Пух, неспроста: вы же наверняка понимаете, какой должен быть backbone при таком backhaul"e! Если у кого-нибудь из уважаемых читателей есть несколько свободных миллиардов долларов, могу подсказать, как потратить их с пользой…

Про частоты

В отличие от других стандартов мобильной связи LTE не привязан к какому-то конкретному диапазону частот. В этом его сила. Разработчики (3GPP) определили более 30 диапазонов, для которых производители могут выпускать стандартное радиооборудование LTE. Сюда попали как частоты, используемые сейчас под другие стандарты (например, 900, 1800 (GSM), 2100 (UMTS), 2500 (WiMAX), так и “новые”, например 700-800 Мгц (так называемый “цифровой дивиденд”). Понятно, что далеко не все из возможных диапазонов найдут широкое распространение в мире. Скорее всего, в итоге “выживет” не больше 4-5 диапазонов. Большее количество очень трудно реализовать в одном абонентском девайсе, а это уже проблема для обеспечения глобального роуминга. Если спросите, на какие диапазоны сделать ставку, мои предпочтения следующие:
  • 800 Мгц (3GPP band 20) – выделен или планируется под LTE практически во всех европейских странах, включая Россию; выгоден с точки зрения затрат на обеспечение сплошного покрытия; оборудование выпускается всеми ведущими производителями;
  • 2,5 Ггц (3GPP band 7) – выделен или планируется под LTE практически во всех странах Европы и Азии, включая Россию; выгоден при обеспечении емкости в хот-спотах; оборудование выпускается всеми ведущими производителями.
  • 1800 Мгц (3GPP band 3) – будет освобождаться по мере уменьшения количества GSM-only телефонов и расширения покрытия 3G (чтобы было, куда переводить голос); хорош с точки зрения обеспечения в сети баланса между емкостью и покрытием; GSM-операторам даст возможность сэкономить за счет переиспользования инфраструктуры сети доступа (приемопередатчики, антенны); оборудование выпускается почти всеми ведущими производителями
Вообще, выбор правильного диапазона для развития LTE – задача не из простых. В нижних диапазонах, где всё отлично с покрытием, проблема найти полосу достаточной для полноценного LTE ширины. В верхних обычно хорошо с частотным ресурсом, но БС нужно ставить через каждые 400-500 метров, разоришься на сплошном покрытии! Вероятно, большинство сетей LTE, аналогично GSMу, будут двух-диапазонные.

Про скорости

Максимальные скорости передачи данных – ключевой показатель крутости стандарта для конечных пользователей. И LTE реально крут! Можно долго говорить о теоретических возможностях разных стандартов, перспективах их развития и так далее, но то, что абонентам в уже работающих сетях LTE доступны скорости более 100 Мбит/с – это факт. И это только начало светлого будущего: уверен, что достижение в сетях LTE скоростей до 1 Гбит/с – вопрос нескольких лет. Дальше посмотрим. Скорее всего, нужен будет очередной прорыв, как в теории радиосвязи, так и в технологии производства элементной базы.

Про покрытие

Зона покрытия одной БС в LTE может быть абсолютно разной. От чего это зависит прежде всего? Правильно! От используемого диапазона частот. Если сравнить крайние варианты, то площадь покрытия одной eNodeB, работающей в самом нижнем LTE-диапазоне (700 Мгц) оказывается, при прочих равных, в 5-6 раз больше, чем для базы, работающей в 2.5 ГГц. В условиях городской застройки радиус соты, таким образом, может быть от нескольких сот метров до нескольких километров. Что касается рекорда по дальности действия БС LTE, он был установлен в ходе трайла греческого оператора Cosmote на оборудовании Huawei в начале этого года – на расстоянии 102 км от БС была получена скорость передачи 135 Мбит/с. Конечно, это была прямая видимость и один абонент в соте. Но с точки зрения предельных возможностей стандарта – довольно убедительно.

Про гаджеты

Доступные сейчас на рынке абонентские устройства с поддержкой LTE включают (по типам):


USB-модемы (на картинке – Huawei E398)

Смартфоны (на фото – HTC Thunderbolt, OS Android)

Планшет (на фото – Samsung Galaxy Tab 10.1, OS Android)


Портативный LTE/Wi-Fi Hotspot (на фото – Samsung SCH-LC11)


Ноутбук (на картинке HP Pavilion DM1-3010NR)

На данный момент на рынке доступно уже более 100 абонентских устройств с поддержкой LTE и это количество растет с каждым днем. Основные игроки на этом рынке – наши старые знакомые: Samsung, LG, HTC, ZTE, Huawei.

Про опыты

Посмотреть, как работает LTE вживую, хотелось очень давно. Первый раз довелось в начале прошлого года в Стокгольме. Спасибо коллегам из Ericsson, позвали посмотреть на первую в мире коммерческую сеть LTE – Telia-Sonera. Честно признаться, был немного разочарован. Скорости, пока катались по городу на микроавтобусе, колебались в пределах от 0 до 8 Мбит/с. К тому же, соединение постоянно рвалось. Коллеги оправдывались тем, что сеть пока не оптимизирована, БС мало, диапазон высокий - 2.5 Ггц. Всё, конечно, понятно, но хотелось чуда.

По приезде из Швеции задумали построить пилотную сеть LTE в одной из наших стран. Проще всего договориться с Регулятором о выделении (на время пилота) частот под LTE оказалось в Казахстане. Диапазон частот выбрали самый низкий из доступных – 700 Мгц (точнее band 13, именно те номиналы, на которых строит сеть американский Verizon). К концу октября 2010 построили в сотрудничестве с Alcatel-Lucent сети в двух главных городах Казахстана (Астане и Алматы). То что получилось показали и чиновникам, и журналистам, и наиболее интересующимся из потенциальных клиентов. Подробнее можно почитать .

Про голос

Нужна ли передача голоса в LTE? С одной стороны, стандарту мобильной связи, претендующему на роль глобального, без базовой связной услуги оставаться, вроде как, неприлично. С другой – представить, что покрытие LTE появится там, где нет GSM или 3G, сложно. То есть без голоса абонент всяко не останется.
Рано или поздно придёт LTE-Advanced, потребуются дополнительные частоты. А где их взять, как не у сетей GSM и 3G? Тогда LTE останется один на один с абонентом, которому, как и раньше, нужно будет поговорить - а, значит, голос в LTE обязательно будет, вопрос времени. Сейчас в первых коммерческих сетях, для предоставления голосовых звонков реализована функция CS Fallback. Получив по служебному каналу в сети LTE сообщение о входящем вызове, абонентское устройство переключается в режим GSM или 3G и информирует сеть о готовности принять вызов. После этого звонок проключается через GSM/3G CS Core.


CS Fallback в действии

В будущем, при переходе к all-IP архитектуре, голос в мобильных сетях останется только в виде VoIP. Тогда вопрос выбора сети радиодоступа, через которую будут идти голосовые звонки, сведется к емкостным характеристикам – чем больше пропускная способность сектора, тем больше одновременных звонков он может обслужить.

В настоящее время LTE-сети относят к четвертому поколению беспроводной связи (4G). Основные преимущества в сравнении с предыдущим поколением – высокая скорость передачи данных. Это очевидный плюс для пользователей. В свою очередь, провайдеры могут использовать LTE-технологию для увеличения без установки нового оборудования.

Оптимальный радиус покрытия базовой станции LTE равняется 5 км. В случае необходимости указанный диапазон может быть расширен до 100 км. Естественно, такая большая зона покрытия обеспечивается установкой антенны на достаточной высоте и не подразумевает ее использование в городских условиях.

Первая в мире коммерческая LTE-сеть была запущена в Швеции в 2009 году. В России развитие данного стандарта до сих пор не получило активной поддержки. Это обусловлено тем, что для работы с LTE-сетями операторы должны получить в распоряжение частоты определенного диапазона.

В мае 2012 года оператор Yota активировал работы LTE-сети в Москве. До этого времени большинство услуг предоставлялось с использованием канала WiMax. Активные пользователи Yota заблаговременно получили возможность обменять «старые» модемы на аппаратуру, работающую с LTE-каналом. Стоит отметить, что до запуска сети LTE в столице подобные каналы уже работали в Новосибирске и Краснодаре.

Медленная интеграция технологий LTE негативно сказывается на развитии компьютерной техники. Это касается, в основном, всевозможных планшетных компьютеров и коммуникаторов. Определенная часть этих устройств поддерживает возможность подключения к сетям LTE.

Работа LTE-сетей в России обеспечена таким образом, что при выходе из зоны покрытия соответствующих антенн осуществляется мгновенное переключение на сравнительно старые каналы. Естественно, данная функция поддерживается только теми устройствами, которые могут работать с каналами LTE, WiMax и GPRS.

Источники:

  • как работает lte

Технологии мобильной связи постоянно развиваются. Чтобы иметь возможность предоставлять клиентам конкурентные услуги, сотовые операторы стремятся использовать последние достижения в данной области. Наиболее перспективным направлением сегодня является ввод в эксплуатацию сетей класса 4G.

К классу 4G сегодня относят сети мобильной связи, созданные на базе технологий четвертого поколения. Они характеризуются высокой скоростью обмена информацией, а также улучшенным качеством голосовой связи. В отличие от 3G, сети данного класса используют только пакетные протоколы передачи данных (IPv4, IPv6). Скорость обмена составляет более 100 Мбит/с для подвижных и более чем 1 Гбит/с для стационарных абонентов. Передача голоса в сетях 4G осуществляется посредством VoIP. В настоящее время существуют две технологии, признанные отвечающими всем требованиям сетей класса 4G. Это LTE-Advanced и WiMAX (WirelessMANAdvanced).

Разработка технологии LTE, являющейся прототипом LTE-Advanced, была начата в 2000 году компаниями Hewlett-Packard и NTT DoCoMo. Данное направление являлось перспективным, поскольку даже сети третьего поколения лишь начинали набирать популярность. Отвечать требованиям 4G технология стала только к десятому релизу. Однако, поскольку данный стандарт можно было применять в уже существующих мобильных сетях, он стал пользоваться поддержкой операторов сотовой связи. Первая сеть на базе LTE-Advanced была официально запущена в декабре 2009 года в городах Стокгольм и Осло.

Технология WiMAX является развитием стандарта беспроводной передачи данных Wi-Fi. Ее разработкой занимается организация WiMAX Forum, созданная в 2001 году. Особенностью WiMAX считается существование различных протоколов обмена информацией для статичных и подвижных абонентов. Первая сеть сотовой связи, использующая технологию WiMAX, была открыта в декабре 2005 года в Канаде.

Сегодня сети 4G начинают обретать все большую популярность во всем мире. Однако их внедрение сопряжено с определенными трудностями. Одна из них заключается в том, что радиоволны высоких частот, используемые в данных сетях, крайне плохо проникают сквозь городские строения. Поэтому (по сравнению с 3G) требуется гораздо больше базовых станций для обеспечения качественного покрытия.