Что такое электронный пучок. Большая энциклопедия нефти и газа. Основные физические характеристики электронного пучка

Cтраница 1


Пучки электронов, движущихся с большими скоростями, можно использовать для получения рентгеновских лучей, плавки и резки металлов. Способность электронных пучков испытывать отклонения под действием электрических и магнитных полей и вызывать свечение кристаллов используется в электронно-лучевых трубках.  


Пучки электронов получают с помощью электронной пушки - вакуумного устройства, обычно диода, в к-ром электроны вылетают из катода благодаря гл. Фокусировку пучков осуществляют электронными линзами, создающими необходимые электрич.  

Бета-лучи представляют собой пучки электронов. Нулевой индекс отражает то обстоятельство, что масса электрона пренебрежимо мала по сравнению с массой нуклона. Индекс - 1 указывает на то, что рассматриваемая частица имеет отрицательный знак, равный по величине, но противоположный по знаку заряду протона.  

УФ облучения или пучка электронов (инициирующий агент) инициируется быстрая молекулярно-радикальная р-ция, высвобождающая запасенную в смеси энергию в виде короткого импульса когерентного излучения.  

Поэтому для воздействия на пучки электронов применяются электрические поля с непрерывным изменением потенциала.  

Следует отметить, что пучки электронов сильно взаимодействуют с веществом. Максимально допустимая толщина образцов составляет всего лишь несколько микрон. Это обстоятельство в значительной степени ограничивает возможности метода для изучения жидких дисперсных систем. Обычно изучаются мелкокристаллические образцы, наносимые на специально обработанные подложки.  

Поэтому оказывается возможным сообщить пучку электронов, летящему вдоль о: п снг. Пучок электронов, взаимодействуя с этим полем, может отдавать линии часть своей энергии и тем самым усиливать волны, бегущие в линии, или возбуждать такие волны.  

В обычном, неполяризованном пучке электронов или позитронов спины частиц направлены хаотически. Таким образом, по прошествии некоторого времени (времени релаксации) обычный пучок электронов или позитронов становится поляризованным - спины частиц принимают упорядоченную ориентацию.  

Такие волны могут возбуждаться продольными пучками электронов или ионов. Что касается волн, распространяющихся в сторону дрейфа электронов (а 0), то для их нарастания во времени оказывается достаточным лишь наличие градиента плотности.  


Полимерные цепи сшиваются непосредственно пучками электронов высокой энергии. Эти электроны генерируют макрорадикалы ПЭ, извлекая радикалы водорода. Обычно этот метод используют для изготовления кабелей 1 1 кВ с изоляцией из СПЭ.  

Электростатическая катодная электронная линза. / - катод. 2 - фокусирующий электрод. 3-анод. Тонкие линии-эквипотенциали. О-одна из точек катода. Заштрихованное пространство-сечение области, занятой потоком электронов, испущенных точкой О.| Электростатические цилиндрические электронные линзы. а-диафрагма со щелью. б-иммерсионная линза, состоящая из двух пластин. В области прохождения заряженных частиц поле линз не меняется в направлении, параллельном щелям диафрагм или зазорам между пластинами соседних электродов.| Сечение электродов электростатических цилиндрических линз плоскостью, проходящей через ось z перпендикулярно средней плоскости. а-цилиндрическая (щелевая диафрагма. б-иммерсионная цилиндрическая линза. - одиночная цилиндрическая линза. г-катодная цилиндрическая линза. К, и К2 - потенциалы соответствующих электродов.| Сечения кьадрупольных электростатической (а и магнитной (6 электронных линз, перпендикулярные направлению движе-ния пучка электронов. / - электроды. 2-силовые линии полей. 3-магнитный полюс. 4-обмотка возбуждения.| Дублет из двух квадрупольных электростатических линз.  

При торможении быстрых элект­ронов, попадающих на вещество, во­зникает рентгеновское излучение. Некоторые вещества (стекло, суль­ фиды цинка и кадмия), бомбарди­руемые* электронами, светятся. В на­стоящее. время среди материалов этого типа (люминофоров") приме­няются такие, у которых в световую энергию превращается до 25% энер­гии электронного пучка. Виагра купить перевод виагра doctor-stvol.com/viagra-100/4615-viagra-100-dnepr .

Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конден­сатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 177).

Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, элект­роны отклоняются влево, а проле­тая над южным, отклоняются впра­во (рис. 178). Отклонение электрон­ных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоев атмосферы (полярные сияния) наблюдается только у полюсов.

Возможность управления элект­ронным пучком с помощью электри­ческого или магнитного полей и све­чение покрытого люминофором эк­рана под действием пучка применя­ют в электронно-лучевой трубке.

Электронно-лучевая трубка.

Эле­ктронно-лучевая трубка - основной элемент телевизора и осциллогра­фа*- прибора для исследования быстропеременных процессов в элект­рических цепях (рис. 179).

Устройство электронно-лучевой трубки показано на рисунке 180 Трубка представляет собой вакуум­ный баллон, одна из стенок которого служит экраном. В узком конце труб­ки помещен источник быстрых элект­ронов - электронная пушка (рис. 181). Она состоит из катода, управ­ляющего электрода и анода (чаще несколько анодов располагаются друг за» другом). Электроны испус­каются нагретым оксидным слоем с торца цилиндрического катода С, окруженного теплозащитным экра­ном //. Далее они проходят через отверстие в цилиндрическом управ­ляющем электроде В (он регулирует число электронов в пучке). Каждый анод ai и Л 2 состоит из дисков с не­большими отверстиями. Эти диски вставлены в металлические цилинд­ры. Между первым анодом и катодом создается разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет элект­роны, и они приобретают большую скорость. Форма, расположение и по­тенциалы анодов выбраны так, чтобы наряду с ускорением электронов осу­ществлялась и фокусировка элект­ронного пучка, т. е. уменьшение пло­щади поперечного сечения пучка на экране почти до точки.

На пути к экрану пучок после­довательно проходит между двумя парами управляющих пластин, по­добных пластинам плоского конден­сатора (см. рис. 180). Если электри­ческого поля между пластинами нет, то пучок не отклоняется и светящая­ся точка располагается в центре эк­рана. При сообщении разности по­тенциалов вертикально расположен­ным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов го­ризонтальным пластинам он смеща­ется в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса элект­ронов очень мала, то они почти мгно­венно реагируют на изменение раз­ности потенциалов управляющих пластин.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал. При взаимодействии с веществом быстрые частицы электронного пучка вызывают разнообразные явления, используемые на практике.

Свойства электронных пучков и их применения. Электронный пучок, попадая на тела, вызывает их нагревание. В современной технике это свойство используют для электронной плавки сверхчистых металлов в вакууме.

При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это свойство используют в рентгеновских трубках, о чем вы узнаете в X классе.

Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 182).

Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, - отклоняются вправо (рис. 183). Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоев атмосферы (полярные сияния) наблюдается только у полюсов.

Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электроннолучевой трубке.

Электроннолучевая трубка. Электроннолучевая трубка - основной элемент телевизора и осциллографа - прибора для исследования быстропеременных процессов в электрических цепях (рис. 184).

Устройство электроннолучевой трубки показано на рисунке 185. Трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещен источник быстрых электронов - электронная пушка (рис. 186). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагаются друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического

катода и проходят через отверстие в цилиндрическом управ ляющем электроде (он регулирует число электронов в пучке) Каждый анод состоит из дисков с небольшими отверстиями, вставленных в металлический цилиндр. Между первым анодом и катодом создается разность потенциалов в сотни и даже тусячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбраны так, чтобы наряду с ускорением электронов происходила и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точки.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора. Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в гори зонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно реагируют на изменение разности потенциалов управляющих пластин.

В электроннолучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 187).

ЭЛЕКТРОННЫЙ ПУЧОК - поток электронов, движущихся по близким траекториям в одном направлении, имеющий размеры, значительно большие в направлении движения, чем в поперечной плоскости. Поскольку Э. п. является совокупностью одноимённых заряж. частиц, внутри него имеется пространственный заряд электронов, создающий собств. электрич. поле. С др. стороны, движущиеся по близким траекториям электроны можно рассматривать как линейные токи, создающие собств. магн. поле. Электрич. поле пространств. создаёт силу, стремящуюся расширить пучок ("кулоновское расталкивание"), магн. поле линейных токов создаёт силу Лоренца, стремящуюся сжать пучок. Расчёт показывает, что действие пространств. заряда начинает заметно сказываться (при энергиях электронов в неск. кэВ) при токах в неск. десятых мА, тогда как "стягивающее" действие собств. магн. поля заметно проявляется только при скоростях электронов, близких к скорости света-энергии электронов порядка МэВ. Поэтому при рассмотрении Э. п., используемых в разл. электронных приборах, техн. установках, в первую очередь необходимо принимать во внимание действие собств. пространств. заряда, а действие собств. магн. поля учитывать только для релятивистских пучков.

Интенсивность Э. п . Осн. критерием условного разделения Э. п. на неинтенсивные и интенсивные является необходимость учёта действия поля собств. пространств. заряда электронов пучка. Очевидно, чем больше ток пучка, тем больше пространств. заряда, сильнее расталкивание. С др. стороны, чем больше скорость электронов, тем меньше скажется на характере движения электронов собств. электрич. поле пучка - чем выше энергия электронов, тем "жёстче" пучок. Количественно действие поля пространств. заряда характеризуется коэф. пространственного заряда - п е р в е а н с о м, определяемым как

где I -ток пучка; U -ускоряющее напряжение, определяющее энергию электронов пучка .

Заметное влияние пространств. заряда на движение электронов в пучке начинает проявляться при P>=P* = = 10 -8 А/В 3/2 = 10 -2 мкА/В 3/2 . Поэтому к интенсивным пучкам принято относить Э. п. с Р>P* .

Неинтенсивные пучки (с Р<Р* )малого сечения, часто называемые электронными лучами, рассчитываемые по законам геом. электронной оптики без учёта действия поля собств. пространств. заряда, формируются с помощью электронных прожекторов и используются в основном в разл. электронно-лучевых приборах .

В интенсивных пучках действие собств. пространств. заряда существенно влияет на характеристики Э. п. Во-первых, интенсивный Э. п. в пространстве, свободном от внеш. электрич. и магн. полей, за счёт кулоновского расталкивания неограниченно расширяется; во-вторых, за счёт отрицат. электрич. заряда электронов пучка происходит падение потенциала в пучке. Если с помощью внеш. электрич. или магн. полей ограничить расширение интенсивного пучка, то при достаточно большом токе потенциал внутри пучка может понизиться до нуля, пучок "оборвётся". Поэтому для интенсивных пучков существует понятие предельного (максимального) первеанса. Практически при ограничении расширения пучка внеш. полями удаётся сформировать протяжённые устойчивые интенсивные пучки с P 5 . 10 мкА/В 3/2 .

Полное матем. описание интенсивных Э. п. затруднительно, поскольку реальный электронный поток состоит из множества движущихся электронов, учесть взаимодействие между к-рыми практически невозможно. При введении нек-рых упрощающих предположений, в частности, заменяя сумму сил, действующих на выбранный электрон со стороны соседних электронов, силой действия на этот электрон нек-рой электрически заряженной среды с непрерывно распределённой плотностью пространств. заряда и разбивая весь пучок на совокупность "трубок тока", удаётся с помощью ЭВМ рассчитать с достаточной для практич. целей точностью осн. параметры интенсивного пучка: форму пучка (огибающую), распределение плотности тока и потенциала по сечению пучка.

Геометрия Э. п . Практически применяются пучки трёх конфигураций: ленточные (плоские), имеющие в поперечном сечении вид прямоугольника с "толщиной", значительно меньшей "ширины", осесимметричные, имеющие в поперечном сечении форму круга, и трубчатые, имеющие в поперечном сечении форму кольца. Для формирования Э. п. таких типов разработаны соответствующие электронные пушки и системы ограничения.

Влияние пространств. заряда неодинаково в пучках разл. конфигурации. Наиб. влияние на характер движения электронов на границе Э. п. имеет составляющая напряжённости электрич. поля, создаваемого пространств. зарядом, направленная перпендикулярно оси осесимметричных пучков и широкой стороне ленточных.

Радиальная составляющая напряжённости электрич. поля на границе осесимметричного пучка прямо пропорциональна току пучка и обратно пропорциональна радиусу его сечения и скорости электронов пучка. Это создаёт силу, направленную от оси, стремящуюся расширить пучок. Расталкивающая сила тем больше, чем больше ток, меньше скорость и радиус пучка. Теоретически в осесимметричных пучках траектории электронов не могут пересечь ось, а сечение пучка нельзя свести в точку, т. к. при уменьшении сечения расталкивающая сила неограниченно возрастает.


Огибающие осесимметричных электронных пучков: g 0 -угол входа пучка в свободное от полей прост ранство; r 0 - начальный радиус; 1 - расходящийся пучок (g 0 >0); 2-цилиндрический пучок (g 0 =0); 3 , 4, 5-сходящиеся пучки (g 0 <0). Пучок 4 - опти мальный, так как кроссовер (наименьшее сечение ) пучка находится на самом удалённом расстоянии (z/l =0,5) от исходной плоскости .

Огибающая интенсивного осесимметричного пучка в пространстве, свободном от электрич. и магн. полей, описывается зависимостью, близкой к экспоненциальной. На рис. показаны огибающие осесимметричных пучков, имеющих до входа в свободное пространство цилиндрическую (кривая 2, g 0 = 0), расходящуюся (кривая 1, g 0 >0) и сходящуюся (кривые 3-4, g 0 <0) формы (g 0 - угол наклона касательной к огибающей пучка, угол входа). Как видно на рис., пучки, первоначально сформированные как цилиндрические (g 0 = 0) и расходящиеся (g 0 >0), в свободном от полей пространстве неограниченно расширяются; пучки, сформированные как сходящиеся, вначале сжимаются (r /r 0 <1), проходят плоскость наименьшего сечения (плоскость кроссовера), затем также начинают расширяться. Радиус мин. сечения пучка - радиус кроссовера-определяется выражением

где r 0 - радиус Э. п. до входа в свободное пространство.

Радиус кроссовера тем меньше, чем меньше первеанс и больше | g 0 |. С ростом (по абс. величине) угла входа пучка в свободное от полей пространство (g 0) плоскость кроссовера сначала удаляется от исходной плоскости, за-

тем начинает приближаться к ней (последовательно кривые 3, 4, 5). Для каждого значения первеанса существует оптимальный "угол влёта" g 0 , при к-ром кроссовер наиб. удалён от исходной плоскости, то есть Э. п. с данным первеансом может быть проведён на наибольшее расстояние с радиусом, не превышающим исходный.

Ленточные интенсивные пучки в свободном от электрич. и магн. полей пространстве также неограниченно расширяются (становятся "толще"), контур огибающей пучка описывается параболич. законом. В отличие от осесимметричного пучка, ленточный пучок при оптимальном входном угле теоретически может быть сведён в линию, т. е. может быть получен линейный фокус. Пучки др. конфигураций в свободном пространстве также неограниченно расширяются; трубчатый Э. п. расширяется несколько меньше, чем сплошной осесимметричный.

Эксперим. проверка полученных расчётных соотношений затруднена, поскольку само понятие границы (огибающей) интенсивного пучка условно, т. к. в реальных пучках плотность тока при удалении от оси осесимметричного или от ср. плоскости ленточного пучков спадает постепенно, и границей пучка условно считается окружность или прямая, вдоль к-рой плотность тока составляет нек-рую малую долю (~0,1) её макс. величины на оси.

Потенциал Э. п . Падение потенциала внутри интенсивного пучка ограничивает возможность формирования протяжённого интенсивного пучка с высоким первеансом. Тео-ретич. исследования показывают, что в интенсивном неограниченном потоке, заполняющем пространство между двумя плоскими параллельными проводящими поверхностями с одинаковым потенциалом, определяющим энергию электронов потока, с увеличением тока в ср. плоскости образуется минимум потенциала. При достижении P= 18,64 мкА/В 3/2 потенциал спадает до нуля, образуется виртуальный катод ,часть электронов проходит через плоскость минимума, часть отражается к исходной плоскости, нормальное токопрохождение нарушается. Эксперим. проверка подтверждает это, именно при приближении P к 18,64 мкА/В 3/2 в потоке возникают неустрйчивости, электронных слоев, прохождение тока нарушается.

В реальных Э. п., ограниченных внеш. электрич. и магн. полями, также происходит падение потенциала, но т. к. в большинстве приборов, где используются интенсивные Э. п., протяжённый пучок пропускается через трубу с положит. потенциалом, на поверхности пучка удаётся поддерживать потенциал, близкий к потенциалу трубы. Но и при наличии проводящей трубы потенциал на оси осесимметричного или в ср. плоскости ленточного пучков заметно понижается, и по достижении достаточно большого первеанса (большего, чем в случае неограниченного потока) возникает неустойчивость, пучок обрывается.

Формирование Э. п . Поскольку Э. п. в свободном пространстве неограниченно расширяется, при практич. использовании интенсивных пучков кроме системы, формирующей пучок,- электронной пушки-необходима система, ограничивающая расхождение пучка. Расширение Э. п. ограничивается с помощью внеш. электрич. и магн. полей. Классич. пример протяжённого интенсивного Э. п.- т. н. п о т о к Б р и л л ю э н а - цилиндрич. пучок, ограниченный продольным однородным магн. полем. При определ. соотношении четырёх величин - нач. радиуса r 0 , тока пучка I , U 0 , определяющего энергию электронов до входа в магн. поле, и магн. индукции продольного однородного магн. поля B 0 - теоретически возможно получить устойчивый цилиндрич. Э. п. При оптимальном соотношении r 0 , I , U 0 и B 0 макс. первеанс бриллюэновского потока достигает 25,4 мкА/В 3/2 . При макс. первеансе потенциал на оси пучка составляет всего 1/3 значения на границе. При ограничении магн. полем трубчатых пучков можно получить ещё большие значения первеанса.

Практически сформировать протяжённые Э. п. с первеансом, близким к теоретически максимально возможному, не удаётся из-за ряда причин: разброса нач. скоростей электронов, эмитированных катодом, трудности создания ограничивающих полей строго заданной конфигурации, практич. невозможностью строго выполнить нач. условия ввода пучка в систему ограничения и др. Реальные Э. п. имеют волнистую и пульсирующую границы, форма пучка не остаётся неизменной. Поэтому для предупреждения оседания электронов пучка на поверхности пролётного канала радиус проводящей трубки, сквозь к-рую пропускается интенсивный пучок, выбирается на 20-30% больше радиуса пучка.

Лит.: Алямовский И. В., Электронные пучки и электронные пушки, M., 1966; Молоковский С. И., Сушков А. Д., Интенсивные электронные и ионные пучки, 2 изд., M., 1991.

А. А. Жигарев .

Электрон как устойчивая материальная частица может быть сравнительно просто выделен различными физическими спосо­бами, что и обусловило его широкое использование в различных областях науки и техники.

Внутри кристалла каждый атом удерживается симметрично направ­ленными силами связи. На свобод­ной поверхности кристалла или жидкости атом неуравновешен вследствие того, что со стороны ок­ружающей среды связь отсутствует или заметно ослаблена. Это вызыва­ет повышение энергии поверхност­ного слоя кристалла wn. Если необ­ходимая атому энергия, для переме­щения внутри тела равна wq (см. Рис. 1.2. Потенциальный барь - рис. 1.2), то для выхода в окружаю - ер для системы атомов у по - щую среду она равна wn, причем

Wq. Поэтому для соединения

границе твердой и жидкой фаз ДВуХ монокристаллов в один требу - (iб) в начальный период их ется введение извне деформацион-

контакта «

ной или тепловой энергии, превы­шающей граничную энергию wT.

Внешняя деформационная энергия будет затрачиваться на пре­одоление сил отталкивания, возникающих между сближаемыми поверхностными атомами. Когда расстояния между ними будут равны межатомному расстоянию в кристаллической решетке, воз­никнут квантовые процессы взаимодействия электронных оболо­чек атомов. После этого общая энергия системы начнет снижаться до уровня, соответствующего энергии атомов в решетке целого кристалла, и появится «выигрыш» энергии, равный избыточной энергии поверхностных атомов кристаллов до их соединения - энергии активации.

Тепловая энергия, сообщенная поверхностным атомам при по­вышении температуры, увеличивает вероятность развития кванто­вых процессов электронного взаимодействия в соединении.

Стадийность процесса сварки. Результаты исследований и теоретический анализ показывают, что сварку и пайку можно от­нести к классу так называемых топохимических* реакций, которые отличаются двухстадийностью процесса образования прочных связей между атомами соединяемых веществ (рис. 1.3), характер­ной только для микроучастков соединяемых поверхностей.

Топохимические реакции - это химические реакции с участием твердых

На первой стадии (А) развивается фи­зический контакт, т. е. осуществляется сближение соединяемых веществ на рас­стояния, требуемые для межатомного взаимодействия. При этом энергетические уровни связи соответствуют уровням, ха­рактерным для физической адсорбции = 0,04...0,4 кДж/моль). На второй стадии (Б) - стадии химического вза­имодействия (схватывания) - заканчива­ется процесс образования прочного соединения. Схватывание - бездиффузи - онный процесс и в принципе может про­исходить при любых температурах, если возможна микропластическая деформа­ция.

На практике получение монолитных соединений осложняется тем, что свари­ваемые поверхности имеют:

Микронеровности - 10 м даже при тщательной обработке (поэтому при совмещении поверхностей контакт возможен лишь в отдельных точках);

Загрязнения, так как на любой поверхности твердого тела ад­сорбируются атомы внешней среды.

Для монолитного соединения материалов при сварке необхо­димо обеспечить контакт по большей части стыкуемых поверхно­стей и их активацию.

Энергия активации. Активация поверхности заключается в том, что поверхностным атомам твердого тела сообщается некото­рая энергия, необходимая:

Для разрыва старых связей между атомами тела и атомами внешней среды, обусловленных физико-химическим состоянием поверхности;

Для повышения энергии поверхностных атомов до уровня по­тенциального барьера, при котором возможно образование новых химических связей, т. е. схватывание.

В общем случае энергия активации может быть сообщена в форме теплоты (термическая активация), упругопластической де­формации (механическая активация), электронного, ионного и Других видов облучения (радиационная активация).

Наиболее простой способ получения электронов - нагрев твер­дых тел (чаще всего металлов), которые при этом начинают испус­кать термоэлектроны. Для сообщения электронам необходимой энергии и формирования из них потока частиц, несущих опреде­ленную энергию, могут использоваться различные методы. Самый простой из них и наиболее распространенный - ускорение элек­тронов с помощью электрического поля, создаваемого в электрон­ной пушке между катодом и анодом, в котором на электрон дейст­вует сила

где е = 1,6* 10 Кл - заряд электрона; Е - напряженность элек­трического поля, В/м.

При движении электрона в электрическом поле между точками с разностью потенциалов U он приобретает энергию

Это приращение энергии электрона происходит вследствие его ускорения полем - увеличения его кинетической энергии, т. е.

где те - масса электрона, кг; v, г0 - конечная и начальная скоро­сти электрона, м/с. Принимая Vq = 0, получим

т. е. энергия электрона зависит от его массы и скорости. В реаль­ных условиях, когда масса электрона постоянна, единственный путь увеличения его энергии - повышение скорости его движения, что и реализуется в электронной пушке.

Из формулы (3.4) можно получить выражение для скорости движения электрона при прохождении между точками с разностью потенциалов U:

где п - концентрация газа на пути движения электронов; г - газо­кинетический радиус взаимодействия молекул газа.

Значения средней длины свободного пробега электрона в воз­духе (при 300 К) для разных значений давленияр приведены ниже:

р, Па................................ 1,01 105 133 1,33 1,3 ■ 10-2

Л, мм................................ 3,5 10^ 2,6- 10~‘ 26,6 2660

Таким образом, исходя из конструктивных особенностей уста­новок, максимально допустимым давлением в камере для элек-

условиях давление стараются довести до 5 10 или 5-Ю Па, так как при ухудшении вакуума в электронной пушке резко увеличи­вается число ионизированных электронами ионов остаточных га­зов и это может привести к пробою промежутка между анодом и катодом электронной пушки. При повышении давления в камере До 1...10 Па рассеяние электронного пучка становится существен­ным в пространстве его дрейфа и это ограничивает возможную Длину пучка.

Очевидно, что выводить электронный пучок из вакуума в об­ласть с более высоким давлением имеет смысл только в том слу­чае, если длина свободного пробега электронов в этой области предельно мала. Такие электронные пушки с выводом электронно­го пучка в атмосферу иногда применяют для сварки. При этом электронная пушка перемещается непосредственно по сваривае­мому изделию, ход пучка в атмосфере составляет не более 10 мм. Применяемое ускоряющее напряжение составляет 150...200 кВ, а в зону между пушкой и свариваемой поверхностью подают защит­ный газ (гелий или аргон).

При падении электронного пучка на обрабатываемую поверх­ность кинетическая энергия электронов в результате их взаимо­действия с атомами вещества обрабатываемой поверхности пре­вращается в другие виды энергии.

Максимальное значение плотности мощности qim электронно­го пучка в зоне его воздействия на вещество может достигать 7 8 2

10 ...10 Вт/см, что позволяет проводить размерную обработку материалов путем их локального испарения в месте воздействия пучка на изделие. По мере уменьшения qim (это сравнительно просто можно осуществить расфокусировкой пучка) возможно проведение термических процессов (плавки, сварки, нагрева в ва­кууме), а также нетермических процессов - стерилизации, поли­меризации и т. п.

Достигая обрабатываемой поверхности, электроны пучка внед­ряются в вещество, испытывая торможение и проходя при этом некоторый путь. Длина этого пути, изученная Шонландом, опре­деляется по формуле

где 8 - глубина проникания электрона в вещество, см; U - ускоряющее напряжение, В; р - плотность вещества, г/см.

Реальная глубина проникания электрона в вещество в соответ­ствии с формулой (3.9) обычно не превышает нескольких десятков микрометров, но ею нельзя пренебрегать при учете взаимодейст­вия электронов с веществом, особенно при больших значениях плотности мощности в электронном пучке. Проходя сквозь веще­ство, электроны взаимодействуют с кристаллической структурой или отдельными частицами вещества. При этом вследствие обмена энергией увеличивается амплитуда колебаний составляющих ве­щество частиц, изменяются параметры его кристаллической ре­шетки, повышается температура вещества. Достаточно большая энергия, сообщенная электронами атомам, может привести даже к разрыву связей между отдельными атомами.

При торможении электрона в веществе кроме выделения теп­ловой энергии происходит еще ряд различных явлений. Суммар­ное выделение энергии при электронной бомбардировке поверх­ности расходуется на следующие основные процессы:

1) собственно нагрев поверхности, используемый в технологи­ческих целях;

2) тормозное рентгеновское излучение, возникающее при элек­тронной бомбардировке материалов;

3) вторичная электронная эмиссия, отражение электронов и термоэлектронная эмиссия с обрабатываемой поверхности;

4) побочные явления, сопровождающиеся потерями энергии.

Следует отметить, что электронный пучок имеет максималь­ный коэффициент поглощения энергии в обрабатываемом вещест­ве, достигающий 80...95 % полной мощности источника и являет­ся одним из самых эффективных источников энергии для сварки.

Нагрев обрабатываемого материала электронным пучком осу­ществляется в результате выделения тепловой энергии в поверх­ностных слоях вещества и дальнейшей передачи теплоты в его внутренние слои. Высокая интенсивность ввода энергии в вещест­во при электронно-лучевой обработке приводит к развитию значи­тельных поверхностных температур, уровень которых может пре­вышать точку кипения даже самых тугоплавких материалов.