История создания и перспективы. Экранопланы. Где можно увидеть экраноплан вживую

Практическая разработка технологий на основе физического «принципа экрана» привела к созданию гибридов самолета и корабля – уникальных аппаратов («экранопланов» или «экранолетов»), способных двигаться как по воде, так и в воздухе . Нововведение имело закономерный результат – началось применение новых машин для военных и гражданских нужд. Рассмотрим основные вехи истории становления замечательной технологии, сделавшей реальностью летающие крейсеры.

Эффект экрана

В 1920-х годах был открыт физический эффект экрана – явление, которому суждено было изменить представления человечества о движении. Эффект экрана заключается в нарастании подъемной силы летательного аппарата посредством экранирующей способности ровных поверхностей – воды, земли, льда. Набегающий поток воздуха создает подушку за счет повышенного давления под несущей плоскостью, аэродинамическая хорда которой должна быть меньше высоты движения. Проще говоря, экран представляет собой воздушную подушку без гибких ограждений и нагнетателей. Это важное открытие сделало возможным создание аппаратов, скользящих над поверхностью с «самолетными» скоростями при заметной экономии топлива по сравнению с самолетами.

Советский Союз стал родиной первого теоретического обобщения по этой тематике: в 1923 году увидела свет революционная работа Б.Н. Юрьева «Влияние земли на аэродинамические свойства крыла». С практическим же применением экранного эффекта работали уже в 30-е годы – в Финляндии, где пытались создать буксируемые аэросани, и в СССР. Все эти опыты выявили отсутствие нужной технической базы (не существовало достаточно прочных и легких конструкционных материалов), и работы были остановлены.

Положение изменилось лишь в 50-е годы, когда за дело взялся пионер теоретического исследования и практического применения кораблей на подводных крыльях Ростислав Евгеньевич Алексеев. В 1960 году его КБ по СПК (конструкторское бюро по судам на подводных крыльях) начало работы по исследованию эффекта экрана, приведшие к созданию первого в мире экраноплана.

60-е – годы великих свершений

1961 год стал годом первого полета экраноплана. Экспериментальная машина СМ-1 превратилась в самоходную лабораторию по отработке техники пилотажа, сбору эксплуатационной статистики и исследованию конструкционных материалов. Полеты проводились на испытательной станции №1 на Каспии, а для сборочных работ были выделены мощности завода «Красное Сормово» в Горьком (ныне – Нижний Новгород). Испытания серии СМ привели к положительным результатам, и в 1964-65 годах на «Красном Сормове» под руководством генерального конструктора Алексеева и ведущего конструктора Ефимова был построен экраноплан КМ («корабль-макет»). Интересно, что кодовое обозначение этого экраноплана в отчетах НАТО – «Каспийский Монстр» – в точности совпало с официальной советской аббревиатурой.

Корабль и в самом деле был монстром. Его длина достигала почти 100 метров, размах крыла – более 37 метров, взлетная масса – 544 тонны. До выпуска самолета-гиганта Ан-225 «Мрия» КМ оставался самым крупным летательным аппаратом тяжелее воздуха.

Технические характеристики аппарата КМ
Размах крыла 37,60 м Размах хвостового оперения 37 м Высота полета на экране 4-14 м
Длина 92 м Высота 21,80 м Размах крыла 37,60 м
Площадь крыла 662,50 м² Масса пустого экраноплана 240 000 кг Размах хвостового оперения 37 м
Максимальная взлетная масса 544 000 кг Тип двигателя (10 шт.) ТРД ВД-7 Длина 92 м
Тяга 10 х 13000 кгс Максимальная скорость 500 км/ч Высота 21,80 м
Крейсерская скорость 430 км/ч Практическая дальность 1500 км Площадь крыла 662,50 м²
Мореходность 3 балла Максимальная взлетная масса 544 000 кг

Первый полет корабля состоялся в 1966 году. КМ проходил испытания и длительное всестороннее изучение до 1980 года, пока не разбился вследствие ошибки пилота. «Потомков» КМ планировалось использовать в военных целях. Высокая скорость (более 400 км\ч), гарантированное прохождение «ниже радара», возможность лететь над водой и сушей, а также грузоподъемность, позволявшая нести несколько ракетных ПУ, делали эти экранопланы грозным оружием – по крайней мере, в перспективе. Однако проект столкнулся с серьезным противодействием на уровне ведомств, а точнее, с конфликтом между генеральным конструктором Ростиславом Алексеевым и министром судостроительной промышленности Борисом Бутомой. Помимо межличностных отношений, в дело вплеталась конкуренция между флотом, для которого проектировались экранопланы, и ВВС, включая авиационную промышленность.

О сути этих разногласий догадаться легко – экраноплан базировался на море и должен был действовать в составе флота. При этом он являлся летающим аппаратом, и его производство требовало авиационных технологий, ресурсов и мощностей, на которые вполне закономерно претендовали профильные авиационные ведомства. Помимо бюрократической волокиты, проект экраноплана столкнулся с серьезными возражениями практического характера. Основная проблема состояла в том, что высокая скорость аппарата была колоссальной только в сравнении с водными боевыми средствами – любой дозвуковой самолет и любая ракета без проблем догоняли экраноплан. Отсутствие бронирования, серьезных средств ПВО и относительно низкая маневренность превращали его в невероятно дорогую мишень. Тем не менее, экономичность хода, хорошая грузоподъемность и скорость оказались весомой «гирей» на весах в пользу проекта. «Потомки» «Каспийского Монстра» получили путевку в жизнь, а несколько позже аналогичные работы начались и на Западе.

КМ – «Каспийский Монстр»
www.navy.su

Скромные результаты наследников Мессершмитта

Еще в 1961 году в США начались работы над аналогами советского экраноплана. Был разработал ряд проектов, которые так и не вышли на практическую стадию. Разработка этих аппаратов велась и в ФРГ – конструктор и специалист по аэродинамике Александр Липпиш (автор проекта «Мессершмитт-334») разработал ряд экранопланов и, в отличие от американских коллег, сумел создать действующий прототип Х-114 на фирме «Райн Флюгцойгбау».

Аппарат Х-114 был рассчитан на размещение 460 кг полезного груза или пяти пассажиров. Машина отличалась классической самолётной компоновкой – треугольное крыло с вершиной, обращенной к хвостовому оперению. Х-114 стартовал с воды, а значительный угол поперечной несущей поверхности создавал динамическую воздушную подушку во время стартового разбега. Размах крыла экраноплана составлял всего 9 метров – при столь малой грузоподъемности больше не требовалось. Движение аппарата обеспечивал поршневой мотор с винтовым движителем, размещавшийся в кольцевом гнезде. Скорость машины достигала 200 км/ч, автономность при полной загрузке топливом должна была составлять 1000 км, а взлетная масса – 1,35 тонны. Первый полет экраноплана Х-114 состоялся в 1976 году – испытания на Балтике выявили крейсерскую скорость в 150 км\ч. Всего было изготовлено три таких аппарата, переданных в ведение пограничной службы ФРГ. Западные коллеги отстали от Ростислава Алексеева не только хронологически (на 10 лет), но и качественно – советские машины были в 10 раз больше, а значит, имели куда большую боевую ценность.


Экраноплан Х-114
topwar.ru

Тяжелая судьба «Орлёнка»

Развивая идею кораблей КМ, КБ Алексеева разработало и построило десантный экраноплан серии «С», получивший название «Орлёнок». Машина была несколько меньше «Каспийского Монстра», а её корпус выполнялся из аллюминий-магниевого сплава. «Орлёнок» должен был перемещать десант на расстояние до 1500 км со скоростью до 500 км\ч и мог принять 200 морских пехотинцев со всем снаряжением, а также 2 единицы БМП или БТР либо один танк. Для самообороны машина несла спаренную установку пулемета НСВТ «Утес» (калибра 12,7 мм) или КПВ (калибра 14,5 мм).

Испытания «Орлёнка» проходили не вполне гладко. Типичная «болезнь» любого экраноплана – опасность встречи с волной на скорости – сыграла и в этот раз. Первый прототип на полной скорости налетел на волну, которая оторвала кормовое оперение и киль с маршевым двигателем. Несмотря на тяжелые повреждения, машина выдержала и смогла дотянуть до базы за счет увеличенной тяги носовых взлетно-посадочных моторов. Ситуация, идентичная реальному боевому повреждению, подтвердила живучесть и надежность экранопланов.

Всего было изготовлено 5 аппаратов – все они, за исключением разбитого прототипа, были переданы 11-й отдельной авиагруппе. Всего планировалось построить 120 «Орлят», однако в 1984 году умер Д.Ф. Устинов – министр обороны СССР и покровитель проекта. После смерти Устинова производство заморозили, передав сэкономленные средства на нужды флота.

Технические характеристики аппарата «Орлёнок»
Размах крыла, м 31,50 Тяга
Длина, м 58,11 стартовые, кгс 2 х 10500
Высота, м 16,30 маршевый, э. л. с. 1 х 15000
Площадь крыла, м² 304,60

Максимальная скорость,

400
Масса, кг

Крейсерская скорость,

350
пустого снаряженного 120000 Практическая дальность, км 1500
максимальная взлетная 140000 Высота полета на экране, м 2-10
Тип двигателя Практический потолок, м 3000
стартовые 2 ТРД НК-8-4К Экипаж, чел 6-8
маршевый 1 ТВД НК-12МК до 2000 кг
Вооружение спаренный НСВТ 12.7 или КПВ 14.5


Экраноплан «Орлёнок»
Фото из коллекции автора

Ракетный экраноплан – гроза вражеских флотов

Прямым следствием развития экраноплана КМ стал проект 903 «Лунь». Создание десантного экраноплана не раскрывало всех возможностей корабля данного типа, поэтому военные заказчики желали получить ударную модификацию машины, способную нести ракетные ПУ. КБ Алексеева начало работы еще в 70-е годы, и к 1983 году на воду сошел первый прототип ракетного экраноплана.

В отличие от «Орлёнка», аппарат «Лунь» куда больше походил на своего предшественника. Его длина составляла 73 метра, восемь реактивных маршевых двигателей размещались на пилонах в носовой части, машина имела мощное хвостовое оперение с рулями. На «спине» аппарата в аэродинамических наплывах поместились шесть пусковых установок «Москит», и по сей день считающихся самыми эффективными противокорабельными ракетами. Скорость в 500 км\ч позволяла «Луню» атаковать любые корабли противника, и даже авианосные соединения, почти гарантированно уходя из-под ответного удара.

В 1986 году революционная машина начала прохождение испытаний, а в 1990 году ее передали для опытной эксплуатации в 236-й дивизион Каспийской флотилии. К 1991 году флотские испытания триумфально завершились – аппарат показал себя с наилучшей стороны. Но горбачевская перестройка, поставившая крест на другом проекте – Советском Союзе – похоронила массу замечательных разработок, среди которых оказалась и «Лунь».

Экранопланы на службе народного хозяйства

Столкнувшись с трудностями серийной реализации своих проектов, Алексеев предложил гражданские конверсии экранопланов или же сугубо гражданские модели. Так на базе «Луня» был создан проект «Спасатель». Кроме того, проектировались легкие экранопланы и даже экранолеты, способные переходить в «нормальный» самолетный режим с отрывом от аэродинамической подушки. Эти работы послужили основой для целого поколения машин, разрабатываемых и создаваемых по сей день. В этой связи необходимо вспомнить винтомоторный аппарат «Волга-2» 1986 года, его продолжение – экраноплан «Иволга» 1998 года и потрясающе эстетичный «Акваглайд-2» современной разработки. Все эти машины относятся к классу малых кораблей, перевозят 10-16 пассажиров и отличаются чрезвычайной экономичностью.


Экраноплан «Волга-2»
wikipedia.org


Экраноплан «Иволга»
wikipedia.org


Экраноплан «Акваглайд-2»
wikipedia.org

Идеи красного графа

Великий «русский итальянец» Роберто Орос ди Бартини, аристократ с коммунистическими убеждениями, бежавший из Италии с приходом к власти фашистов, в СССР стал одним из ведущих авиаконструкторов, оказавшим влияние на С.П. Королева (который считал его своим учителем) и других великих авиаконструкторов – Яковлева, Мясищева, Ильюшина . В 1960 году Бартини работал над созданием гидросамолета с вертикальным взлетом, и в рамках этого проекта на базе ОКБ имени Г.М. Бериева была разработана модель ВВА-14 – экранолет-торпедоносец. Опытный образец проходил испытания на Азовском море в 1972-76 годах, но со смертью конструктора работы прекратились. В настоящий момент корпус аппарата находится в музее ВВС в Монино.

Технические характеристики аппарата ВВА-14

Размах крыла, м

Тяга, кгс

Длина, м

маршевые

Высота, м

подъёмные

Площадь крыла, м²

Максимальная скорость,

Масса самолёта, кг

Крейсерская скорость, км/ч

пустого

Скорость барражирования, км/ч

максимальная

Практическая дальность, км

Тип двигателя

Практический потолок, м

маршевые

2 ДТРД Д-30М

Экипаж, чел

подъёмные

12 ДТРД РД36-35ПР

Вооружение

2 авиационные торпеды, или 8 авиационных мин ИГМД-500, или 16 авиационных бомб ПЛАБ-250 (максимальная боевая нагрузка – 4 000 кг)


Экранолет-торпедоносец ВВА-14
wikipedia.org

«Нептун» в небе

На основе работ Роберто Бартини в ОКБ имени Бериева был создан проект сверхтяжелого транспортного самолета-амфибии. Самый крупный из проектируемых самолетов такого типа Бе-2500 «Нептун» задумывался как экранолет, то есть, должен был иметь возможность отрыва от аэродинамической подушки с переходом в самолетный режим. Способность использовать эффект экрана делает его универсальной транспортной машиной, не требующей сложного аэродромного оборудования – аппарат способен приводняться у любого берега и действовать с привязкой к инфраструктуре уже имеющихся портов. Мощность, экономичность и грузоподъемность делают «Нептун» великолепным средством для грузоперевозок – точнее, сделали ли бы, так как в настоящий момент работы по его созданию заморожены по причине отсутствия финансирования.


Экранолет Бе-2500 «Нептун» (рисунок проекта)
wikipedia.org

Экология и прогресс Льва Щукина

В 80-е годы советский конструктор Лев Николаевич Щукин создал проект дисковидного безаэродромного аппарата на экранном принципе, получивший название ЭКИП – «Экология и Прогресс». Разработка полностью соответствовала своему громкому имени. Дисковидный фюзеляж машины выполняет функции летающего крыла (а потому чрезвычайно вместителен при сравнительно небольших размерах) а уникальная система управления граничным слоем (обтекание воздухом фюзеляжа) уменьшает сопротивление среды и экономит топливо. Двигатели аппарата (возможна установка двух и более) работают на водно-эмульсионном топливе – смеси низкооктанового бензина, специального эмульгатора и воды (от 10 до 58%), что дает уникальную экономию и экологичность. Скорость машины должна была составлять от 100 до 700 км/ч при высотах от 3 до 11 000 метров.

К 1993 году на базе Саратовского авиационного завода шло строительство двух действующих образцов. Однако, невзирая на официальную поддержку проекта правительством, финансирование было прекращено. В настоящий момент проект передан в ведение международного фонда, что означает увод российских разработок заграницу, наносящий огромный ущерб отечественной авиационной науке.


Экранолет ЭКИП
wikipedia.org

Не случайно создание принципиально новых типов судов почти всегда связывают с малым судостроением. Именно на небольших, сравнительно недорогих лодках и катерах удобно проводить эксперименты, причем высокие скорости достигаются при умеренной мощности механической установки. Глиссирующие катера, катамараны, суда на подводных крыльях и воздушной подушке, - все они начинались с малых судов.

Примечательно, что достигнутые успехи получали затем быстрейшее развитие на более крупных судах, дающих больший экономический эффект. Возможно, так будет и с парящими судами - экранопланами, хотя в настоящее время (в стадии экспериментов) их размеры и грузоподъемность невелики. Сейчас трудно говорить о перспективах внедрения экранопланов, но вероятные области их применения можно связать с высокими скоростями и. проходимостью этих аппаратов. Вероятно, будут созданы быстроходные патрульные экранопланы для обширных заболоченных или заросших тростником устьев рек, возможно ими заинтересуются и спортсмены.

С основными принципами конструкции и движения экранопланов, их достоинствами и недостатками, по сравнению с судами других типов, знакомит читателей статья кандидата технических наук Н. И. Белавина.

Уже более ста лет инженеры-кораблестроители, борясь за скорость, стремятся «вытащить судно из воды», поднять его в воздух - среду в 840 раз менее плотную, чем вода. Глиссирование, подводные крылья, воздушная подушка, - таковы ступени развития этой идеи, последнюю из которых занимают экранопланы, т. е. аппараты, использующие при движении эффект повышения давления воздуха под крылом вблизи водной поверхности - экрана. Кстати, экранирующей. поверхностью может быть и земля, поэтому экранопланы, как и суда на воздушной подушке, являются амфибиями: они способны выходить на сушу, преодолевать заболоченные участки, парить над замерзшими водоемами и т. д.

Построенные в настоящее время экранопланы (табл. 1) еще далеки от совершенства. Их сравнительно низкие энерговооруженность и аэродинамические характеристики обеспечивают скорость в пределах 80-150 км/час. Однако специалисты пришли к выводу, что технически вполне осуществимо повышение скорости экранопланов до 350 и более км/час.


Для сравнения возможностей экранопланов и скоростных аппаратов уже привычных нам типов используется такой наглядный показатель как аэрогидродинамическое качество K, представляющее собой отношение подъемной (полезной) силы аппарата к величине сопротивления среды (воды, воздуха) его движению. Напомнйм, что от величины К зависит необходимая для движения с заданной скоростью мощность, а следовательно, и вес энергетической установки и, что еще более важно, расход топлива .

Для глиссеров со скоростями движения 60-80 км/час гидродинамическое качество К=6÷8, для судов на подводных коыльях с близкими скоростями К=10÷12, для судов на воздушной подушке К=12÷16 (с учетом поддува 4-5), а для самолетов аэродинамическое качество K=16÷17. Для существующих экранопланов значения А составляют 19-25, а это значит, например, что для движения с одинаковой скоростью экраноплаиу требуется втрое меньшая мощность, чем глиссеру.

Дело теперь за тем, чтобы практически реализовать это теоретически бесспорное преимущество. Вероятно, пройдет еще немного времени и над нашими реками и озерами появятся летающие катера - экранопланы. И мы не будем удивляться им, как не удивляет нас вид проносящихся мимо судов на крыльях или, тем более, пролетающих самолетов.

Из истории экранопланов

По-видимому, первый из них был создан финским инженером Т. Каарио. Зимой 1932 г. над замерзшей поверхностью озера он испытал экраноплан, буксируемый аэросанями. Позднее, в 1935-1936 гг. Каарио построил усовершенствованный аппарат, уже оборудованный двигателем с воздушным винтом, а в дальнейшем постоянно совершенствовал конструкцию своих экранопланов; последнюю модификацию - «Аэросани № 8» - он испытывал в 1960-1962 гг. (рис. 1).

В 1939 г. американец Д. Уорнер, занимавшийся экспериментами по снижению сопротивления быстроходных катеров, разработал проект катера, оборудованного системой несущих крыльев (рис. 2). Для облегчения выхода на расчетный режим околоэкранного полета предполагалось оборудовать этот аппарат системой поддува с двумя мощными вентиляторами.

В 40-х годах обширные эксперименты выполнялись в Швеции под руководством И. Троенга. Были построены два экраноплана по схеме «летающее крыло» (рис. 3), т. е. катамараны с несущим крылом.

В послевоенные годы работы по созданию экранопланов развернулись в США. Начиная с 1958 г. известным авиаконструктором У. Бертельсоном были построены и испытаны три аппарата. Это «Аркоптеры» «GEM-1» (рис. 4), «GEM-2», «GEM-З», выполненные примерно по одной и той же схеме, но имеющие разную величину. Двухместный экраноплан - «летающее крыло» (рис. 5) с толкающим воздушным винтом построил Н. Дискинсон. Американская фирма «Локхид» провела испытания трех аппаратов, последний из которых («летающая лодка») показан на рис. 6.

Самоходная пилотируемая модель 1000-тонного трансконтинентального пассажирского экранопла-на «Большой Вейландкрафт» была построена по проекту X. Вейланда (рис. 7). Это - четырехтонный катамаран с двумя несущими крыльями, расположенными одно за другим (типа тандем). Во время первых летных испытаний модель разбилась.

Экраноплан «Аэрофойлбот Х-112», спроектированный А. Липпишем, построен по чисто самолетной схеме и напоминает гидросамолет (рис. 8).

В Японии созданием экранопланов успешно занимается фирма «Кавасаки». Построенный ею аппарат «KAG-З» (рис. 9) представляет собой катамаран с несущим крылом и мощным подвесным мотором. Более подробное его описание приведено в следующей статье.

В нашей стране еще в начале 30-х годов очень интересный проект двухмоторного транспортного экраноплана был разработан авиаконструктором П. И. Гроховским. В 1963 г. студентами ОИИМФ под руководством Ю. А. Будницкого построен выполненный по схеме «летающее крыло» одноместный экраноплан с двумя мотоциклетными двигателями (рис. 10).

Аэродинамика экраноплана

Положение крыла над экраном характеризуется относительной высотой:


где h - высота задней кромки крыла над экраном, а b - хорда крыла. Установлено, что влияние экрана на работу крыла начинает сказываться при h
Благодаря близости экрана уменьшается и лобовое сопротивление крыла, главным образом, за счет снижения его индуктивного сопротивления (рис. 13). Напомним, что причиной индуктивного сопротивления являются вихри, возникающие на концах крыла вследствие перетекания воздуха из-под нижней плоскости (зона повышенного давления) на верхнюю (зона разрежения). Сопротивление профиля, обусловленное силами давления и трения, с приближением крыла к экрану изменяется сравнительно мало.

С приближением крыла к экрану качество К может увеличиться в 1,5-2 и более раз по сравнению с его значением для данного же крыла, но на большой высоте; одновременно можно заметить, что при этом максимальные значения К достигаются при меньших углах атаки. Естественно, что К вблизи экрана, как и на большой высоте, сильно зависит от характеристик самого крыла. Отметим, что применяющиеся на экранопланах профили крыла по своим основным характеристикам различаются мало. На эк-раноплане «ОИИМФ-2» применен профиль с относительной толщиной С=10÷12%.

При расчете площади крыла определяющей величиной является удельная нагрузка на единицу его площади. Для существующих экранопланов величина эта сравнительно невелика (35-50 кг/м 2), что объясняется стремлением ограничить мощность двигателя экспериментального аппарата.

Устройства для повышения качестве крыла

Для повышения летных и особенно взлетно-посадочных характеристик экранопланов их крылья оборудуют (рис. 14) щитками, закрылками, заслонками, концевыми шайбами. Применяются поворачивающиеся крылья.

Напомним, что отклонение щитков и закрылков обеспечивает увеличение подъемной силы крыла, главным образом, благодаря повышению вогнутости его Профиля. Концевые шайбы уменьшают перетекание воздуха через оконечности крыльев, а вблизи экрана обеспечивают образование под крылом полузамкнутого контура с зоной повышенного давления. На экранопланах обычно применяются односторонние шайбы, расположенные только с нижней стороны крыла.

Особенности аэрогидродинамической компоновки

Существуют две схемы компоновки экранопланов: «летающее крыло» и самолетная.

Первая характеризуется тем, что несущее крыло опирается концами на два поплавка, которые одновременно выполняют роль концевых шайб. Достоинствами этой схемы являются высокое аэродинамическое качество (благодаря отсутствию развитого корпуса и надстроек) и возможность использования объемов самого крыла для размещения грузов, основным недостатком - сложность решения проблемы устойчивости и мореходности (особенно для малых аппаратов).

В самолетной схеме из-за малого удлинения крыла λ сравнительно сильно сказывается влияние корпуса (фюзеляжа) аппарата, снижающее качество. Тем не менее, крылья малого удлинения установлены на большинстве современных экранопланов (исключение представляет модель X. Вейланда), так как с увеличением λ=l/b существенно ухудшаются мореходные и эксплуатационные качества аппарата, например, появляется опасность касания концом крыла гребня волны. При заданной площади крыла необходимое значение К можно обеспечить за счет уменьшения h, что требует, как известно, при заданной высоте полета увеличения хорды крыла, т. е. соответствующего уменьшения λ.

Устойчивость

Экраноплан, как и самолет, должен обладать способностью сохранять заданный режим полета и самостоятельно (без вмешательства пилота) возвращаться к нему после, например, порыва ветра. При движении аппарата продольная устойчивость в значительной степени обусловлена взаимным расположением его центра тяжести ЦТ и аэродинамического фокуса F (рис. 15), т. е. точки, относительно которой момент полной аэродинамической силы крыла не зависит от угла атаки при постоянной скорости полета. Если ЦТ самолета расположен впереди фокуса, аппарат обладает статической продольной устойчивостью (по перегрузке). Для экранопланов проблема устойчивости значительно сложнее, так как положение фокуса крыла экраноплана зависит не только от угла атаки, но и от h.

Продувками моделей установлено, что обычно применяемые крылья не обладают продольной устойчивостью, поэтому все современные экранопланы (как и самолеты) приходится оборудовать стабилизаторами или другими устройствами, смещающими их F в хвост аппарата (тем самым увеличивается расстояние между ЦТ и F). Наиболее успешно проблема продольной устойчивости решена на аппарате «Х-112», на котором она обеспечивается, главным образом, высоко установленным на вертикальном оперении, за пределами влияния экрана, развитым стабилизатором.

Что же касается поперечной устойчивости экранопланов, то она практически всегда будет обеспечена: в случае накренения аппарата на консоли крыла, приближающегося к экрану, возрастает подъемная сила и появляется восстанавливающий момент.

Путевая (курсовая) устойчивость обеспечивается примерно теми же способами, которые приняты в авиации, т. е. соответствующим выбором площади вертикального оперения (воздушного киля) и его положения относительно ЦТ экраноплана. При этом, естественно, существенную роль играет общая компоновка аппарата, в частности, положение точки приложения тяги винта.

Управляемость

Для управления по курсу чаще всего ставят один или два воздушных руля, для повышения эффективности обычно располагаемых в струе воздушного винта. В случае применения гребного винта используется обычный водяной руль либо подвесной мотор.

Известную сложность представляет свойственный экранопланам сильный дрейф на циркуляции; ведь у них нет ни погруженной в воду части корпуса, ни стоек подводных крыльев. Возможности выполнения крутых виражей со скольжением несущего крыла ограничены опасной близостью поверхности воды или Земли.

Для управляемости в продольной плоскости практически все экранопланы, включая и аппараты с гребным винтом, оборудуются рулем высоты или закрылком. Эти же устройства используются при старте экраноплана и для балансировки его на выбранном режиме полета.

Управляемость аппаратов в поперечной плоскости, т. е. по крену, необходимая для противодействия кренящим моментам и выполнения виражей, осуществляется при помощи элеронов, элевонов (т, е. тех же элеронов, но выполняющих одновременно и функции рулей высоты) или зависающих элеронов (т. е. элеронов, могущих работать и в режиме закрылков). Площадь этих дополнительных плоскостей довольно велика, так как скорость движения экраноплана все же значительно меньше, чем скорость самолета. Так, суммарная площадь V-образного хвостового оперения на «KAG-З» составляет 3,2 м 2 или около 35% площади несущего крыла.

Двигатели и движители

Мощность двигателей экранопланов, как правило, сравнительно невелика: отнесенная к полному весу экраноплана она колеблется от 80 до 160 л. с./т.

Большинство современных экранопланов приводится в движение воздушным винтом. Достоинства его очевидны: это возможность достижения больших скоростей и обеспечения амфибийных качеств аппарата.

Реже используется гребной винт, работающий в воде. Его положительными сторонами являются сравнительно небольшие размеры и незначительная шумность, а самое главное - более высокий к. п. д. на скоростях до 100-120 км/час. Так, на швартовах удельный упор, развиваемый воздушными винтами, колеблется в пределах 2-3 кг/л. с., а у гребных достигает 4-5 кг/л. с.

Стартовые устройства

Для выхода на основной режим движения экраноплану, как и гидросамолету или судну на подводных крыльях, необходимо развить скорость, при которой подъемная сила крыльев станет равной весу аппарата и оторвет его от воды. Испытаниями моделей установлено, что максимальное сопротивление движению («горб» на кривой сопротивления) возникает на скоростях, составляющих 40-60% от скорости отрыва.

Из рис. 16 видно, что горб полного сопротивления R возникает вследствие роста его гидродинамической составляющей W при повышении скорости на режиме плавания. Именно горбу сопротивления при критической скорости υ кр и соответствует минимальное значение аэрогидродинамического качества К экраноплана. Если максимальная тяга движителя недостаточна (кривая 1), экраноплан не сможет преодолеть горб сопротивления и будет продолжать глиссировать со скоростью, соответствующей точке α.

Насколько резко меняется сопротивление при разбеге видно, например, из кривой сопротивления экраноплана «Х-112» (рис. 17). При выходе на расчетный режим R упало с 25-35 до 10 кг, а гидродинамическое качество К (при весе D=231 кг) увеличилось с 7,7 до 23.

Для преодоления горба сопротивления при разбеге и выходе на расчетный режим было бы необходимо кратковременно повышать мощность двигателя в 2,5-3,5 раза по сравнению с той, которая необходима для полета. На практике повышения подъемной силы, выталкивающей корпус из воды в момент разгона, достигают применением каких-либо стартовых устройств: закрылков, предкрылков, поворотных крыльев, гидролыж, систем поддува.

На «Аэросанях № 8», например, это - два небольших поворотных крыла, установленных между боковыми шайбами в струе воздушного винта. В момент разбега среднее крыло при помощи ручного привода устанавливается так, что отбрасываемая винтом воздушная струя направляется под основное несущее крыло. В результате в полузамкнутом объеме под несущим крылом, огражденном с боков поплавками-шайбами, а в хвостовой части опущенными закрылками, образуется воздушная подушка с повышенным давлением. Таким образом, даже при отсутствии поступательного движения на крыле развивается значительная подъемная сила, приподнимающая аппарат из воды.

Стартовое устройство в виде гидролыж, т. е. подводных крыльев Еесьма малого удлинения (λ=0,1÷0,2 и менее), до настоящего времени было применено лишь на экраноплане X. Вейланда. Считается, что их достоинствами являются довольно высокое гидродинамическое качество (К=5÷6), возможность снижения перегрузок аппарата при движении на волнении и простота.

Стартовое устройство в виде специальной системы поддува, состоящей из двух вентиляторов с газотурбинным приводом, предусмотрено лишь на экраноплане «Коламбиа».

Стартовые устройства могут применяться также и для снижения перегрузок при посадке, особенно в сложных гидрометеорологических условиях.

Конструкция корпуса

По конструкции корпуса, поплавков, крыльев и других элементов современные экранопланы во многом напоминают самолет. Большинство аппаратов выполнено из легких, главным образом алюминиевых, сплавов, причем толщины обшивки и профилей набора (например, у экраноплана ОИИМФ) находятся в пределах 0,5-2,0 мм.

Несколько отличаются от других аппараты У. Бертельсона, на которых применена ферменная конструкция из легких стальных труб с дюралевой обшивкой. Оригинальна конструкция экраноплана Н. Дискинсона: несущее крыло и поплавки выполнены из сплошных брусков пенопласта, стянутых тонким стальным тросом.

Все в больших масштабах применяются и новые конструкционные материалы. Например, часть обшивки «KAG-З» изготовлена из стеклопластика.

1. Основы теории крыла читатель найдет в статье Э. А. Афрамеева и В. В. Вейнберга, помещенной . Здесь напомним выражение, связывающее мощность N p и основные расчетные характеристики аппарата:


где G - его вес, υ - заданная скорость.

2. При повышении скоростей до 140-150 км/час значение К из-за кавитации крыльев падает до 5-6, в то время как для экранопланов оно сохраняется без изменений. Это делает вывод в пользу экранопланов еще более очевидным.

Распад Советского Союза поставил крест на реализации многих интересных научно-технических проектов, большая часть которых касалась военной сферы. Одной из самых необычных советских разработок были экранопланы – летательные аппараты, использующие для полета так называемый экранный эффект. Согласно международной классификации (ИМО), эти аппараты относятся к морским судам.

Подобные аппараты можно использовать для различных целей: для перевозки грузов и пассажиров, выполнения спасательных миссий, морского патрулирования, но советские экранопланы разрабатывались в первую очередь для военных нужд.

История создания экранопланов в СССР связана с именем талантливого конструктора Ростислава Алексеева.

Результатом многолетней работы Алексеева и его подчиненных стало создание ударного ракетного экраноплана «Лунь» (проект 903). В рамках этого проекта был построен один аппарат, хотя изначально планировалось изготовить восемь экранопланов. Основной его задачей было уничтожение авианосцев и других крупных кораблей противника. На Западе «Лунь» получил прозвище «Каспийский монстр». Большинство характеристик этого летательного аппарата никто не смог превзойти до сих пор.

В СССР этот проект был абсолютно секретным, конструкторам запрещалось даже произносить слово «экраноплан», в западной литературе подобные летательные аппараты обозначают аббревиатурой WIG (от Wing-In-Ground effect).

За счет чего экраноплан летает

Принцип полета экранопланов мало похож на те, что используются обычными самолетами или кораблями на воздушной подушке. Экраноплан поддерживается в воздухе также за счет воздушной подушки, но она не нагнетается специальными двигателями, а возникает за счет набегающего потока.

Обычный самолет взлетает и летит, потому что форма и профиль его крыла создает над его плоскостью давление ниже, чем под ней. У экраноплана все не так. За счет воздушных возмущений под его крылом создает область повышенного давления, которая достигает поверхности и отражает обратно. Это так называемый экранный эффект. Создать его можно только на очень небольших высотах. Он зависит от формы крыла и его удлинения, поэтому крыло самолета и экраноплана сильно отличаются.

Экранный эффект мешает пилотам самолетов проводить маневры на низких высотах, но именно он формирует воздушную подушку, которая удерживает экранопланы в воздухе. Подобный эффект сильно заинтересовал кораблестроителей: сначала появились суда на подводных крыльях, а затем корабли на воздушной подушке. Однако и те и другие имели ограничения максимальной скорости.

Ростислав Алексеев долгие годы занимался созданием кораблей на подводных крыльях, его «Ракеты» и «Метеоры» не имели мировых аналогов. Однако для конструктора этого было мало, и в 1961 году он создал свой первый экраноплан.

История создания

В 1967 году американские военные, изучая снимки, сделанные спутником-шпионом, обнаружили в акватории Каспийского моря огромный летательный аппарат, который они сразу же получил прозвище «Каспийский монстр». В будущем это название закрепилось за всеми советскими аппаратами подобного типа. Что же так удивило американских специалистов на снимках?

Они увидели настоящего гиганта, самолет длиною в сто метров с непропорционально маленькими крыльями – всего лишь сорок метров. При этом «Каспийский монстр» мог развивать скорость до 500 км/ч и передвигался на высоте неконтролируемой ПВО противника. Естественно, что все это сильно озадачило экспертов Пентагона .

На снимках американцы увидели первое масштабное творение Алексеева – экраноплан с названием «Корабль-Макет» или «КМ». Его полетный вес составлял 544 тонны, а площадь крыла равнялась 662,5 м2. На этой машине советские конструкторы отрабатывали технические решения, которые планировали использовать при постройке серийных экранопланов.

В 1972 году на воду был спущен первый серийный экраноплан «Орленок», вес которого достигал 120 тонн. «Орлята» относились к новому типу летательных аппаратов – экранолётов, во время полета они могли использовать экран или лететь как обычный самолет. «Орленок» был способен перебрасывать десантников на расстояние до 1500 км. Изначально планировали построить 24 экраноплана такого типа, но сделано было всего лишь пять машин.

В ходе реализации проекта конструкторы столкнулись с целым рядом сложных технических задач, связанных с тем, что экранопланы имели особенности как морских судов, так и самолетов. Нужны были легкие материалы, способные противостоять коррозии и выдержать удар о воду на скорости около 500 км/ч. Кроме того, техника пилотирования экранопланов очень сильно отличалась от самолетной.

В 1983 году на опытном заводе «Волга» был заложен первый ракетный экраноплан проекта 903 «Лунь». В 1986 году аппарат его спустили на воду, в том же году начались испытания.

«Лунь» был вооружен шестью противокорабельными крылатыми ракетами «Москит», попадания хотя бы одной из них и сегодня является фатальным практически для любого корабля. Скорость экранопланов проекта 903 составляла 500 км/ч.

В 1990 году «Лунь» приняли в опытную эксплуатацию, а уже через год он был снят с нее и законсервирован. Первоначально планировали построить восемь ракетных экранопланов проекта 903 «Лунь», но реализованы они не были. Причиной этого стала тяжелая экономическая ситуация в стране и признание военной нецелесообразности использования подобных аппаратов.

Единственный экраноплан проекта 903 «Лунь» сегодня находится на консервации в сухом доке на территории завода «Дагдизель» (г. Каспийск). С него демонтирована вся электроника.

После распада СССР и прекращения финансирования второе судно проекта «Лунь» хотели превратить в поисково-спасательное, ему дали название «Спасатель». Он должен был не только проводить спасательные операции на море, но и иметь на своем борту госпиталь на 150 человек. Несмотря на 75% готовность «Спасателя», он так и не был достроен.

Дальнейшая судьба уже построенных экранопланов «Лунь» и всего проекта в целом остается довольно туманной. В 2011 году представители российского Министерства обороны заявили о решении полностью отказаться от разработки и строительства экранопланов. Примерно в то же время в СМИ появилась информация о том, что «Спасатель» и «Лунь» планируют сделать частью музейных экспозиций, но финансирования для транспортировки машин нет.

В 2018 году сразу несколько высокопоставленных чиновников заявили о том, что Россия возобновит строительство ударных экранопланов. Согласно озвученной информации работы должны начаться в Нижнем Новгороде после 2020 года. В том же году было объявлено о завершении эскизного проекта нового морского боевого экраноплана А-050 со взлетной массой 54 тонны.

В августе 2018 года российское военное ведомство поставило перед конструкторами задачу создать к 2020 году машину с грузоподъемностью 240–300 тонн. Однако, учитывая нынешнее не слишком блестящее положение российской экономики и секвестр оборонного бюджета, будущее экранопланов нельзя назвать безоблачным.

Описание конструкции

Экраноплан «Лунь» изготовлен по самолетной схеме моноплана и имеет крыло трапециевидной формы, расположенное в центре корпуса. В передней части находится кабина пилотов, также здесь установлен пилон, на котором расположены восемь двигателей НК-87. Корпус экраноплана полностью выполнен из магниево-алюминиевого сплава, что значительно уменьшает вес «Луня» и снижает вероятность коррозии. Толщина обшивки составляет от четырех до двенадцати миллиметров.

На верхней части корпуса установлены шесть контейнеров для противокорабельных крылатых ракет «Москит».

В кормовой части экраноплана находится хвостовое оперение, которое имеет Т-образную форму.

Длина корпуса «Луня» составляет семьдесят три метра, он разделен перегородками на десять водонепроницаемых отсеков, также корпус экраноплана делится на три палубы. Снизу на корпусе установлено гидролыжное устройство, применяемое при посадке и взлете аппарата.

Размах крыла – 44 метра, на его концах установлена концевидная шайба. Крыло водонепроницаемо, в нем размещены четыре емкости с топливом.

Экипаж экраноплана состоял из семи офицеров и четырех мичманов. Автономность «Луня» - пять суток.

Силовая установка экраноплана состояла из восьми двигателей НК-87, ее мощность составляла 104 кгс (8 х 13000).

Достоинства и недостатки проекта

Не слишком корректно говорить о достоинствах или недостатках экранопланов проекта «Лунь», потому что ему присущи все особенности аппаратов подобного типа. Военных всегда смущала низкая защищенность экранопланов, которая делала его весьма уязвимым для огня противника. Скорость его хода сопоставима со скоростью тихоходного самолета, а отсутствие зенитного вооружения делало экранопланы легкой добычей авиации противника.

  1. К несомненным достоинствам экранопланов следует отнести превосходное сочетание скорости и грузоподъемности. Они могут перемещаться со скоростью самолета (до 600 км/ч), при этом их грузоподъемность сравнима с небольшим кораблем.
  2. Экранопланы очень живучи, в случае аварии они могут просто совершить посадку на воду даже при сравнительно большом волнении.
  3. Подобные аппараты способны летать не только над водной гладью, им подходит любая ровная поверхность: пустыня, тундра, лед.
  4. Экранопланы очень экономичны: во время полета на экране они тратят на 30% меньше топлива, чем традиционные самолеты.
  5. Этим аппаратам не нужен аэродром, достаточно небольшой акватории или ровного участка суши.
  6. Еще одним преимуществом экраноплана является его малозаметность для радаров в результате полета на высоте нескольких метров.

Однако у этого типа летательных аппаратов есть и серьезные недостатки, которые значительно осложняют их эксплуатацию.

  1. Главным из них является то, что экранопланы не могут летать над неровной поверхностью, в этом случае невозможно создание экрана. Но, правда, подобного недостатка лишены экранолёты (типа «Орленок»), которые могут летать по-самолетному.
  2. Экранопланы имеют очень низкую маневренность, у них большой радиус разворота.
  3. Несмотря на большую по сравнению с самолетами экономичность, для взлета экраноплан должен обладать весьма высокой тяговооруженностью, что требует установки на него взлетных двигателей, которые не работают во время полета.
  4. Управление экранопланом требует особых навыков и сильно отличается от пилотирования самолета.

Что дальше?

Несмотря на целый ряд недостатков, схема полета с использованием экранного эффекта выглядит очень заманчиво. Впечатляющая грузоподъемность экранопланов делает из этих аппаратов идеальный транспортный корабль, способный перевозить людей и грузы над океанскими просторами.

Советским экранопланам просто не повезло: целый ряд обидных и необязательных аварий, смена руководства, распад государства поставили крест на этом потенциально очень интересном проекте. Алексеев планировал не только создавать огромные ударные и десантные машины, но и использовать экранопланы в качестве плавучего авианосца и даже космодрома . Этому не суждено было сбыться.

В начале нынешнего столетия компания Boeing занималась проектом создания экраноплана Pelican, который должен перевозить 1400 тонн груза на расстояние до 16 тыс. км. Последнее упоминание об этих работах относится к 2003 году.

Ведутся работы по созданию подобных аппаратов в Германии, Франции, Китае и Южной Корее. Однако речь идет о небольших машинах, с максимальной грузоподъемностью в несколько десятков тонн.

Экранопланы небольшого размера разрабатываются сегодня и в России.

Технические характеристики

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Как утверждает военно-энциклопедический словарь, это транспортно-боевое средство, способное летать на высотах, равных 0.05 - 0.2 ширины крыла вблизи поверхности воды, льда или ровных участков суши с использованием т.н. «эффекта экрана», заключающегося в образовании «воздушной подушки», повышающей подъемную силу его крыла. В журнале «Авиация и Время» («АэроХобби») можно прочитать, что экранопланом является летательный аппарат, предназначенный для скоростного движения вблизи линии раздела двух сред, например воздуха и воды. В книге «Ударные корабли» известный военно-морской эксперт Ю.В. Апальков пишет, что экраноплан является кораблём, использующим экранный эффект (резкое возрастание несущих свойств крыла на малых высотах полета).

По сути, экранный эффект - это та же воздушная подушка, только образуемая путём нагнетания воздуха не специальными устройствами, а набегаюшим потоком. То есть крыло таких аппаратов создаёт подъёмную силу не за счёт разреженного давления над верхней плоскостью (как у «нормальных» самолётов), а за счёт повышенного давления под нижней плоскостью, создать которое возможно только на очень небольших высотах (от нескольких сантиметров до нескольких метров - в зависимости от размеров экраноплана). Эффект экрана связан с тем, что возмущения (рост давления) от крыла достигают земли (воды), отражаются и успевают дойти до крыла. Таким образом, рост давления под крылом и, как следствие, подъемная сила крыла получаются больше, чем у обычного самолета. Кроме того, уменьшается аэродинамическое сопротивление крыла набегающему воздушному потоку.

По конструктивно-технологическому устройству (металл, оборудование, двигатели) и условиям эксплуатации (базирование, взлет-посадка, полет) экраноплан практически ничем не отличается от гидросамолета. Его специфика заключается в способности к устойчивому приэкранному режиму крейсерского полета на высотах порядка 0-5 м. Полет в таком режиме позволяет создавать в 1,5-3 раза более тяжелые аппараты при той же площади крыла и мощности двигателя. Экраноплан обладает возможностью самостабилизации по высоте, крену и тангажу (дифференту), что обеспечивает безопасность полета на предельно малых высотах над гребнями волн. Основным режимом движения является установившийся горизонтальный полет, в котором управляющие воздействия пилота невелики и связаны в основном с поддержанием наивыгоднейших режимов полета на минимально возможной высоте над поверхностью.

Так все-таки, экранопланы - это корабли или самолеты? Во-первых, обычно экраноппан, как было сказано выше, летит на малой высоте, до 10-15 метров. Исходя из этого он все-таки является летательным аппаратом, естественно, отдельного типа, а не кораблём. Хотя у морских ученых есть другое мнение - экраноплан является последней ступенью развития идеи о подъеме корпуса скоростного судна из воды (глиссер, судно на подводных крыльях, судно на воздушной подушке, экраноплан). Во-вторых, полет на малой высоте с использованием экранного эффекта позволяет добиться большей грузоподъемности и экономии топлива по сравнению с обычными летательными аппаратами и большей скорости по сравнению с кораблями, в том числе кораблями на воздушной подушке и подводных крыльях.

Следовательно, в различных ситуациях экраноплан может рассматриваться и как конкурент кораблей, и как конкурент самолетов и вертолетов. В-третьих, экраноплан находится на воде при взлете, посадке, для выполнения необходимых действий (например, спасения людей) и в случае возможных непредвиденных ситуаций. Поэтому использование экранопланов предполагается с обычных аэродромов, как наземных, так и водных (гидроаэродромов), а также, возможно, с кораблей (малые экранопланы ).

Совместным решением морской и авиационной международных организаций экранопланы все же считаются кораблями (это было вызвано сугубо причинами организации движения) и делятся на три типа:

  • Тип А - судно, которое сертифицировано для эксплуатации только внутри зоны действия «экранного эффекта». Такие суда во всех режимах эксплуатации подчиняются морским требованиям
  • Тип В - судно, которое сертифицировано кратковременно и на ограниченную величину увеличивать высоту полета за пределы действия «экранного эффекта», но на расстояние от поверхности, не превышающее 150 м (для перелета через другое судно, препятствие или иных целей). Также подчиняется морским требованиям. Максимальная высота такого «перелета» должна быть меньше, чем минимальная безопасная высота полета воздушного судна по требованиям авиаторов (над морем - 150 м)
  • Тип С - судно, сертифицированное для эксплуатации вне зоны действия «экранного эффекта» при высоте, превосходящей 150 м. Подчиняется морским требованиям во всех режимах эксплуатации, кроме «самолетного». В «самолетном» режиме безопасность обеспечивается только авиационными требованиями, с учетом особенностей экранопланов

Эффект экрана

Воздушные потоки под экранопланом, изображённые художником

По сути, экранный эффект - это та же воздушная подушка , только образуемая путём нагнетания воздуха не специальными устройствами, а набегающим потоком. То есть «крыло» таких аппаратов создаёт подъёмную силу не только за счёт разреженного давления над верхней плоскостью (как у «нормальных» самолётов), а дополнительно за счёт повышенного давления под нижней плоскостью, создать которое возможно только на очень небольших высотах (от нескольких сантиметров до нескольких метров) Эта высота соизмерима с длиной средней аэродинамической хорды (САХ ) крыла. Поэтому крыло у экраноплана стараются выполнить с небольшим удлинением.

Эффект экрана связан с тем, что возмущения (рост давления) от крыла достигают земли (воды), отражаются и успевают дойти до крыла. Таким образом, рост давления под крылом получается большим. Скорость распространения волны давления, конечно, равна скорости звука. Соответственно, проявление экранного эффекта начинается с
,

где l - ширина крыла (хорда крыла), V - скорость звука , h - высота полёта, v - скорость полёта.

Чем больше САХ крыла, ниже скорость полёта и высота - тем выше экранный эффект:

Традиционно на скоростях полётов у самой земли принято считать высотой действия экрана половину хорды крыла. Это даёт высоту порядка метра. Но у достаточно больших экранопланов высота полёта «на экране» может достигать 10 и более метров.

Центр давления (общая точка приложения силы) экранного эффекта находится ближе к задней кромке, центр давления «обычной» подъёмной силы - ближе к передней кромке, поэтому, чем больше вклад экрана в общую подъёмную силу, тем больше центр давления смещается назад. Это приводит к проблемам балансировки. Изменение высоты меняет балансировку, изменение скорости - тоже. Крен вызывает диагональное смещение центра давления. Поэтому управление экранопланом требует специфических навыков.

Достоинства экранопланов и экранолётов

Недостатки

  • одним из серьёзных препятствий регулярной эксплуатации экранопланов является то, что место их предполагаемых полётов (вдоль рек) очень точно совпадает с зонами максимальной концентрации птиц ;
  • управление экранопланом отличается от управления самолётом и требует специфических навыков;
  • экраноплан «привязан» к поверхности и не может лететь над неровной поверхностью; этого недостатка лишён экранолёт ;
  • хоть полет «на экране» и связан с меньшими энергетическими затратами, нежели у самолета, однако процедура старта требует большей тяговооруженности, сравнимой с таковой у транспортного самолета, и соответственно применения дополнительных стартовых двигателей, не задействованных на маршевом режиме (для крупных экранопланов), либо особых стартовых режимов для основных двигателей, что ведет к дополнительному расходу топлива;
  • низкая маневренность, так как экраноплан, как и самолет, для изменения направления движения должен создавать центростремительную силу, единственным источником которой является крыло. При высоте полета порядка САХ крыла возможные крены очень малы, а радиусы поворотов слишком велики.

Конструкции экранопланов

В конструкциях экранопланов можно выделить две школы: советскую (Ростислав Алексеев) с прямым крылом и западную (Александер Мартин Липпиш (на нем. )) с треугольным крылом обратной стреловидности с выраженным обратным поперечным V. Схема Р. Е. Алексеева требует большей работы по стабилизации, но позволяет двигаться с большими скоростями и в самолётном режиме. Схема Липпиша включает средства снижения избыточной устойчивости (крыло с обратной стреловидностью и обратное поперечное V), что позволяет снизить недостатки балансировки экраноплана в условиях небольших размеров и скоростей.

Третьей предложенной схемой стала тандемная схема Г. Йорга (ФРГ) , однако несмотря на ряд преимуществ (автоматическая стабилизация) последователей пока не имеет.

Также идею экранного эффекта используют суда с динамической воздушной подушкой. В отличие от экранопланов высота их полета ещё ниже, но по сравнению с судами на подводных крыльях и на воздушной подушке они могут иметь большую скорость при меньших затратах энергии.

История развития

Открытие эффекта экрана и начало использования

Одной из первых отечественных работ, которая относилась к исследованиям экранного эффекта, является работа Б. Н. Юрьева «Влияние земли на аэродинамические свойства крыла». Затем, уже в 1930-е годы, проводились теоретические исследования экранного эффекта В. В. Голубевым, Я. М. Серебрийским, Ш. Я. Биячуевым и другими. В 1932 году известный авиационный инженер, изобретатель и авиаконструктор П. И. Гроховский разработал проект экраноплана-амфибии с двумя двигателями, аэродинамическая компоновка которого характерна для некоторых экранопланов наших дней.

При разработке экранопланов конструкторские фирмы многих государств столкнулись со множеством технических проблем, начиная от проблемы выбора антикоррозийных материалов и заканчивая проблемами устойчивости в полёте. Правительства этих стран отказались поддержать проекты, а разрабатывать «на свой страх и риск» фирмы не решились. Если конструкции и были разработаны, то так и остались в виде чертежей.

В первом испытательном полёте экраноплан КМ пилотировали В. Ф. Логинов и Р. Е. Алексеев. Дальнейшие испытания проводили ведущие лётчики-испытатели Д. Т. Гарбузов, В. Ф. Трошин Все эти работы проводились в системе Министерства судостроительной промышленности.

Работы Роберта Бартини

На основе своего проекта самолёта-летающее крыло с переменной стреловидности (Т-203 - прототип Ту-144 и французского Конкорда) и исследований по проекту, Р. Л. Бартини , представляет в 1955 году проект сверхзвуковой летающей лодки-бомбардировщика средней дальности А-55. Было продуто свыше 40 моделей, написано до 40 томов отчетов, исследованы режимы взлета с воды и возможности длительного его пребывания на плаву. После различных проектов, развивающих А-55 (это были: А-57 - стратегический бомбардировщик - летающая лодка, Е-57 - гидросамолет-бомбардировщик, носитель крылатой ракеты К-10 и ядерной бомбы, Р-57(Ф-57) - сверхзвуковой фронтовой бомбардировщик, Р-АЛ (1961) - дальний разведчик с ядерной силовой установкой) Бартини подошёл вплотную к разработке экраноплана .

В течение долгих лет Р. Л. Бартини разработал «Теорию межконтинентального транспорта земли» с оценкой транспортной производительности судов, самолетов и вертолетов. В результате этих исследований он определил, что оптимальным транспортным средством является амфибийный аппарат, с вертикальным взлётом и посадкой (СВВП) или с использованием воздушной подушки, имеющий грузоподъемность больших судов, а скорость и оборудование - как у самолетов. Он начал исследования экраноплана с подводными крыльями, после чего создал проект экранолёт СВВП-2500 с взлетной массой 2500 тонн в виде летающего крыла с квадратным центропланом и консолями и силовой установкой из подъемных и маршевых двигателей.

США

К сожалению, в настоящее время, по финансовым причинам, работы по развитию этого поколения экранопланов остановлены, а ЗАО «АТТК» признано банкротом .

На третьем международном гидроавиасалоне «Геленджик-2000», который проходил на Чёрном море с 6 по 10 сентября 2000, КБ «Сухой» впервые продемонстрировал свою новую разработку - экранолёт С-90 . Главный конструктор экранолёта Александр Поляков. Новый летательный аппарат предназначен для пассажирских и грузовых перевозок в интересах различных ведомств, в том числе силовых. Он может использоваться в трёх режимах - как самолёт, экраноплан и судно на воздушной подушке. Максимальный вес экранолёта в первом варианте 7900 кг, во втором - 9500 кг и в третьем - 10 500 кг. Коммерческая нагрузка - 2500, 3100 и 4500 килограммов соответственно. Диапазон высот полёта - от 0,5 метра до 4000 метров. Дальность - свыше 3000 километров.

Китай

Китай готов стать лидером в разработке экранопланов

Представители китайского Инженерно-строительного университета в Шанхае объявили, что заканчивают разработку проектов нескольких моделей экранопланов - высокоскоро­стных транспортных средств, летающих на небольшой высоте над поверхностью воды. Уже до конца этого десятилетия планируется начать опытное производство аппаратов грузоподъемностью от 10 до 200 т, а к 2017 году на регулярные транспортные перевозки выйдет более экранопланов, способных перевозить грузы массой более 400 тонн. Подобные суда станут незаменимым средством для скоростного пассажирского и грузового сообщения между островами Юго-Восточной Азии.

Владимир Гаврилов

Перспективы

У экранопланов-амфибий большие перспективы в области спасения людей, потерпевших бедствие на море. Единственное, чем в данной ситуации может помочь самолёт, - сбросить спасательный груз на воду; вертолёт обладает малой вместительностью, а водные суда - малой скоростью, а значит, и придут на помощь не сразу. Спасательный экраноплан может приводняться, а на его борту может размещаться целый медицинский центр для обеспечения помощи раненым. И такие проекты уже разрабатываются.

У экранопланов также большие перспективы в области пассажирских и грузовых перевозок, как международных, так и для внутренних нужд отдельных регионов и организаций. Международные «трассы» экранопланов будут в разы короче, чем используемые сегодня железнодорожные, автомобильные или морские маршруты.

Экранопланы могут быть использованы для перевозки грузов и участников научных экспедиций в Арктике и Антарктиде .

Разработаны проекты пассажирских грузоперевозок над акваториями и льдами Арктики . Это позволит выполнять грузоперевозки в северных портах круглогодично, независимо от сезона.

Интересен экраноплан и военным, как и раньше, для переброса десанта и военной техники, а также обнаружения и уничтожения подводных лодок, пуска крылатых ракет .

Среди космических проектов использования экранопланов можно выделить два направления.

Классификация в Международной морской организации

Российский экраноплан Aquaglide 2

В 1992-2002 годы в Международная морская организация (ИМО), при активном участии Российской Федерации, была осуществлена работа по разработке, согласованию и введению в действие изменений в «Международные правила предупреждения столкновения судов в море» (МППСС-72), а также разработано первое международное «Временное руководство по безопасности экранопланов».

Тем самым было констатировано международное признание экранопланов как нового перспективного морского транспортного средства и создана юридическая основа для развития этого вида транспорта и его коммерческой эксплуатации на международных линиях.

В соответствии с классификацией ИМО, экранопланы подразделяются на три типа:

  • Тип А - экранопланы, которые способны эксплуатироваться только на высотах действия «эффекта экрана» (высота полета не более размера хорды крыла);
  • Тип В - экранопланы, способные кратковременно и на ограниченную величину увеличивать высоту полета над экраном;
  • Тип С - экранопланы, способные на длительное время отрываться от экрана на неограниченную высоту полета (экранолёты).

Для всех экранопланов основным режимом эксплуатации является полёт в непосредственной близости к поверхности с использованием «экранного эффекта» Это означает, что они постоянно находятся внутри сферы эксплуатации обычных судов и должны подчиняться «Международным правилам предупреждения столкновений судов на море». В связи с этим, совместным решением ИМО и Международной организации гражданской авиации (ИКАО) экраноплан рассматривается не как самолёт, который может плавать, а как судно, способное летать.

Поскольку некоторые экранопланы обладают способностью увеличивать высоту полёта за пределы действия «экранного эффекта» и даже летать на такой высоте, где действуют авиационные правила, то, для разделения сферы юрисдикции ИМО и ИКАО все экранопланы были разделены в «Руководстве» на три типа по их способности и наличию разрешения на эксплуатацию и за пределами высоты действия «экранного эффекта»:

  • Тип А - судно, которое сертифицировано для эксплуатации только внутри зоны действия «экранного эффекта». Такие суда во всех режимах эксплуатации подчиняются требованиям ИМО;
  • Тип В - судно, которое сертифицировано кратковременно и на ограниченную величину увеличивать высоту полёта за пределы действия «экранного эффекта», но на расстояние от поверхности, не превышающее 150 м (для перелёта через другое судно, препятствие или иных целей). Также подчиняется требованиям ИМО. Максимальная высота такого «перелёта» должна быть меньше, чем минимальная безопасная высота полёта воздушного судна по требованиям ИКАО (над морем - 150 м). Ограничение высоты в 150 м контролируется ИКАО;
  • Тип С - судно, сертифицированное для эксплуатации вне зоны действия «экранного эффекта» при высоте, превосходящей 150 м. Подчиняется требованиям ИМО во всех режимах эксплуатации, кроме «самолётного». В «самолётном» режиме безопасность обеспечивается только требованиями ИКАО, с учетом особенностей экранопланов.

См. также

  • Поезд-экраноплан

Советские

  • Лунь - экраноплан-ракетоносец, предназначенный для уничтожения авианосцев

Российские

  • Иволга ЭК-12П (экраноплан) - всесезонное экономичное транспортное средство многоцелевого назначения
  • С-90 (экранолёт) - многофункциональное авиационное транспортное средство безаэродромного базирования
  • Акваглайд-5

Примечания

  1. Пятиместный пассажирский экраноплан "Акваглайд-5"
  2. КОНЦЕПЦИИ ТРАНСПОРТНЫХ СИСТЕМ НА БАЗЕ ЭКРАНОПЛАНОВ
  3. Волга-2 многоцелевой легкий экраноплан.
  4. VortexCell2050 (англ.)
  5. Сравнительный анализ вараиантов структуры системы измерения параметров полета на малых высотах. Проф. А. В. Небылов, Сукрит Шаран, Сборник трудов 17-ого Симпозиуме IFAC по автоматического управлению в аэрокосмических системах, Тулуза, Франция, 2007
  6. Российская финансово-промышленная группа «Скоростной флот»
  7. Малая верфь
  8. Cиницын Д. Н., Маскалик А. И. Первый гражданский экраноплан «Амфистар».
  9. ЗАО «АТТК» - история скоростного судостроения - С-Пб., изд. «Судостроение», 1999 г. - 112с.
  10. Максим Калашников Экранопланы - будущее России // альманах Восток, Выпуск: N 5 (41), декабрь 2006г, очерк
  11. Московская «Арктическая торгово-транспортная компания» намерена в 2008 году завершить реконструкцию цеха для производства экранопланов в Чкаловске
  12. http://www.sostav.ru/news/2003/04/09/gl49/ Арктическая торгово-транспортная компания (АТТК) купила в Нижегородской области площадку для производства и испытания экранопланов
  13. Решение Арбитражного суда г. Москвы (решение от 22.12.2011, дело №А-40-139490/10)
  14. Тяжелые экранопланы и многоразовые космические аппараты: перспективный тандем Э. А. АФРАМЕЕВ, кандидат технических наук (ЦНИИ им. Крылова), «Вестник авиации и космонавтики» № 4 2001
  15. Грузопассажирский экраноплан водоизмещением до 10 тонн "Орион-20"
  16. Экранопланы для морских пограничников будут строить в Петрозаводске
  17. В России возобновится производство «каспийских монстров» , lenta.ru (Проверено 18 июля 2010)
  18. Экранопланы нового поколения появятся в России к 2016 году
  19. ИТАР-ТАСС, 27.09.07 г. Сообщение «Южная Корея намерена в 2012 году приступить к коммерческой эксплуатации экранопланов»
  20. Аналитический интернет-журнал РПМонитор: Великое арктическое противостояние

Литература

  • Петров Г. Ф. Гидросамолеты и экранопланы России: 1910-1999 . - Русавиа, 2000. - 248 с. - 3000 экз. - ISBN 5-900078-05-1
  • Lange R. H. and Moor J.W. Large wing-in-ground effect transport aircraft. Journal of Aircraft, 1980, v 17,IV, N 4, p 260-266.

Ссылки

  • ОАО «ЦКБ по СПК им. Р. Е. Алексеева» - Центральное конструкторское бюро по судам на подводных крыльях им. Р. Е. Алексеева
  • Экранопланы. На грани двух стихий - сайт посвящённый экранопланам
  • Научно-Технический Центр «Сарган» - разработка и проектирование экранопланов
  • The WIG page (англ.)
  • Арктическая торгово-транспортная компания (АТТК) купила в Нижегородской области площадку для производства и испытания экранопланов
  • Российский малый экраноплан «Aquaglide 5» , ИЛА-2006, Берлин