Изготовления микросхем. Получение кремния полупроводниковой чистоты. Технология изготовления микросхем

Процесс изготовления современных полупроводникоых ИС весьма сложен. Он проводится только в специальных помещениях с микроклимитом на прецезионном оборудовании. В настоящее время для создания полупроводниковых ИС на биполярных транзисторах используется несколько разновидностей технологических процессов, отличающихся главным образом способами создания изоляции между отдельными элементами . Основные технологические операции изготовления полупроводниковых микросхем можно разделить на шесть этапов.

1. Подготовка слитков к резке на пластины. Первоначально выращивают слиток кремния, затем этот слиток готовят к резке на пластины - отрезают затравочную и хвостовую часть, а также удаляют части слитка с электрофизическими параметрами, не соответствующими установленным нормам или с недопустимыми требованиями. Калибровка выполняется шлифовкой по образующей поверхности слитка (круглое шлифование) шлифовальным кругом. После калибровки торцы слитка подшлифовывают так, чтобы они были строго перпендикулярны геометрической оси слитка, а для удаления механически нарушенного слоя и загрязнений слиток травят. Контроль кристаллографической ориентации торца слитка и базового среза выполняется рентгеновским или оптическим методами. Базовый и дополнительные срезы получают сошлифовыванием слитка по образующей алмазным кругом на плоско-шлифовальном станке. Для получения срезов слиток соответствующим образом закрепляют в специальном зажиме. После базового среза слиток разворачивают в зажиме, закрепляют и сошлифовывают вспомогательный срез. После шлифования срезов слиток травят.

2. Резка слитков на пластины. Резка слитка является важной операцией в маршруте изготовления пластин, она обуславливает ориентацию поверхности, толщину, плоскостность и параллельность сторон, а также прогиб.

Основным методом резки кремниевых слитков на пластины является резка диском с внутренней режущей алмазосодержащей кромкой. Отрезаемые пластины в зависимости от устройства станков переносятся вакуумным съемником или остаются на оправке. Пластины после резки подвергаются очистке от клеющих, смазочных материалов, частиц пыли.

Преимущества резки диском с внутренней режущей кромкой: высокая скорость резания (до 40 мм/мин); хорошее качество обработки поверхности (8-ой класс шероховатости); малый разброс по толщине пластин (±20 мкм); небольшие отходы материала.

Недостатки резки диском с внутренней режущей кромкой: сложность установки алмазного диска, его натяжения и центровки, зависимость качества и точности обработки от точности и качества инструмента.

Этот метод в сравнении с другими методами обеспечивает лучшее качество пластин и большую производительность процесса.

3.Шлифование пластин кремния. Под шлифованием понимают процесс обработки поверхностей заготовок на твердых дисках - шлифовальниках из чугуна, стали, латуни, стекла и других материалов с помощью инструментов - шлифовальников и абразивной суспензии (обработка свободным абразивом) или с помощью алмазных шлифовальных кругов (обработка связанным абразивом).

Процесс двустороннего шлифования свободным образивом выполняется на специальных станках. Перед шлифованием пластины сортируют по толщине. Контролируют неплоскостность рабочей поверхности шлифовальников, в случае необходимости выполняют правку - подшлифовку с кольцевыми притирами. Затем шлифовальники очищают от пыли и других загрязнений, промывают водой смазывают глицерином. На поверхность нижнего шлифовальника устанавливают зубчатые кольца сепараторы, которые должны иметь специальные допуски по толщине, а толщина должна быть несколько меньше требуемой после шлифования толщины пластин. Обрабатываемые поверхности укладывают в отверстия сепараторов.

При вращении верхний шлифовальник свободно устанавливается на поверхности пластин. Движение шлифовальника через цевочные колеса передается сепараторам. Пластины, увлекаемые сепараторами совершают сложные перемещения между шлифовальниками, чем достигается равномерность их обработки и износа шлифовальников.

Для двустороннего шлифования применяют водные и глицериновые суспензии микропорошков карбида кремния зеленого или электрокорунда белого с зернистостью от М14 до М5.

Этот метод более производителен, обеспечивает высокую точность обработки поверхности, не требует наклейки пластины.

4.Снятие фаски. Фаски с боковых поверхностей пластин можно снимать абразивной обработкой либо химическим травлением собранных в специальной кассете заготовок. Наиболее часто фаски снимают методом шлифовки профильным алмазным кругом на специальном станке.

5.Полирование пластин. Полировка обеспечивает минимизацию микронеровностей поверхности пластин и наименьшую толщину нарушенного слоя.Её производят на мягких доводочных полировальниках (круги обтянутые замшей, фетром, батистом, велюром) с помощью использования алмазной пасты, суспензии.

Полирование выполняют в несколько этапов, постепенно уменьшая размер зерна и твердость абразива, а на последнем этапе полностью исключают абразивное воздействие на обрабатываемый материал. Последний этап безабразивного воздействия позволяет полностью удалить механически нарушенный слой с поверхности пластины.

Существует несколько методов полирования:

· Механическое (предварительное и промежуточное) полирование. Его выполняют алмазными суспензиями и пастами с размером зерна от 3 до 1 мкм. Механическое полирование по своей сущности не отличается от шлифования, отличие состоит лишь в применяемых абразивных материалах, их зернистости, материале полировальника и режиме обработки. При использовании для полирования алмазных суспензий и паст на поверхности пластин образуется тонкая сеть рисок (“алмазный фон”), возникающих под действием острых режущих граней алмазных зерен. С целью удаления “алмазного фона” и уменьшения шороховатости поверхности иногда выполняют механическое полирование более мягкими абразивными материалами.

· Тонкое механическое полирование выполняется мягкими полировальными составами на основе оксидов алюминия, кремния, хрома, циркония и других размером зерна менее 1 мкм с помощью полировальников из ворсовых материалов, в которых могут утопиться субмикронные зерна порошка. Это уменьшает рабочую поверхность зерен и улучшает качество обработки поверхности пластин.

· Химико-механическое полирование. Оно отличается тем, что кроме обычного абразивного воздействия поверхность подвергается химическому воздействию. Полирующие составы - суспензии, золи, гели из субмикронных порошков оксидов кремния (аэросил), циркония, алюминия - приготавливаются на основе щелочи.

Выберем механическое полирование, которое будет выполняться алмазной суспензией из порошка АСМ3, односторонняя, частота вращения полировальника не более 30…40 об/мин. При переходе на порошок АСМ1 частоту вращения полировальника снижаем, нагрузку на пластину увеличиваем. После полировки пластину надо тщательно промыть в мыльных растворах.

6.Физическая очистка. Для последующих операций очень важна чистота поверхности. Поэтому перед началом, а также неоднократно в течение технологического цикла производят очистку , удаляя посторонние вещества с помощью промывки, растворения и т.п. Процессы очистки пластин и подложек предназначены для удаления загрязнений до уровня, соответствующего технологически чистой поверхности. Наиболее важна очистка поверхности после механической обработки, перед термическими процессами, перед нанесением различного рода покрытий, плёнок, слоёв. При очистке в первую очередь необходимо удалить молекулярные органические и химически связанные с поверхностью загрязнения, а затем - остаточные ионные и атомарные. При физической жидкостной очистке происходит десорбция адсорбированных поверхностью загрязнений без изменения их состава, т.е. без химических реакций, путем простого растворения. Поскольку возможно обратное загрязнение поверхности из очищаемой жидкости, необходимо следовать принципу ее непрерывного обновления (освежения).

Обезжиривание (отмывка) в органических растворителях (толуоле, четыреххлористом углероде, дихлорэтане, спиртах: этиловом, метиловом, изопропиловом и др.) применяется для удаления с поверхности пластин (подложек) жиров животного и растительного происхождения, минеральных масел, смазок, воска, парафина и других органических и механических соединений.

Обезжиривание погружением выполняют в специальных герметичных установках с двумя-четырьмя сваренными в единый блок ваннами с повышающимся уровнем жидкости. Контролируемыми параметрами процесса обезжиривания для данного количества пластин и данной порции конкретного растворителя и время обработки.

Обезжиривание в парах растворителя применяют для удаления малорастворимых с высокой температурой плавления загрязнений. Для обработки в парах применяют изопропиловый спирт, фреоны, хлорированные углеводороды. Недостатки данного метода: необходимость предварительной очистки растворителей; необходимость создания герметичных рабочих камер установок; большие расходы растворителя.

Ультразвуковое обезжиривание выполняют в специальных ваннах, дно и стенки которых совершают колебания с ультразвуковой частотой. Данный метод обеспечивает гораздо большую производительность, и улучшают качество не только обезжиривания, но и других операций жидкостной обработки.

7.Отмывка водой применяется для очистки полярных растворителей после обезжиривания, от остатков травителей, флюсов, кислот, щелочей, солей и других соединений. Также как и в органических растворителях, отмывка в воде сопровождается растворением загрязнений или механическим смыванием пылинок ворсинок и других частиц. Отмывку выполняют в подогретой до 50 … 60 °С деионизованной воде.

8. Химическая очистка. Этот вид обработки предусматривает разрушение загрязнений или поверхностного слоя очищаемого обьекта в результате химических реакций.

Хорошие результаты обеспечивает очитка кремния в растворе” Каро” . Именно этот метод будет использован в данном курсовом проекте - очистку смесью Каро с последующей более “мягкой”

очисткой в перекисно-аммиачном растворе. Классический состав смеси Каро для химической очистки поверхности кремния и оксида кремния, объёмное соотношение компонент находится в пределах

H 2 SO 4: H 2 O 2 = 3:1

Химическая очистка в этой смеси проводится при Т = 90 -150 о С. Смесь Каро позволяет очистить поверхность полупроводниковой пластины от органических загрязнений и, частично, от ионных и атомарных примесей. Кислота Каро устойчива в кислых средах и является очень сильным окислителем. Эта смесь способна очистить поверхность кремниевой пластины и от неметаллических загрязнений.

9.Эпитаксия. Эпитаксия - процесс наращивания монокристаллических слоев на монокристаллических подложках. Монокристаллические подложки в процессе эпитаксиального наращивания выполняют ориентирующую роль заставки, на которой происходит кристаллизация. Основная особенность - слои и локальные области противоположного типа проводимости или с отличной от полупроводниковой пластины концентрацией примеси представляют собой новые образования над исходной поверхностью. В процессе роста эпитаксиальные слои легируют, т.е. в них вводят донорные или акцепторные примеси. Особенностью также является то, что появляется возможность получения высокоомных слоев полупроводника на низкоомных пластинах.

При жидкофазовой эпитаксии атомы растущего слоя оседают на подложку из расплава или раствора, из которого необходимо вырастить соответствыущий слой. Второй вид эпитаксии - из парогазовой фазы - который и будет использоваться в данной технологии, основан на взаимодействии газа с пластиной. Здесь важными параметрами процесса является температуры газового потока и пластины. Можно использовать тетрахлорид кремния SiCl 4 либо силан SiH 4 .

Хлоридный метод основан на использовании химического взаимодействия паров тетрахлорида кремния с чистым водородом при Т =1200 о С:

SiCl 4 (газ) + 2H 2 (газ) = Si(тв) + 4HCl(газ)

Скорость роста эпитаксиального слоя может быть ограничена либо процессами массопереноса, т.е. количеством подводимых к поверхности подложек молекул реагентов или отводимых диффузией от подложки продуктов химических реакций, либо скоростями химических реакций. Основной недостаток - высокие температуры процесса, приводящие к диффузии примесей из пластин в растущий слой, а также автолегированию. Кроме того, обратимость реакции восстановления тетрахлорида требует высокой точности поддержания режима осаждения слоя.

Силановый метод основан на использовании необратимой реакции

термического разложения силана:

SiH 4 ------------->Siv+2H 2 ^

Установка для выращивания слоев эпитаксиальных слоев силановым методом близка по устройству к установке, используемой в хлоридном методе, и для предосторожности при работе с моносиланом она снабжается системой для откачки воздуха и следов влаги. Совершенные монокристаллические слои получаются при температурах разложения моносилана 1000 … 1050 °С, что на 200 … 150°С ниже чем при восстановлении тетрахлорида кремния. Это уменьшает нежелательную диффузию и автолегирование, что позволяет изготовить эпитаксиальные структуры с более резкими границами переходов. Скорость роста слоев выше чем при восстановлении тетрахлорида кремния.

Недостаток этого метода - самовоспламеняемость и взрывоопасность моносилана, требующие специальных мер предосторожности. Токсичность силана.

В данном курсовом проекте будем использовать SiCl 4 . т.к. с этим газом удаётся выращивать монокристаллические слои кремния, сохраняющие кристаллическую ориентацию кремниевой подложки без поверхностных нарушений.

Процесс эпитаксиального наращивания будет происходить в эпитаксиальном реакторе.

10.Оксидирование. Оксидирование можно проводить несколькими способами, такими как анодное оксидирование, катодное напыление оксидного слоя, либо термическое оксидирование кремния. Термическое оксидирование, как и другие высокотемпературные процессы предъявляют жесткие требования к кремниевым исходным слиткам (нежелательно содержание в них кислорода и углерода), к качеству процессов изготовления и очистки пластин. Оксидирование кремния сопровождается: диффузией кислорода под слой диоксида кремния; обогащением поверхностного слоя толщиной 1…2 мкм кислородом выше предела растворимости за счет напряженного состояния решетки кремния; взаимодействием кислорода с дефектами исходной пластины и генерацией дополнительных дислокаций и дефектов упаковки. На дефектах быстро скапливаются примеси диффундирующих металлов натрия, меди, железа и др. Поскольку именно в этом тонком слое формируются элементы ИМС, все это приводит к деградации их электрических параметров. Концентрацию кислорода в при поверхностном слое кремния снижают при отжиге пластин кремния в атмосфере азота при 1000 … 1100 °С. Поиск путей совершенствования процесса термического оксидирования привел к появлению модификаций метода термического оксидирования кремния.

Нанесение плёнок SiO на пластины кремния термическим окислением кремния при атмосферном давлении в горизонтальных цилиндрических кварцевых реакторах - наиболее распространённый метод. Температура окисления лежит в интервале 800…1200 о С и поддерживается с точностью ± 1 о С для обеспечения однородности толщины плёнок. Будем производить комбинированное окисление как в сухом кислороде, т.к. в этом случае плёнки SiO 2 получаются высокого качества, несмотря на то, что скорость окисления в этих условиях мала, так и во влажном кислороде (происходит всё с точностью до наоборот).

Основные реакции:

1. сухое оксидирование в атмосфере чистого кислорода:

Si(тв) > SiO 2 (тв)

2. влажное оксидирование в смеси кислорода с водяным паром:

Si(тв) + 2H 2 O > SiO 2 (тв) + H 2

Скорость оксидирования определяется самым медленным этапом диффузионного проникновения окислителя сквозь растущую пленку к границе раздела SiO 2 >Si. Коэффициенты диффузии сильно зависят от температуры. При низких температурах коэффициенты диффузии, а следовательно, скорость роста пленки малы. Повысить скорость роста можно либо увеличением давления в реакционной камере установки, либо повышением температуры процесса.

11.Фотолитография. Суть процесса фотолитографии состоит в следующем. Чувствительные к свету фоторезисты наносятся на поверхность подложки и подвергаются воздействию излучения(экспонированию). Использование специальной стеклянной маски с прозрачными и непрозрачными полями (фотошаблона) приводит к локальному воздействию на фоторезист и, следовательно, к локальному изменению его свойств. При последующем воздействии определенных химикатов происходит удаление с подложки отдельных участков пленки фоторезиста, освещенных и неосвещенных в зависимости от типа фоторезиста (проявления). Таким образом, из пленки фоторезиста создается защитная маска с рисунком, повторяющим рисунок фотошаблона.

В зависимости от механизма фотохимических процессов, протекающим под действием излучения, растворимость экспонированных участков может либо возрастать, либо падать. Соответственно, при этом фоторезисты является либо позитивными, либо негативными. Пленка позитивного фоторезиста под действием излучения становится неустойчивой и растворяется при проявлении, пленка негативного фоторезиста, наоборот, под действием излучения становится нерастворимой, в то время как неосвещенные участки при проявлении растворяются.

Свойства фоторезистов определяются рядом параметров:

· Чувствительность к излучению

В свою очередь, существуют некоторые критерии чувствительности: высокие защитные свойства локальных участков.

· Разрешающая способность фоторезиста.

· Кислостойкость (стойкость фоторезистов к воздействию агресивных травителей)

Технологический процесс фото литографии проводится в следующей последовательности:

1. Очистка поверхности подложки;

2. Нанесение фоторезиста (ФП-330) и распределение его по всей поверхности с помощью центрифугирования;

3. Сушка фоторезиста (15 мин при Т = 20 о С).

4. Совмещение фотошаблона с подложкой:

5. Экспонирование - засветка через фотошаблон УФ-лучами, t = 1ч2с;

6. Проявление: химическая обработка в специальных проявителях;

7. Задубливание производят для окончательной полимеризации оставшегося фоторезиста: термообработка при Т = 120 о С, t = 20мин;

8. Травление оксида кремния водным раствором плавиковой кислоты, лучше применяют буферные добавки солей плавиковой кислоты;

9. Удаление фоторезиста производится в щелочных средах.

10. Промывка пластины кремния в деионизованной воде с использованием УЗ и сушат при Т = 120 о С.

Для изготовления фотошаблонов используется, в основном, два метода. Первый метод основан на сочетании оптических и прецизионных механических процессов. Суть метода состоит в механическом вырезании первичного оригинала (увеличенного в 200…500 раз рисунка), в последующем фотографическом уменьшении размеров рисунка и его мультиплицировании. Во втором методе - фотоноборе - весь топологический рисунок разделяется на прямоугольники различной площади и с различным отношением сторон в зависимости от формы составляющих его элементов. Эти прямоугольники последовательной фотопечатью наносятся на фотопластинку, где, в конечном счете, образуется промежуточный фотошаблон с десятикратным увеличением рисунка по сравнению с заданным.

В данном курсовом проекте будем использовать позитивный фоторезист, т.е. свет разрушает полимерные цепочки: растворяются засвеченные участки. Позитивные фоторезисты обеспечивают более резкие границы растворённых (проявленных) участков, чем негативные, т.е. обладают повышенной разрешающей способностью, но имеют меньшую чувствительность и требуют большего времени экспонирования. Фотошаблон будет представлять собой стеклянную пластину, на одной из сторон которой нанесена тонкая непрозрачная плёнка Cr. Несколько капель раствора фоторезиста необходимо нанести

на окисленную поверхность кремниевой пластины, а потом с помощью центрифуги его распределить тонким (около 1мкм) слоем, высушить.

Существует контактная фотолитография, при которой фотошаблон плотно прилегает к поверхности подложки с нанесённым фоторезистом, и бесконтактная.

Бесконтактная фотолитография на микрозазоре основана на использовании эффекта двойного или множественного источника излучения. УФ-лучи подаются на фотошаблон под одинаковым углом, за счёт чего дифракционные явления сводятся к минимуму, и повышается точность передачи рисунка. Недостатком является очень сложное оборудование. Проекционная фотолитография основана на упрощённом процессе совмещения, т.к. с помощью специальных объективов изображение фотошаблона проектируется на пластину.

Удаление фоторезиста обычно производят в щелочных составах (NaOH).

12.Легирование. Легирование - введение примесей в пластину или эпитаксиальную плёнку. При высокой температуре (около 1000 о С) примесные атомы поступают через поверхность и распространяются вглубь вследствие теплового движения. Легирование полупроводников бывает трёх видов:

1. Диффузионное легирование - основано на использовании известного явления диффузии, т.е. направленного перемещения частиц вещества в сторону убывания их концентрации. Движущей силой является градиент концентрации атомов или молекул вещества. При диффузии выпрямляющие или концентрационные контакты получают в исходной пластине, изменяя ее свойства легированием на необходимую глубину. Диффузионные слои имеют толщины от сотых долей микрометров. Отличительной особенностью является неравномерное распределение концентрации примеси по глубине: концентрация максимальна возле поверхности и убывает вглубь слоя. Концентрация и распределение примеси во многом определяются свойствами примеси, легируемого материала и источника примеси.

2. Ионное легирование - осуществляется ионизированными атомами примеси, имеющими энергию, достаточную для внедрения в полупроводник. Также необходим отжиг для устранения радиационных нарушений структуры полупроводника и для электрической активации донорных и акцепторных примесей. Основной особенностью является возможность воспроизводимого получения заданной концентрации примеси на данной глубине практически на любой площади пластины. Это обусловлено тем, что можно с большой точностью задавать ток ионного луча. Распределениями примесей можно легко управлять в широких пределах, изменяя дозу облучения, энергию и угол падения ионов. Ионы примеси получают в специальных источниках, ускоряют и фокусируют в электрическом поле. Пучок ионов бомбардирует подложку. Ионы примеси размещаются в кристаллической решётке. Характеристики ионнолегированных слоев получаются более воспроизводимыми, чем при диффузии.

3. Радиационно-стимулиронанная диффузия - основана на внедрении примеси в результате бомбардировки кристалла лёгкими ионами с энергией, достаточной для смещения атомов подложки. Облучение проводится в процессе термообработки (t = 600-700 о С) или непосредственно перед ней.

Для данного курсового проекта будет использована высокотермическая диффузия, т.к. недостатком ионной имплантации является нарушение структуры поверхностного слоя и увеличение дефектов, а также сложность технологического оборудования. Диффузия будет проводиться традиционным методом открытой трубы из газообразных источников (BBr 3 ,PH 3) и твёрдых источников (оксид сурьмы).

13. Металлизация. Все системы металлизации, применяемые в настоящее время, можно разделить на следующие типы: однослойная, многослойная, многоуровневая, объемная (объемные выводы).

· Однослойная аллюминевая металлизация применяется преимущественно в ИМС малой степени интеграции, маломощных, работающих на частотах до 1 ГГц, не рассчитанные на высокие требования к надежности.

· Многослойная металлизация в ряде случаев полнее отвечает предъявляемым требованиям, но менее технологична, т.к. содержит не один слой металла. Обычно состоит из нескольких слоев: контактный слой - первый по порядку нанесения на кремниевую пленку (вольфрам, молибден, хром, никель, алюминий, титан, палладий, силициды тугоплавких металлов); разделительный слой - применяется в случаях, когда сложно подобрать согласующиеся материалы контактного и проводящего слов; проводящий слой - последний по порядку нанесения слой металлизации, должен иметь хорошую электропроводность и обеспечивать качественное надежное подсоединение контактных площадок к выводам корпуса (медь, алюминий, золото)

· Многоуровневая металлизация применяется в больших и сверхбольших ИМС. Увеличение числа элементов увеличивает и площадь межэлементных соединений, поэтому их размещают в несколько уровней.

В данном курсовом проекте будем проводить однослойная аллюминевую металлизацию.

14.Скрайбирование. Осуществлять скрайбирование необходимо алмазным резцом. Это приводит к образованию в пластине сравнительно глубоких (до 50…100мкм) и узких (до 25…40мкм) канавок. Достоинством этого скрайбирования является простота и низкая стоимость.

Разламывание пластин на кристаллы после скрайбирования необходимо осуществлять механически, приложив к ней изгибающий момент. Эту операцию выполняется на сферической опоре.

Достоинством этого способа являются простота, высокая производительность (ломка занимает не более 1…1.5мин) и одностадийность, а также достаточно высокое качество, так как кристаллы не смещаются относительно друг друга.

Укрупненные схемы технологических процессов изготовления полупроводниковых (монолитных) приведена ниже.

Рис. 1.

Опишем технологический процесс производства интегральной микросхемы генератора напряжения.

На первоначальном этапе происходит формирование слитков кремния и резка этих слитков алмазными дисками с внутренней режущей кромкой на пластины - базовые кристаллы, на которых будут сформированы в последствии элементы микросхем. Поверхность кристалла тщательно шлифуют для устранения поверхностных повреждений, полученных в результате резки. Производят полировку, причем разными материалами - алмазной суспензии, порошкообразными материалами. Затем производят очистку с целью удаления поверхностного слоя, в которых находятся поверхностные механические напряжения. Для этого над поверхностью пластины пропускают HCl при высокой температуре и обмывают кристалл деионизованной водой, растворами моющих порошков, проточной воде и, затем, сушат пластину до полного высыхания.

На следующем этапе производят окисление поверхности кристалла с целью образования двуокиси кремния с определенной толщиной.

Это делается для того, чтобы при проведении легирования, легированным оказался не весь кристалл, а только определенный участок.

Соответственным образом поверх слоя двуокиси кремния наносят слой фоторезиста, контактным (или другим способом) производят процесс фотолитографии. При этом используется фотошаблон (см. приложение). Открытые участки проявляют, задубливают и ликвидируют, и таким образом получают участок двуокиси кремния для последующего травления.

Образовавшиеся окна травят, в результате область подложки становится открытой для последующего легирования и образования скрытого n+ слоя. Слой фоторезиста ликвидируют. Поверхность оксида кремния тщательным образом очищают, омывают в проточной деионизованной воде и сушат центрифугированием. Таким образом, подложка становится полностью готовой для проведения операции легирования.

Для получения высоколегированного слоя n+ типа, производится высокотермическая диффузия сурьмой до предела ее растворимости. Таким образом, формируется скрытый n+ слой. Производится разгонка сурьмы в n+ кармане.

Слой двуокиси кремния стравливают в плавиковой кислоте, образуется открытая поверхность подложки с тремя участками высоколегированного слоя. Поверхность подложки тщательно очищают химическими методами и омывают в проточной деионизованной воде. После проведения этих операций, подложка становится готовой к проведению эпитаксиального наращивания кремния n-типа проводимости. Таким образом получают т.н. коллекторный слой, который присутствует в структурах активных элементов, и в этом же слое формируются резисторы среднего номинала (5кОм, 10 кОм), также этот слой присутствует в структуре МДП-конденсатора.

Далее производят разделительную диффузию с целью отделения одних элементов от других. Для этого повторяют ранее описанные процессы: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном (см. приложение), экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. После этого производят разделительную диффузию путем легирования бора в эпитаксиальный слой на поверхности подложки.

Для каждого элемента таким образом образовался свой эпитаксиальный слой. Далее производят диффузию фосфора в эпитаксиальный слой с целью создания базовой области. Для этого повторяют ранее описанные процессы: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. Затем производится легирование фосфором (см. приложение). Базовая область используется как база у активных элементов и в качестве резистивного слоя у резисторов.

Далее создаются области, которые у активных элементов используются как эмиттерная область, у резисторов она может отсутствовать. Перед этим производится совокупность ранее описанных процессов: нанесение слоя двуокиси кремния, нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя двуокиси кремния в окне фоторезиста. Затем производится легирование сурьмы (см. приложение) и ликвидация фоторезиста и слоя двуокиси кремния с последующей тщательной очисткой поверхности.

После этого кристалл готов к нанесению на его поверхность внешней изоляции и нанесения алюминиевых выводов на базовую, коллекторную имиттерную области кристалла. Для этого производят тщательную очистку поверхности кристалла и осаждают нитрид кремния. Затем производят нанесение фоторезиста, совмещение с фотошаблоном, экспонирование, проявление, удаление засвеченных участков фоторезиста, травления слоя нитрида кремния в окне фоторезиста и удаление фоторезиста со вcей поверхности нитрида кремния.

Затем на всю поверхность кристалла наносят сплав алюминия и кремния методом катодного распыления. Далее производят операцию фотолитографии и травление алюминия. Таким образом производится электрическое соединение элементов схемы в соответствии со схемой электрической принципиальной.

Вся поверхность кристалла подлежит тщательной очистке и сушке центрифугированием. Затем на поверхность кристалла наносится слой двуокиси кремния методом окисления моносилана. Производится изготовление окон в изоляционном слое для соединения токоведущих дорожек микросхемы с внешними выводами.

), люди продолжают интересоваться результатами - а значит пора рассказать о прогрессе.

Напомню цель проекта: научиться изготавливать несложные кремниевые цифровые микросхемы в «домашних» условиях. Это никоим образом не позволит конкурировать с серийным производством - помимо того, что оно на порядки более совершенное (~22нм против ~20мкм, каждый транзистор в миллион раз меньше по площади), так еще и чудовищно дешевое (этот пункт не сразу стал очевиден). Тем не менее, даже простейшие работающие микросхемы, изготовленные в домашних условиях будут иметь как минимум образовательную и конечно декоративную ценность.

Начнем с неудач и драмы

Как я уже упоминал в комментариях к другому топику, попытка выйти с этим проектом на kickstarter провалилась - проект не прошел модерацию из-за отсутствия прототипа. Это заставило в очередной раз переосмыслить пути коммерциализации этой упрощенной технологии. Возможность релиза технологии домашних микросхем в виде RepRap-подобного opensource-кита покрыта туманом: очень уж много опасной, дорогой и нестойкой химии - так просто рассылать по почте не выйдет. Также по видимому отсутствует возможность делать мелкие партии микросхем дешевле серийных заводов: сейчас минимальные тестовые партии микросхем можно изготавливать примерно по 30-50$ штука (в партии ~25 штук), и существенно дешевле 30$ за микросхему сделать это на самодельной упрощенной установке не получится. Кроме того, не смотря на низкую цену на обычных заводах - любительские микросхемы практически никто не делает, задач где они имели бы преимущества перед FPGA/CPLD/микроконтроллерами практически нет, а стоимость и сложность разработки - остается очень высокой.

Но как я уже упоминал выше - даже с этими недостатками проект остается для меня интересным.

Логистика

Из того, что уже упоминалось в моих других статьях в последние месяцы - куплен кислородный концентратор, позволяет получить ~95% кислород без головной боли. Из вредных примесей - похоже только углекислый газ (35ppm), будем надеяться, этого будет достаточно. Также едет из Китая генератор озона (ему на входе нужен кислород) - есть результаты исследований, показывающих что им удобно растить тонкие подзатворные диэлектрики и использовать как один из этапов для очистки пластин.

Чего еще не хватает

Из того, что упоминал в предыдущей статье - TEOS видимо не нужен, слишком сложно с ним работать, HMDS - не обязателен, по крайней мере для «больших» транзисторов.

Генератор азота - это конечно удобно, работать с пластинами в инертной атмосфере и не возиться с баллонами, но также не критично.

Единственное, что серьёзно могло бы облегчить работу - это образцы spin-on dopants и spin-on glass. В России по различным причинам их не используют и не производят, за рубежем - производителей мало, продается большими партиями и стоит дорого (тысячи $). Компания Emulsitone, у которой покупала образцы Jeri Ellsworth когда делала свои транзисторы - похоже загнулась, с ними связаться так и не удалось. Но это также не обязательный пункт - работать можно и без них (с фосфорной и борной кислотами, POCl3 и BBr3), хоть и намного сложнее / несколько опаснее.

И наконец - конечно не хватает спонсора для моих проектов, иногда между дополнительными затратами времени и дополнительными затратами денег приходится выбирать первое. Если кто-то из компаний или частных лиц имеет желание спонсировать мои проекты (условия обсуждаемы) - вы знаете, где меня найти :-).
Update: Ориентировочная смета есть, высылаю по запросу - т.е. представление на что именно нужны деньги - есть.

О «серийном» проекте

В прошлой статье я упоминал о моём классическом микроэлектронном проекте - я хотел разработать и производить на серийных заводах микроконтроллеры. Исследовав под микроскопом конкурентов (нормы производства, площадь), и узнав цены производства на практически всех заводах (как отечественных, так и зарубежных) - стало понятно, что бизнес это хороший, хоть и очень капиталоемкий. Тем не менее, тут похоже пока не судьба - в Сколково проект дважды завернули , из-за отсутствия у меня профильного опыта. С одной стороны они безусловно правы, с другой - пришел бы Цукерберг в Сколково, а ему «А сколько социальных сетей вы уже создали?». Вводить в команду фиктивных членов - совершенно нет желания. Так что жизнь как всегда вносит коррективы в радужные планы - видимо сначала придется зарабатывать деньги на проект другими путями, и вернуться к нему через 3-5 лет (если он тогда еще будет кому-то нужен).

Дальнейшие планы

Следующий шаг - сборка печки с управляющей электроникой, и наконец производство первых образцов. Для начала - кремниевые диоды, исследование их характеристик, солнечные батареи, затем - полевые транзисторы, возможно и биполярные. Можно попробовать сделать диоды Шоттки - но с ними все не так просто (высокие требования к интерфейсу металл-полупроводник и краям диода).

Затем нужно думать, как в домашних условиях сделать ультразвуковую или термокомпрессионную сварку проволоки с кремниевой пластиной - это нужно для подключения выводов.

Надеюсь, в обозримом будущем домашние микросхемы мы все-же увидим:-)

Теги:

  • asic
  • микросхема
  • кремний
  • разработка
  • фотолитография
Добавить метки

Технология изготовления микросхем

Все элементы ИС и их соединения выполнены в едином технологическом цикле на общей подложке.

Технологические процессы:

а) наращивание полупроводникового материала на кремниевой подложке;

б) термическое окисление кремния для получения слоя окисла SiO 2 , защищающего поверхность кристалла от внешней среды;

в) фотолитография, обеспечивающая требуемые конфигурации пленок(SiO 2 , металл и т.п.) на поверхности подложки;

г) локальная диффузия – перенос примесных атомов в ограниченные области полупроводника (в настоящее время – ионная имплантация легирующего вещества);

д) напыление тонких (до 1 мкм) пленок;

е) нанесение толстых (более 1 мкм) пленок путем использования специальных паст с их последующим вжиганием.

ИС изготавливаются методами интегральной технологии , имеющей следующие отличительные особенности :

1. Элементы, однотипные по способу изготовления, представляют собой или полупроводниковые p-n структуры с несколькими областями, различающиеся концентрацией примесей или пленочные структуры из проводящих, резистивных и диэлектрических пленок.

2. Одновременно в едином технологическом цикле изготавливается большое количество одинаковых функциональных узлов, каждый из которых, в свою очередь, может содержать до сотен тысяч и более элементов.

3. Сокращается количество технологических операций (сборка, монтаж элементов) на несколько порядков по сравнению с традиционными методами производства аппаратуры на дискретных элементах.

4. Размеры элементов и соединений между ними уменьшаются до технологически возможных пределов.

5. Низконадежные соединения элементов, выполненные с помощью пайки, исключаются и заменяются высоконадежными соединениями (путем металлизации).

Последовательность основных этапов построения полупроводниковой ИС :

1. Выращивание кристалла кремния.

2. Разрезка на пластины (200…300мкм, Ø 40 – 150мм).

3. Очистка поверхности пластин.

4. Получение элементов и их соединений на пластине.

5. Разрезка пластин на отдельные части (кристаллы).

6. Закрепление в корпусе.

7. Подсоединение выводов с контактными площадками.

8. Герметизация корпуса.

Пр. Фотолитография :

1. Очистка пластин.

2. Нанесение фоторезистора.

4. Совмещение с фотошаблоном и экспонирование.

5. Травление SiO 2 .

6. Задубливание (сушка).

7. Проявление.

8. Удаление фоторезистора.

Пр. Толстопленочная технология :

1. Очистка подложек.

2. Трафаретная печать.

Основными технологическими процессами, применяемыми при изготовлении полупроводниковых интегральных микросхем, являются оксидирование, фотолитография, диффузия, эпитаксия, ионное легирование.

Оксидирование кремния. Этот процесс имеет важное значение в технологии изготовления полупроводниковых интегральных микросхем. Диоксид кремния Si0 2 представляет собой стеклообразный оксид, имеющий тот же химический состав, что и кварцевое стекло. Эти оксиды являются хорошей изоляцией для отдельных элементов схемы, служат маской, препятствующей проникновению примесей при диффузии, применяются для защиты поверхности и создания активных диэлектрических элементов (например, в МОП-транзисторах). Они образуют равномерное сплошное покрытие на поверхности кремния, которое легко стравливается и удаляется с локальных участков. Повторное оксидирование обеспечивает защиту P-N -перехода от воздействия окружающей среды. Коэффициенты термического расширения кремния и диоксида кремния близки. Диоксид кремния обладает хорошей адгезией и сравнительно легко создается на поверхности пластины.

В зависимости от метода получения различают термические и анодные оксиды.

Термические оксиды получают при ускоряемых нагревом реакциях кремния с кислородом и другими веществами, содержащими кислород. Такие оксиды имеют толщину ~ 1 мкм и обладают высокой плотностью.

Метод термического оксидирования имеет две разновидности:

1) высокотемпературное оксидирование в потоке сухого кислорода и увлажненных газов;

2) оксидирование в парах воды при высоком давлении (до 50 МПа), при сравнительно невысоких температурах (5ОО...900°С).

Оксидирование в потоке увлажненных газов выполняется по рис.1.8. Пластины кремния помещают в кварцевую трубу, где установлена температура 1100°С. Один конец трубы соединен с увлажнителем (деионизованной водой), через которую пропускают газ (аргон, азот и др.). При отключенном увлажнителе осушенный кислород поступает непосред-ственно в кварцевую трубу. Оксидирование проводится в такой последовательности: предварительная выдержка в сухом кислороде (~15 мин); длительное оксидирование во влажном кислороде (2 ч) и окончательное оксидирование в сухом кислороде. Первая операция дает прочную пленку малой толщины. Термическая обработка в среде влажного кислорода обеспечивает быстрый рост пленки (до 1 мкм), но плотность ее получается недостаточной. Последующая обработка в сухом кислороде приводит к уплотнению пленки и улучшению ее структуры.

Наиболее часто используют толщину оксида, составляющую десятые доли микрометра, а верхний предел по толщине равен 1 мкм. Добавление в оксидированную среду хлорсодержащих компонентов повышает скорость оксидирования и увеличивает напряженность пробоя. Главная роль хлора заключается в превращении случайно попавших в диоксид кремния примесных атомов (калия, натрия и др.) в электрически неактивные.


Окисление кремния в парах воды при высоком давлении осуществляется в камере, внутренняя поверхность которой покрывается золотом или другим инертным металлом во избежание нежелательной реакции. В камеру помещают пластины кремния и определенное количество воды высокой чистоты, которая нагревается до температуры оксидирования (500 ...800°С). Толщина пленки зависит от длительности оксидирования, давления и концентрации паров воды.

На качество оксидной пленки влияет чистота рабочего объема, в котором производится процесс. Попадание даже ничтожного количества примесных атомов может существенно изменить свойства материала исходной заготовки. Наиболее вредное воздействие оказывают примеси меди, коэффициент диффузии которых в кремнии очень велик.

Большое значение имеет предокислительная очистка кремния от загрязнений, приводящих к прерывистости в пленках. Преимущество оксидирования при высоком давлении состоит в возможности снижения температуры процесса без увеличения продолжительности.

Анодное оксидирование кремния имеет две модификации: оксидирование в жидком электролите и в газовой плазме. Процесс анодного оксидирования дает возможность получать оксидные пленки при более низких температурах, что ограничивает пере-распределение примесей в предварительно сформированных диффузионных областях.

Для создания межслойной изоляции процесс оксидирования не применяют, а диэлектрические слои получают осаждением.

Пленки диоксида кремния как защитные слои обладают следующими недостатками: 1) пористостью структуры, что приводит к возможности проникновения водяных паров и некоторых примесей к исходной поверхности кремния; 2) способностью атомов ряда элементов мигрировать сквозь пленку диоксида кремния, что приводит к нестабильности характеристик полупроводниковых приборов.

Фотолитография. Фотолитография представляет собой процесс образования на поверхности диоксида подложки фоторезистивного изображения топологии схемы и последующего переноса его на подложку. По структуре он совпадает с методами, применяемыми при образовании проводников печатных плат. Однако этот процесс имеет свою специфику, обусловленную требованиями высокой разрешающей способности и повышенными требованиями к качеству применяемых материалов и чистоте окружающей среды.

Фоторезисты - тонкие плёнки органических растворов, которые должны обладать свой-ствами после экспонирования ультрафиолетовым светом полимеризоваться и переходить в нерастворимое состояние. Основные требования, предъявляемые к фоторезистам, - высокая разрешающая способность, светочувствительность, устойчивость к воздействию травителей и различных химических растворов, хорошая адгезия с поверхностью изделия.

Под разрешающей способностью фоторезиста понимается число линий, которое можно нанести на один миллиметр поверхности платы с расстоянием между ними, равным их ширине. Разрешающая способность зависит от вида фоторезиста и толщины слоя. При тон­ких слоях она больше, чем при толстых.

По способу образования рисунка фоторезисты делятся на негативные и позитивные (рис. 1.9).

Участки негативного фоторезиста, находящиеся под прозрачными участками фотошаблона, под действием ультрафиолетового света получают свойство не растворяться при проявлении. Участки фоторезиста, расположенные под непрозрачными местами фотошаблона, легко удаляются при проявлении в растворителе. Таким образом создается; рельеф, представляющий собой изображение светлых элементов фотошаблона (рис. 1.9, а).

Негативные фоторезисты изготовляют на основе поливинилового спирта. Их широко применяют вследствие отсутствия токсичных составляющих, приемлемой разрешающей способности (до 50 ли-ний/мм), простоте проявления и низкой стоимости. Недостатком является невозможность хранения более 3...5 ч заготовок с нанесенным слоем, так как послед-ний задубливается и в темноте. Кроме того, с пони-жением влажности и температуры окружающей среды уменьшается механическая прочность светочувствительного слоя и его адгезия с поверхностью.

Позитивный фоторезист под действием облучения изменяет свои свойства таким образом, что при обработке в проявителях растворяются его облученные участки, а необлученные (находящиеся под непрозрачными участками фотошаблона) остаются на поверхности платы (рис. 1.9, б).

Для позитивных фоторезистов применяют материалы на основе диазосоединений, которые состоят из светочувствительной полимерной основы (новолачной смолы), растворителя и некоторых других компонентов. По адгезионной и разрешающей способности они превосходят негативные фоторезисты, но имеют более высокую стоимость и содержат токсичные растворители. Разрешающая способность позитивных фоторезистов составляет до 350 линий/мм. Достоинством позитивного фоторезиста является отсутствие дубления при хранении заготовок с нанесенным светочувствительным слоем.

В технологическом процессе производства ИМС применяют жидкие и сухие фоторезисты.

Жидкие фоторезисты наносят погружением (окунанием), поливом с центрифугированием, накатыванием ребристым роликом и другими способами.

Сухие фоторезисты, получившие более широкое распространение ввиду большей технологичности и простоте применения, представляют собой тонкую структуру из трёх слоёв: оптически прозрачной плёнки (обычно полиэтилентерефталата), светочув-ствительного полимера и защитной лавсановой плёнки. Нанесение их проводится при повышенной температуре с предварительным удалением защитного слоя и приклеиванием фоторезиста. После экспонирования рисунка снимается оптическая плёнка и изображение проявляется в воде. При этом неэкспонированные участки рисунка удаляются.

Высокую разрешающую способность рисунка схемы обеспечивают позитивные фоторезисты. Однако их преимущества не исключают возможности использования негативных фоторезистов, обладающих большей кислотоустойчивостью и простотой проявления.

Основные этапы процесса фотолитографии при реализации контактной печати приведены на рис.1.10.

Подготовка повер-хности подложки (рис. 1.10,а) существенно влияет на адгезию фоторезиста. Пос-ледний следует наносить сразу же после окисления пластины без каких-либо дополнительных обработок поверхности. Если подложки хранятся более часа, то производится термообработка в сухом кислороде или азоте при t=1000°С в течение нескольких минут. Она позволяет устранить гидрофильность поверхности подложки.

Нанесение фото-резиста производят цен-трифугированием (рис. 1.10,6). Оптимальная толщина слоя фоторезиста находится в пределах 0,3... 0,8 мкм. При толщине слоя менее 0,2 мкм вероятность появления проколов резко увеличивается, а при толщинах более 1 мкм снижается разрешающая способность процесса, что не дает возможности получать элементы с малыми размерами.

При нанесении фоторезиста необходимо обеспечить однородность слоя (отсутствие пор, инородных частиц и др.) и равномерность его по толщине. Однородность слоя зависит от чистоты исходного фоторезиста, чистоты окружающей среды, режимов и способа сушки. Равномерность толщины слоя зависит от вязкости фоторезиста и режимов его нанесения. Неравномерность слоя по толщине является причиной ухудшения контраст-ности вследствие неполного прилегания фотошаблона к фотослою при экспонировании.

Удаление растворителя из слоя фоторезиста для образования прочной и однородной пленки осуществляется сушкой при t =18... 20°С в течение 15...30 мин, а затем при t=90... 100 °С в течение 30 мин.

Перенос изображения с фотошаблона на пластину, покрытую слоем фоторезиста, реализуется путем экспонирования (рис. 1.10, в). Если процесс фотолитографии повторяется, то необходимо ранее полученный рисунок совместить с рисунком на фотошаблоне. Точность совмещения составляет 0,25... 0,5 мкм. В качестве источника света используют ксеоновые и ртутно-кварцевые лампы.

На качество переноса существенно влияют дифракционные явления, возникающие при наличии зазоров между шаблоном и пластиной. Зазоры возникают вследствие неплоскостности подложки, достигающей 20 мкм. Качество переноса изображения с фотошаблона на слой фоторезиста может быть оценено только после проявления.

Проявление скрытого изображения (рис. 1.10,г) в негативном фоторезисте заключается в удалении участков, находившихся под темными местами фотошаблона. В случае позитивного фоторезиста удаляются облученные участки. Негативные фоторезисты проявляют в органических растворителях (трихлорэтилене и др.), а позитивные- в щелочных растворах. Для улучшения защитных свойств полученный слой сушат при t=100... 120°С, а затем задубливают при t=200... 250°С в течение 30...40 мин.

Требуемый рисунок схемы получают травлением не защищенных фоторезистом участков подложки в смеси азотной и плавиковой кислоты (рис. 1.10,д).

Травление должно обеспечивать полное вытравливание оксидных пленок. При этом встречаются случаи, когда надо одновременно вытравливать оксидные пленки различной толщины. Точность операций травления зависит от точности изготовления негатива и качества фоторезиста. В случае плохой адгезии слоя с поверхностью заготовки плавиковая кислота может проникать под задубленный слой и вытравливать защищенные им участки оксидной пленки. Оставшийся на поверхности слой фоторезиста удаляют в растворителе, в качестве которых применяют органические жидкости и серную кислоту. После набухания пленки фоторезиста удаляют тампоном.

Фотолитография является одним из основных технологических процессов при производстве полупроводниковых микросхем. Ее широкое применение объясняется высокой воспроизводимостью и разрешающей способностью, позволяющей получить рисунок малых размеров, универсальностью и гибкостью метода, высокой производительностью. Недостатком контактной фотолитографии являются быстрый износ фотошаблона и возникновение дефектов на соприкасающихся поверхностях. При контактировании фотошаблон вдавливает в фоторезистивный слой любые частицы (например, пылинки), которые приводят к дефектам в защитном слое фоторезиста.

Пылинка на поверхности фоторезиста может воспрепятствовать его задублению и привести к образованию отверстия («прокола») в оксиде. Такой же эффект может дать пылинка или какие-нибудь темные точки на прозрачной части фотошаблона. Отверстие в за-темненной части фотошаблона может привести к неполному удалению оксидной пленки. Размеры частичек пыли соизмеримы с размерами областей контактных элементов. Их наличие приводит к браку микросхемы.

Вероятность появления дефектов, возникающих вследствие попадания на поверхность кремния нерастворимых частиц пыли и других точечных загрязнений, пропорциональна площади пластины. Наличие таких дефектов ограничивает максимальную величину площади микросхем.

Бесконтактная (проекционная) фотолитография устраняет контакт между фотошаблоном и слоем фоторезиста, что позволяет избежать целого ряда недостатков, присущих контактной фотолитографии.

Метод проекционной печати заключается в проецировании изображения с фотошаблона на покрытую слоем фоторезиста пластину, размещенных на значительном расстоянии друг от друга. Размеры рисунка на фотошаблоне могут быть выполнены в увеличенном масштабе. При этом методе повышаются требования к плоскостности подложек и однородности толщины слоя фоторезиста. Высокие требования предъявляются к объективу, который должен обеспечить нужное разрешение на всем рабочем поле подложки. В настоящее время наилучшее разрешение (0,4 мкм) может быть получено на площади 2x2 мм. Трудности создания объективов, обеспечивающих высокое разрешение на большой площади, препятствуют широкому внедрению метода проекционной фотолитографии.

Фотолитография на микрозазоре сочетает достоинства контактного и проекционного методов фотолитографии. При этом методе между пластиной и фотошаблоном устанавливается зазор в 10... 20 мкм. Такой зазор является достаточно большим, чтобы свести к минимуму явление дифракции, и в то же время достаточно малым, чтобы пренебречь нелинейными искажениями в зазоре при передаче изображения. Промышленное оборудование для экспонирования на микрозазоре значительно сложнее, чем установки для контактного экспонирования.

Диффузия. Это процесс переноса легирующих примесей из областей с большей концентрацией в области с меньшей концентрацией. Если в твердом теле имеется градиент концентрации атомов какого-либо элемента, то создается направленное диффузионное движение, стремящееся выравнить концентрацию этих атомов во всем объеме. Процессы выравнивания концентрации происходят при достаточно высоких температурах, когда резко увеличиваются скорости движения частиц. Они характеризуются коэффициентом диффузии D, который определяется массой вещества, проникающего через единичную площадку за единицу времени при градиенте концентрации, равном единице.

Коэффициент диффузии для определенного материала и диффундирующей примеси в первом приближении зависит только от температуры (экспоненциальная зависимость).

Коэффициент диффузии элементов III группы (В, А1,Iп) в кремний на 1... 1,5 порядка выше, чем элементов V группы (As; P; Sb). Например, коэффициент диффузии бора в кремний при t==1473 К составляет 10,5 см 2 /с, мышьяка - 0,3 см 2 /с.


Процесс диффузии осуществляется в два этапа. На первом этапе из бесконечного источника (газовая фаза) на кристалле создается слой, насыщенный примесью. Этот этап называется загонкой примеси. Он проводится в присутствии кислорода, что способствует образованию на поверхности слоя боросиликатного стекла (для примеси В 2 0 3) или фосфорно-силикатного стекла (для примеси Р 2 О 5). Параметрами процесса загонки являются концентрация диффузанта и кислорода в газе-носителе, скорость газовой смеси и время процесса. На втором этапе примесь подвергается перераспределению. Этот этап называется разгонкой примеси. Она выполняется при t = 800...1000°С в отсутствие внешнего источника примеси. Рабочей атмосферой служит смесь инертного газа с кислородом. Разгонка примеси в глубь пластины сопровождается выращиванием защитной пленки оксида кремния.

Диффузию проводят в диапазоне температур 1100... 1300°С, а с учетом процесса загонки при двухстадийном процессе -1000... 1300°. Ниже 1000 °С значения коэффициентов диффузии очень малы и глубина диффузии незначительна. Выше 1300°С происходят нарушения поверхности пластин под действием высокой температуры.

В качестве источников примеси применяют твердые, жидкие и газообразные соединения. Наиболее часто используют бор и фосфор в виде химических соединений В 2 0 5 , Р 2 О 5 и др.

Диффузия в пото-ке газа-носителя из твердого источника выполняется в двухзонных установках (рис. 1.11). Источник примесей поме-щают в низкотемпературной зоне, а кремниевые плас-тины - в высокотемператур-ной зоне (1100... 1200°С). Трубу продувают смесью инертного газа с кислоро-дом и после установления температурного режима пластины помещают в рабочую зону. Испаряющи-еся молекулы примеси переносятся газом-носите-лем к пластинам и через слой жидкого стекла попадают на их поверхности. Жидкое стекло защищает поверхности пластин от испарения и попадания посторонних частиц. Недостатки процесса диффузии из твердого источника - сложность установки и трудность регулирования давления паров.

Диффузия в потоке газа-носителя из жидкого источника проводится на более простой однозонной установке, где возможно получить более широкий интервал значений поверхностных концентраций. Недостаток такого процесса-большая токсичность концентраций.

Диффузия в замкнутом объеме. Такая диффузия обеспечивает хорошую вос-производимость параметров диффузионных слоев. В этом случае пластину кремния и источ-ник примесей помещают в кварцевую ампулу, которую откачивают до давления 10 -3 Па или заполняют инертным газом. Затем ампулу запаивают и помещают в нагревательную печь. Молекулы пара примеси адсорбируются поверхностями полупроводниковой пластины и диффундируют в глубь ее. Такой метод применяют для диффузии бора, сурьмы, мышьяка, фосфора. Эти примеси являются высокотоксичными, а диффузия в ампуле исключает возможность отравления.

Достоинством метода является возможность применения одной печи для диффузии нес-кольких примесей без взаимного их загрязнения, недостатком-низкая производительность и необходимость тщательного ведения процесса загрузки, так как любое вещество, попавшее в ампулу, диффундирует вместе с основной примесью.

При всех способах диффузии необходимо обеспечить равномерное распределение температуры вдоль оси горячей зоны. Если допуск на глубину диффузионного слоя, равен 100%, то достаточно температуру выдерживать с точностью ±5°С. При допуске 20% температуру необходимо выдерживать с точностью ±0,5°С.

Глубина диффузии изменяется от нескольких микрометров (для элементов схемы) до 10 ... 100 мкм для их изоляции. Большая глубина диффузии требует значительного времени (до 60 ч).

Примеси, диффундирующие в кремний через отверстие в оксиде, распространяются в боковых направлениях почти на такую же величину, как и в глубину.

Наиболее распространенными дефектами при диффузии являются отклонения в глубине диффузионного слоя. Причины таких отклонений - пыль и другие частицы, находящиеся на поверхности пластины, а также остатки фоторезиста. Дефекты поверхности и нарушения в кристаллической решетке способствуют более глубокому проникновению диффузанта в материал. Для уменьшения количества таких дефектов необходимо весьма тщательно соблюдать чистоту окружающей среды, материалов и оборудования на подготовительных операциях и в процессе проведения диффузии.

Получение P-N -переходов методами диффузии позволяет в точных пределах контролировать глубину залегания и расположение перехода, концентрацию примесей и др. Недостаток процесса диффузии - невозможность получения четких переходов между областями с различными типами проводимости.

Эпитаксия. Это процесс наращивания слоев с упорядоченной кристаллической структурой путем реализации ориентирующего действия подложки. В производстве интегральных схем применяют два вида эпитаксии: гомоэпитаксию и гетероэпитаксию.

Гомоэпитаксия (автоэпитаксия) - процесс ориентированного наращивания кристалли-ческого вещества, не отличающегося по химическому составу от вещества подложки. Гетероэпитаксия - процесс ориентированного наращивания вещества, отличающегося по химическому составу от материала подложки.

В процессе выращивания эпитаксиальной пленки в нее можно вводить легирующие примеси, создавая полупроводниковые пленки с нужным распределением концентрации и заданным типом проводимости. Благодаря этому удается получить четкие границы между областями с различным типом проводимости.

Наибольшее распространение в настоящее время получил так называемый хлоридный способ получения эпитаксиальных слоев кремния, основанный на восстановлении тетрахлорида кремния. Процесс производится в реакторе, представляющем кварцевую трубу, помещенную в индуктор ВЧ-генератора. Реакторы могут быть горизонтального и вертикального типа.

В горизонтальном реакторе (рис. 1.12) кремниевые пластины размещают на графитовых подставках. Обогрев осуществляется высокочастотным генератором. Перед началом процесса систему заполняют азотом или гелием для удаления воздуха и продувают чистым водородом, который при температуре 1200°С вступает в реакцию с остатками оксидных пленок на поверхности подложек и почти полностью удаляет их. Затем камеру заполняют

смесью НС1 и Н 2 для стравливания с пластины кремния слоя толщиной в несколько микрометров. С помощью операции газового травления удаляются нарушенный слой и остатки Si0 2 . Эпитаксиальные пленки получаются без структурных дефектов. После очистки систему в течение нескольких минут продувают водородом, затем подают SiCl 4 и легирующую примесь. В результате реакции

5iС1 4 (газ) + 2Н 2 (газ) ↔ Si (ТВЁРДОЕ) ↓ + 4НС1 (ГАЗ)

тетрахлорид кремния разлагается, и на кремниевую подложку осаждается кремний, который принимает структуру лежащего под ним слоя. После окончания процесса подложку охлаждают потоком чистого водорода.

Определенные соотношения водорода, хлорида кремния и примесей достигаются путем регулирования скорости подачи и температуры. Обычный расход газа-носителя (водорода) составляет 10 л/мин, а соотношение между количеством Н 2 и SiCl 4 составляет 1000: 1. В эту смесь вводится газообразный диффузант в количестве примерно 300 ч. на 1 000 000 ч. газовой смеси.

В качестве донорной примеси применяют фосфин (РН 3) , а для получения слоя P -типа - диборан (В 2 Н 6) .

Скорость роста эпитаксиальной пленки зависит от расхода SiCl 4 и Н 2 , температуры подложки, количества вводимой примеси и др. Эти переменные, которые можно контролировать достаточно точно, определяют продолжительность процесса.

Наименьшая толщина эпитаксиальной пленки определяется наличием центров кристаллизации. Верхний предел толщины пленки, свободный от дефектов, равен 250 мкм. Наиболее часто толщина эпитаксиальной пленки составляет от 1 до 25 мкм.

Большое влияние на качество эпитаксиального слоя оказывает чистота поверхности подложки и используемых газов. В качестве подложки используют пластины кремния толщиной 150...200 мкм, свободные от структурных дефектов. Допускаемое содержание примесей в газах равно нескольким частям примеси на миллион частей газа.

Контроль полупроводниковых пластин осуществляют после финишного полирования, эпитаксии, оксидирования и диффузии. Он основан на визуальном наблюдении и анализе изображения пластины, сформированного на экране отраженным от поверхности пластины гомоцентрическим пучком видимого света.

Участки пластины с нарушенной структурой вносят возмущения в пучок света, благодаря чему дефекты пластины видны на экране как изменения интенсивности света в изображении пластины, позволяющие оценить ее качество.

Напыление тонких плёнок. Основными методами получения тонких плёнок являются термическое напылние (испарение) в вакууме и ионное распыление.

Термическое напыление в вакууме. Такое напыление основано на свойстве атомов (молекул) металлов и некоторых других материалов при испарении в условиях высокого вакуума перемещаться прямолинейно (лучеобразно) и осаждаться на поверхности, поставленной на пути их движения.

Установка для напыления в вакууме (рис. 1.13) состоит из плоской плиты 6, на которой устанавливается стеклянный или металличес-кий колпак 9. В последнем случае он снабжается смотровым стеклом. На плите предусмотрены два изолированных вакуумплотных вывода 4 для питания испарителя 3. На некотором расстоянии от испарителя помещается подложка 10, на которую наносится тонкая пленка. Подложка нагревается и до достижения заданного режима закрыта заслонкой 1.

В соответствии с физическими процессами, происходящими при испарении в вакууме, можно выделить следующие этапы образования пленки: 1) перевод напыляемого материала в парообразное состояние; 2) перенос пара от источника испарения к подложке; 3) конденсация пара на подложке и образование пленки.

Перевод напыляемого материала в парообразное состояние. В области образования паров происходит испарение материала, который нагревается до тех пор, пока давление его паров не превысит давления остаточных газов. При этом наиболее нагретые молекулы, обладающие высокой кинетической энергией, преодолевают силы молекулярного притяжения и отрываются от поверхности расплава. Вследствие резко пониженной теплопередачи в условиях высокого вакуума перегрева подложек не происходит.

Для некоторых материалов условная температура испарения ниже температуры плавления. Например, хром имеет температуру плавления 1800°С, а испаряется при нагревании в вакууме при температуре 1205°С. Переход вещества из твердого состояния в парообразное минуя жидкое называется сублимацией.

Перенос пара от источника испарения к подложке. Область переноса паров составляет 10...20 см. Чтобы траектории молекул испаряемого вещества были прямолинейными, длина свободного пробега молекул остаточного газа должна в 5... 10 раз превышать линейные размеры области переноса паров.

Длина свободного пробега l - расстояние, проходимое молекулой пара вещества без столкновения с молекулами остаточных газов. В высоком вакууме, когда l ³ d (d - расстояние от источника испарения до подложки), молекулы испаряемого вещества пролета-ют расстояние практически без соударений. Такой поток испаряемого вещества называется молекулярным и для его создания необходим вакуум порядка 10-5... 10-6Па.

Конденсация пара на подложке и образование пленки. Конденсация пара зависит от температуры подложки и плотности атомарного потока. Атомы испаряемого вещества адсорбируются на подложке после хаотической миграции по ее поверхности.

По механическим и физическим свойствам тонкие плёнки существенно отличаются от объёмного материала. Например, удельная прочность некоторых плёнок примерно в 200 раз превышает прочность хорошо отожжённых объёмных образцов и в несколько раз - прочность материалов, подвергнутых холодной обработке. Это объясняется мелкокристалличексой структурой и малой пластичностью. Температура испарения металлов лежит в пределах от нескольких сотен градусов (например 430 о С у цезия) до нескольких тысяч (например, 3500 о С у вольфрама). В связи с этим при вакуумном испарении применяют испарители различной конструкции. По способу нагрева вещества испарители разделяют на резистивные, электронные и индукционые.

В резистивных испарителях тепловая энергия получается за счет выделения теплоты при прохождении тока через нагреватель или непосредственно через испаряемый материал. Наиболее часто используют испарители с косвенным подогревом. В этом случае предусматривают специальные подогреватели, при помощи которых испаряемое вещество нагревается до требуемой температуры. Материалом испарителя обычно служит вольфрам, тантал, молибден и др.

Выбор материала подогревателя определяется следующими требованиями: испаряемый материал в расплавленном состоянии должен хорошо смачивать подогреватель, образуя хороший тепловой контакт, и не должен вступать в химическую реакцию с материалом подогревателя. В основном применяют подогреватели из вольфрама, молибдена, тантала.

Резистивные испарители не обеспечивают требуемого состава пленок при испарении сплавов. Вследствие различия в упругости паров различных компонентов состав пленки значительно отличается от исходного материала. Например, напыляемый сплав нихром (80% Ni и 20% Сг) образует на подложке пленку, имеющую состав 60% Ni и 40% Сг. Для получения пленок требуемого состава из многокомпонентных сплавов (например, МЛТ и др.) применяют метод микродозирования или взрывного испарения. При этом методе на ленточный испаритель, нагретый до температуры, превышающей на 200... 300°С температуру испарения наиболее тугоплавкого компонента, подается микродоза порошка испаряемого сплава с размерами частиц 100... 200 мкм. Испарение микродозы происходит практически мгновенно.

В электронных испарителях кинетическая энергия электронов преобразуется в тепловую энергию. Испаряемый материал используется в виде сплошной проволоки, на свободный конец которой воздействует электронный луч. В связи с кратковременностью нагрева (10 -8 ... 10 -9 с) различные компоненты сложного соединения испаряются и осаждаются на подложку практически одновременно. Электронно-лучевой нагрев дает возможность испарять тугоплавкие металлы и их сплавы.

Для повышения стабильности параметров тонкие металлические пленки подвергают термической обработке путем нагревания до t =300... 400° С. При этом происходит укрупнение кристаллов, связь между ними усиливается, пленка получается более плотной и компактной, а удельное электрическое сопротивление уменьшается.

Вакуумное напыление широко применяют для получения резистивных пленок, проводников из меди, алюминия и некоторых других сплавов, диэлектрических покрытий из оксида кремния и др. Основными преимуществами процесса являются высокая чистота получаемой пленки, удобство контроля ее толщины в процессе напыления, простота выполнения. Наиболее существенные недостатки процесса - изменение процентного соотношения составляющих при испарении веществ сложного состава; малая равномерность пленки по толщине при осаждении на большую площадь из точечных источников; трудность испарения тугоплавких материалов; высокая инерционность процесса при использовании резистивных испарителей; сравнительно невысокая прочность сцепления пленки с подложкой.

Ионное распыление. Оно основано на явлении разрушения твердых материалов при бомбардировке их поверхности ионизированными молекулами разряженного газа. Процесс не связан с высокими температурами и позволяет получать пленки тугоплавких металлов и сплавов. Различают следующие виды ионного распыления: катодное, ионно-плазменное и магнетронное.

Катодное распыление («диод-ная» система) (рис. 1.14) производится в ва-куумной камере, где расположены два плоскопараллельных электрода. Один элек-трод (катод) изготовлен из распыляемого материала и является мишенью для бомбар-дировки. Другой электрод (анод) служит подложкой, на которой осаждается пленка. В вакуумной камере создается низкое давление (10 -3. .. 10 -4 Па), после чего заполняется инерт-ным газом (обычно аргоном) при давлении 1 ... 10 Па. При подаче высокого напряжения (1... 3 кВ) между электродами возникает самостоятельный тлеющий газовый разряд, возбуждаемый электронной эмиссией. Катод является источником электронов, необходи-мых для поддержания тлеющего разряда. Электроны движутся к аноду и при столк-новении с молекулами нейтрального газа выбивают новые электроны, что приводит к резкому нарастанию потока электронов. Молекула инертного газа при этом превра-щается из нейтральной в положительный ион, обладающий по сравнению с элек-троном большей массой. Так происходит ионизация газа, который с большим или равным количеством электронов и ионов называют плазмой. Электроны перемещаются к аноду и нейтрализуются. Положительные ионы движутся к другой границе плазмы и ускоряются в темном катодном пространстве, приобретая большие энергии для распыления мишени (катода). Атомы материала мишени с высокой энергией осаждаются на поверхности подложки, которая располагается достаточно близко к катоду. Обычно это расстояние состав-ляет полторы-две длины темного катодного пространства.

Катодное реактивное распыление осуществляется в смеси инертного и активного газов. Оно позволяет получать различные по составу пленки. Разряд в смеси газов «аргон - кислород» применяют для получения оксидов. Реактивное распыление тантала в среде аргона с добавлением кислорода, азота и углерода позволяет получить ряд соединений с самыми различными свойствами.

Ионно-плазменное распыление (трехэлектродная система) осуществляется при более низких давлениях (рис. 1.15).

В камере создается давление 10 - 3Па и включается накал катода. Затем она заполняется инертным газом при давлении Ю-1Па. Создание газоразрядной плазмы обеспечивается дуговым разрядом, возникающим между анодом и катодом при напряжении в 150... 250 В. Источником электронов служит термокатод. Распыляемый материал (мишень) вводится в газовый разряд в качестве независимого электрода, не связанного с поддержанием разряда. Имитируемые термокатодом элек-троны ускоряются по направлению к аноду и ионизируют по пути молекулы остаточного газа. Плотность образующейся плазмы более чем на порядок превышает плотность плазмы тлеющего разряда. Катод-мишень и подложку помещают на противоположных границах активного плазменного пространства. Распы-ление начинается с того момента, когда к мишени прикладывают отрицательный по отношению к аноду потенциал в 200... 1000 В. Этот потенциал отталкивает электроны и притягивает ионы из плазменного простран-ства. Ионы бомбардируют мишень так же, как в рассмотренном «диодном» варианте. Распыляе-мые атомы, двигаясь преимущественно в направлении, перпендикулярном поверхно-сти, осаждаются на подложке. Распыление при низких давлениях дает возможность получить высокую адгезию пленки с подложкой за счет большей энергии распыляемых частиц. Так как при этом давлении длина свободного пробега молекул составляет несколько сантиметров, то распыляемые атомы на своем пути от мишени до подложки почти не соударяются с молекулами и ионами инертного газа и газовых примесей, что существенно уменьшает степень загрязненности пленки посторонними газовыми включениями. Возможность сокращения расстояния между мишенью и подложками связана с тем, что в триодной системе распыления образование электронов и ионов происходит автономно от мишени.

Недостатками триодной системы являются малый срок службы проволочного катода и разная скорость распыления на отдельных участках плоской мишени.

Высокочастотное ионное распыление применяют для распыления диэлектриков и полупровод-никовых материалов. В процессе обычного распыления проводящих материалов, ударяющихся о катод-мишень, ион нейтрального рабочего газа получает с мишени электрон и разряжается, превращаясь на некоторое время в нейтральную молекулу. Если распыляемый материал мишени- диэлектрик, то нейтрализации ионов на мишени не будет и она быстро покрывается слоем положительных зарядов, препятствующих дальнейшему распылению мишени.

Влияние положительного заряда можно исключить, подавая к металлическому электроду, на котором закреплён распыляемый диэлектрик, переменное напряжение. В период, когда напряжение на мишени отрицательно, происходит её распыление, сопровождаемое накоплением положительного заряда. При смене полярности положительный заряд компенсируется электронами, вытягиваемыми из плазмы. Диэлектрические материалы можно распылять практически на любой частоте.

Многие наверняка не раз задавались вопросом, почему процессоры, видеокарты и материнские платы которые мы покупаем в магазинах - разработаны и сделаны где угодно, только не в России? Почему так получается, неужели мы только нефть качать можем?

Сколько стоит запуск производства микросхемы, и почему при наличии 22нм фабрик, бОльшая часть микросхем по всему миру до сих пор делается на «устаревшем» 180нм-500нм оборудовании?

Ответы на эти и многие другие вопросы под катом.

Как же работает микроэлектронное производство и сколько все это стоит?

Транзисторы на кремниевой пластине рисуются с помощью фотолитографии, с помощью аппаратов называемых степперами или сканерами. Степпер - рисует кадр (до 26x33мм) целиком, затем переходит на новую позицию. Сканер - одновременно сдвигает маску и пластину таким образом, чтобы в каждый момент рисовать только одну узкую «строку» в центре кадра, таким образом аберрации оптической системы меньше влияют на изображение.

Основные характеристики степперов/сканеров - длина волны света, на которой они работают (на ртутных лампах i-line - 365nm, затем на эксимерных лазерах - 248nm и 193nm), и численная апертура объектива . Чем короче длина волны, и чем больше апертура - тем меньшие детали могут быть нарисованы объективом в соответствии с дифракционным пределом:

Например, для одного из самых совершенных сканеров ASML NXT 1950i с длиной волны 193нм и численной апертурой 1.35, и k1=0.4(обычное значение для фотолитографии без «хитростей») получаем теоретическое разрешение 57нм. Применяя хитрости вроде фазовых масок, многократной экспозиции, оптической коррекции близости, off-axis illumination , поляризации света - получают минимальные элементы до 22нм.

Другие параметры степперов/сканеров - производительность (сколько пластин в час они могут обработать, до 220 пластин), и ошибка совмещения (на сколько нанометров в штуках промахивается позиционирование пластины относительно заданной позиции. На современных сканерах - до 3-5нм).

Степперы/сканеры печатают уменьшенное в 4–5 раз изображение вот такой маски (стеклянной пластинки с рисунком микросхемы, размер примерно 15x15см) в точно заданных местах.

Операцию печати рисунка (с разными масками) нужно повторить от ~10 (для самых простых и старых микросхем) до ~40 раз чтобы сформировать все нужные слои на микросхеме (начиная от самих транзисторов, и заканчивая 2–10 слоями металлических соединений). Между операциями фотолитографии пластины подвергаются различной обработке - их греют в печке до 1100 градусов, травят в растворах и плазме. На выходе остаётся пластину разрезать на отдельные кристаллы, протестировать и поместить в корпус.

«Крутость» технологии измеряют размером минимального рисуемого элемента (отдельные части транзистора, например затвор - могут быть как меньше так и больше этой цифры - т.е. это величина достаточно условная). Понятно что чем меньше транзисторы - тем быстрее работает микросхема, и больше кристаллов влезет на пластину (но не везде нужна максимальная скорость).

Сейчас начинается медленный и мучительный переход на EUV-литографию, с длиной волны 13.5nm и зеркальной оптикой . EUV сканеры пока дороже и медленнее обычных 193нм, и только-только начинают превосходить их по достижимому разрешению.

Сколько стоит свой процессор сделать?

Цифры - грубые оценки, точных нигде не скажут без NDA.

Лицензия софта на одно рабочее место разработчика микросхем - от 20"000 до 100"000$ в год и выше. Можно конечно и воровать, но за этим все вокруг следят.

Далее - изготовление масок. Они не должны иметь ни одного повреждения, и их изготовление обходится очень дорого: от ~7"000$ за комплект для микросхем на 1000нм, ~100"000$ для микросхем на 180нм и до ~5"000"000$ для микросхем на 32нм. А ведь микросхема с первого раза скорее всего не заработает - и после нахождения ошибки маски придётся переделывать. Частично с этой проблемой можно бороться размещая тестовые микросхемы от многих заказчиков на одном наборе масок - тогда все получат по чуть–чуть тестовых микросхем за 1/3–1/10 цены полного набора масок (это называют Shuttle или MPW - multi project wafer).

Каждая произведённая пластина стоит от 100–400$ для старых технологий на 1000нм, ~1000$ на 180нм и до ~5000$ для самых современных (помимо нанометров тут оказывает влияние и сложность технологии - простая логика дешевле, флеш память дороже, но не в разы). Тут также важно помнить и о размере пластин: самые современные производства сейчас работают с пластинами диаметром 300мм - они по площади примерно вдвое больше пластин на 200мм (которые сейчас используются в России на Микроне, Интеграле и в туманном будущем на Ангстрем-Т), а последние примерно вдвое больше ещё более старых 150мм. Пластины бОльшего размера позволяют получать микросхемы меньшей стоимости при большИх заказах т.к. количество телодвижений для изготовления 100 пластин примерно одинаковое, независимо от диаметра (это одна из причин планируемого перехода передовых производств на пластины диаметром 450мм в 2018 году по оптимистичным оценкам).

Допустим мы хотим разработать x86-совместимый процессор (или любую другую относительно сложную микросхему), по более-менее современной коммерчески доступной технологии 28/32нм (22нм хоть и существует, но коммерческие заказы пока не разместить - так что доступ к технологиям иногда как любовь: за деньги не продается). Вопрос со стоимостью патентов опустим, это вообще очень печальная тема. Предположим, для разработки нужно 200 мифических человеко-лет (это если мы делаем скромный процессор, не претендующий на первое место).

Лицензии на софт - 50k$*100 = 5 млн$ (грубая оценка, не всем нужны лицензии).
Зарплата разработчиков - допустим 3k$*1,5(налоги)*12*200 = 10.8 млн$
Тестовые запуски в MPW - 2*1.5 млн$
Изготовление масок для серийного производства 2*5млн$ = 10 млн$ (2 - потому что как ни старайся - с первого раза не выйдет)

Итого - 28.8 млн$

Это было то, что называется Non-recurring engineering (NRE) - единоразовые затраты, которые не зависят от объема производства, и успеха всего мероприятия.

Если процессор у нас получился площадью 200мм2, пластины по технологии 32нм диаметром 300мм стоят 5000$, то с пластины у нас получится 70690/200 = 350 кристаллов (оценка сверху), из которых работать допустим будет 300. Т.е. себестоимость кристалла - 16.6$, 20$ после корпусировки. За сколько теперь такой процессор можно будет продавать? 50$? 100$? Отнимем налоги и наценку магазинов…

И вот теперь вопрос - сколько же нужно продать таких процессоров, чтобы окупить наши NRE, проценты по кредитам, налоги и проч? Миллион? 5 миллионов? А главный вопрос - есть ли какие-то гарантии, что эти 5 миллионов процессоров удастся продать, учитывая что конкурентам ничего не стоит произвести на 5 миллионов больше их уже готового продукта?

Вот такой вот адский бизнес получается - огромные капитальные расходы, огромные риски и умеренная прибыль в лучшем случае.

Китай - решил проблему по своему, они решили во все школы поставить компьютеры со своими процессорами и Linux - и проблема с объёмами производства решена ( ).

Таким образом, главный вопрос при создании микросхем - это не как и где произвести, а как разработать и кому потом продать миллионы штук получившейся продукции?

А сколько стоит завод построить?

Стоимость современного завода подбирается к отметке 5 млрд$ и выше . Такая сумма получается потому, что стоимость лицензий и некоторых других фиксированных расходов не сильно зависит от объёмов производства - и выгодно иметь большие производства, чтобы затраты «размазывались» по бОльшему объёму продукции. А каждый современный сканер (который собственно рисует эти 22–32нм детали) стоит 60–100млн $ (на большом заводе их может быть пара десятков). В принципе, 5млрд - не такие большие деньги в масштабах страны. Но естественно, никто не потратит 5 млрд без чёткого плана по возврату инвестиций. А ситуация там такая - несмотря на всю сложность индустрии, только монополисты работают с видимой прибылью (TSMC, Intel, Samsung и немногие другие), остальные еле сводят концы с концами.

Это просто не укладывалось у меня в голове - как же так, вкладывать миллиарды, и едва–едва их отбивать? Оказалось, все просто - по всему миру микроэлектроника жесточайше дотируемая отрасль - заводы постоянно выклянчивают освобождение от налогов, льготные кредиты и демпингуют (в Китае пошли ещё дальше - SMIC заводы строит за государственный счёт, и потом ими «управляет» - это у них называется Reverse Build-Operate-Transfer). После появления каждой новой технологии (45нм, 32нм...) - первые заводы-монополисты обладающие ей и рубят основную прибыль, а те, кто приходят на 2-5-10 лет позже старта - вынуждены работать практически по себестоимости. В результате денег тут заработать крайне сложно (без монополии и без дотаций).

Это похоже поняли и в России - и проекты больших микроэлектронных заводов пока отложили, и строят маленькие производства - чтобы если и терять деньги, то терять их мало. А даже 3000 пластин в месяц, производимых на Микроне - это с головой покрывает объёмы потребления билетов Метрополитена и оборонки (кристалл билета метро имеет размеры 0.6x0.6мм, на одной 200мм пластине получается 87"000 билетов в метро - но о грустной истории с билетами метро я расскажу в одной из следующих статей).

Вопреки расхожему мнению, особых ограничений на продажу оборудования для микроэлектроники в Россию нет - на поправку Джексона - Вэника в США ежегодно накладывается президентский мораторий, и нужно только получать обычное разрешение на экспорт. Сами производители оборудования кровно заинтересованы заработать побольше денег, и сами пинают со своей стороны выдачу разрешений. Но естественно, без денег никто ничего не делает. Так что за ваши деньги - любой каприз.

Но нужно помнить и о том, что свой завод не гарантирует полной независимости производства, и не дешевле производства за рубежом: основную стоимость составляют технологии/лицензии и стоимость закупаемого оборудования - а если своих технологий и оборудования нет, и все импортировать - то и дешевле получится не может. Многие расходные материалы также в любом случае придется импортировать. Отдельный больной вопрос - производство масок, только очень крупные фабрики могут иметь «своё» производство масок.

А сколько нанометров нужно для счастья?

Многим кажется - вот, у Intel–а 22нм, а у нас 90нм - как мы безнадежно отстали, подайте трактор… Но есть и другая сторона медали: посмотрите например на ту же материнскую плату: там сотни полупроводниковых приборов - MOSFET–ы, драйверы, микросхемы питания, всякая вспомогательная мелочь - почти для всех из них хватает и 1000нм технологии. Вся промышленная электроника, и микросхемы для космоса и военных - это практически в 100% случаев технологии 180нм и толще. Таким образом, самые последние технологии нужны лишь для центральных процессоров (которые делать очень сложно/дорого из–за высоких рисков и высокого порога выхода на рынок), и различных «жопогреек» (айфонов и проч). Если вдруг случится война, и Россия лишится импорта - без «жопогреек» прожить можно будет, а вот без промышленной, космической и военной электроники - нет. Т.е. по факту мы видим, что критичные для страны вещи по возможности делают в России (или закупают впрок), а то, без чего можно будет прожить в крайнем случае - импортируем.

Есть и другие факторы - та же стоимость масок. Если нам нужно сделать простую микросхему, то делать для её изготовления по 32нм маски стоимостью 5 млн $ - может быть выгодно если эту микросхему потом производить тиражом в десятки и сотни миллионов копий. А если нам нужно всего 100"000 микросхем - выгоднее экономить на масках, и выпускать микросхему по самой «толстой» технологии. Кроме этого, на микросхеме есть контактные площадки, к которым подсоединяются выводы микросхем - их уменьшать некуда, и следовательно, если площадь микросхемы сравнима с площадью контактных площадок - то делать микросхему по более тонкой технологии также нет смысла (если конечно «толстые нормы» удовлетворяют требованиям по скорости и энергопотреблению).

В результате - подавляющее большинство микросхем в мире делается по «толстым» технологиям (350–500нм и толще), и миллиарды микросхем уходящие на экспорт с Российских заводов (правда в основном в виде пластин) - вполне себе востребованы и продаются (так что в материнских платах и сотовых телефонах есть наши микросхемы и силовые транзисторы - но под зарубежными именами).

Ну и наконец, американский F–22 Raptor до недавнего времени летал на процессоре Intel 960mx, разработанном в 1984–м году, производство в США тогда было по нормам 1000–1500nm - никто особо не жужжал о том, что американцы ставят в самолеты отсталую электронику (хотя ладно, немного жужжали). Главное ведь не нанометры, а соответствие конечного продукта техзаданию.

Резюме

Рыночная экономика эльфов и микроэлектронное производство - слабо совместимые вещи. Чем больше копаешься - тем меньше видно рынка, больше дотаций, картельных сговоров, патентных ограничений и прочих радостей «свободного рынка». Бизнес в этой отрасли - это одна большая головная боль, с огромными рисками, постоянными кризисами перепроизводства и прибылью только у монополистов.

Не удивительно, что в России стараются иметь маленькое, но своё производство, чтобы сохраняя независимость, терять меньше денег. Ни о какой прибыли на рыночных условиях говорить не приходится.

Ну и не для всех микросхем нужно 22-32нм производство, подавляющее большинство микросхем выгоднее производить на более старом 180-500нм оборудовании из-за стоимости масок и объемов производства.

В следующих статьях - расскажу об особенностях космической и военной микроэлектроники, и о текущем состоянии микроэлектроники в России.