Что производит металлургия. Мировые тенденции развития металлургии. Доменное производство чугуна

21.08.2019 Виды

Обобщённое название лиц, занятых в металлургии - металлург.

Энциклопедичный YouTube

    1 / 5

    ✪ Современная техника для чайников. Лекция 16. Металлургия

    ✪ Владимир Эрлих - Начало использования человеком железа и стали

    ✪ Наука 2 0 Металлы и Сплавы

    ✪ Защита организма в цветной металлургии

    ✪ способы получения металлов

    Субтитры

Разновидности металлургии

В мировой практике исторически сложилось деление металлов на чёрные (железо и сплавы на его основе) и все остальные - нечерные (англ. Non-ferrous metals ) или цветные металлы. Соответственно, металлургия часто подразделяется на чёрную и цветную.

  • Пирометаллургия (от др.-греч. πῦρ - огонь) - металлургические процессы, протекающие при высоких температурах (обжиг , плавка и т. п.). Разновидностью пирометаллургии является плазменная металлургия .
  • Гидрометаллургия (от др.-греч. ὕδωρ - вода) - процесс извлечения металлов из руд, концентратов и отходов различных производств при помощи воды и различных водных растворов химических реактивов (выщелачивание) с последующим выделением металлов из растворов (например, цементацией , электролизом).

Во многих странах мира идет интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание, биоокисление, биосорбция, биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь , золото , цинк , уран , никель из сульфидного сырья . Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств .

Производство и потребление металлов

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами .

Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72-74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами , так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения .

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь , около 3 % (20-22 млн т) на алюминий, 1,5 % (8-10 млн т) - медь, 5-6 млн т - цинк, 4-5 млн т - свинец (остальные - менее 1 млн т). Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен, теллур, золото, платина - в тоннах, таких как иридий, осмий и т. п. - в килограммах .

В настоящее время основная масса металлов производится и потребляется в таких странах как США, Япония, Китай, Россия, Германия, Украина, Франция, Италия, Великобритания и другие.

В бронзовом веке (III-I тысячелетие до н. э.) применение получили изделия и орудия труда из сплавов меди с оловом (оловянная бронза). Этот сплав - древнейший сплав, выплавленный человеком. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н. э. восстановительной плавкой смеси медной и оловянной руд с древесным углем . Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др. бронзы, сплавы меди с цинком, называемые латунью, и др.). Бронзы применялись вначале для производства оружия и орудий труда, затем для отливки колоколов, пушек и т. д. В настоящее время наиболее распространены алюминиевые бронзы, содержащие 5-12 % алюминия с добавками железа, марганца и никеля.

Вслед за медью человек стал использовать железо.

Общее представление о трёх «веках»- каменном , бронзовом и железном - возникло ещё в античном мире (Тит Лукреций Кар). Термин «железный век» был введён в науку в середине XIX века датским археологом К. Томсеном .

Получение железа из руды и выплавка металла на основе железа было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века . В расшифрованных хеттских текстах XIX века до н. э. упоминается о железе как о металле, «упавшем с неба». Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян .

Принято считать, что человек впервые познакомился с метеоритным железом . Косвенным подтверждением этому является названия железа на языках древних народов: «небесное тело» (древнеегипетский, древнегреческий), «звезда» (древнегреческий). Шумеры называли железо «небесной медью». Возможно, поэтому всё, что было связано в древности с железом, было окружено ореолом таинственности. Люди, добывающие и перерабатывающие железо, были окружены почётом и уважением, к которым примешивалось и чувство страха (их часто изображали колдунами).

Ранний железный век Европы охватывает период X-V веков до н. э.. Этот период получил название гальштатская культура по названию города Гальштат в Австрии, возле которого были найдены железные предметы того времени. Поздний или «второй железный век» охватывает период V-II веков до н. э.- начало н. э. и получил название латенская культура - по одноимённому месту в Швейцарии , от которого осталось много железных предметов. Латенская культура связывается с кельтами , считавшимися мастерами изготовления различных орудий из железа. Большое переселение кельтов, начавшееся в V веке до н. э., способствовало распространению этого опыта на территории Западной Европы. От кельтского названия железа «изарнон» произошли немецкое «айзен» и английское «айрон».

В конце II тысячелетия до н. э. железо появилось в Закавказье . В степях Северного Причерноморья в VII-I веках до н. э. обитали племена скифов , создавших наиболее развитую культуру раннего железного века на территории России и Украины.

Вначале железо ценилось очень дорого, использовалось для изготовления монет, хранилось в царских сокровищницах. Затем оно стало всё активнее использоваться как орудие труда, и как оружие. Об использовании железа в качестве орудий труда упоминается в «Илиаде » Гомера. Там же упоминается о том, что Ахилл наградил победителя дискобола диском из железа. Греческие мастера уже в древние времена использовали железо. В построенном греками храме Артемиды барабаны мраморных колонн храма были скреплены мощными железными штырями длиной 130, шириной 90 и толщиной 15 мм .

Пришедшие в Европу народы с Востока внесли свой вклад в распространение металлургии. По преданию, колыбелью монголов и туркменов были богатые рудами Алтайские горы . Своими богами эти народы считали тех, кто ведал кузнечным ремеслом. Доспехи и оружие воинственных кочевников из Средней Азии было сделано из железа, что подтверждает их знакомство с металлургией.

Богатые традиции производства изделий из железа имеются в Китае . Здесь, возможно ранее, чем у других народов, научились получать жидкий чугун и делать из него отливки. До наших дней сохранились некоторые уникальные отливки из чугуна, изготовленные в первом тысячелетии н. э., например, колокол высотой 4 и диаметром З метра, массой 60 тонн.

Известны уникальные изделия металлургов древней Индии . Классическим примером является знаменитая вертикально стоящая Кутубская колонна в Дели массой 6 тонн, высотой 7,5 метров и диаметром 40 см. Надпись на колонне гласит, что она сооружена примерно в 380-330 годах до н. э. Анализ показывает, она сооружена из отдельных криц , сваренных в кузнечном горне. На колонне нет ржавчины . В захоронениях древней Индии найдено стальное оружие, изготовленное в середине первого тысячелетия до н. э.

Таким образом, следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока , древний Египет и Анатолия (Турция), Карфаген , греки и римляне античной и средневековой Европы, Китай, Индия , Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи , чугун , сталь , гидромолоты и т. п.). Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

См. также : Горнозаводские округа (о российской металлургии XVIII - начала XIX вв.)

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.

Масштабы переработки руд в мире огромны. Только на территории СССР в конце 1980-х, начале 1990-х годов ежегодно добывалось и подвергалось обогащению более 1 млрд тонн руды.

Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание . Таким путём можно растворить минерал и получить обогащённый минералом раствор.

Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.

Чёрная металлургия

Железо в природе находится в руде в виде оксидов Fe 3 O 4 , Fe 2 O 3 , гидроксида Fe 2 O 3 хH 2 O, карбонатов FeCO 3 и других. Поэтому для восстановления железа и получения сплавов на его основе существует несколько стадий, включающих доменное производство и производство стали.

Доменное производство чугуна

На первой стадии получения железосодержащих сплавов происходит высвобождение железа из руды в доменной печи при температуре свыше 1000 градусов Цельсия и выплавка чугуна . Свойства получаемого чугуна зависят от хода процесса в доменной печи. Поэтому задавая процесс восстановления железа в доменной печи можно получить два вида чугуна: передельный чугун, который идёт в дальнейший передел для выплавки стали, и литейный чугун, из которого получают чугунные отливки.

Производство стали

Передельный чугун служит для производства стали. Сталь - это сплав железа с углеродом и легирующими элементами. Она прочнее чугуна и более пригодна для строительных конструкций и производства деталей машин. Выплавка стали происходит в сталеплавильных печах, где металл находится в жидком состоянии.

Методов получения стали существует несколько. Основными методами получения стали являются: кислородно-конверторный, мартеновский, электроплавильный. Каждый метод использует различное оборудование - конвертеры , мартеновские печи , индукционные печи , дуговые печи .

Кислородно-конвертерный процесс

Первым способом массового производства жидкой стали был бессемеровский процесс . Этот способ производства стали в конвертере с кислой футеровкой был разработан англичанином Г. Бессемером в 1856-1860 гг. Несколько позже, в 1878 году, - С.Томасом был разработан схожий процесс в конвертере с основной футеровкой, получивший название томасовский процесс . Сущность конвертерных процессов (бессемеровского и томасовского) на воздушном дутье заключается в том, что залитый в плавильный агрегат (конвертер) чугун продувают снизу воздухом. Кислород, содержащийся в воздухе, окисляет примеси чугуна, в результате чего он превращается в сталь. При томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера. При окислении выделяется тепло, которое обеспечивает нагрев стали до температуры около 1600 °С.

Мартеновский процесс

Сущность другого способа получения стали с помощью мартеновского процесса заключается в ведении плавки на поду пламенной отражательной печи , которая оборудована регенераторами для предварительного подогрева воздуха (иногда и газа). Идея получения литой стали на поду отражательной печи высказывалась многими учеными (например, в 1722 г. Реомюром), однако осуществить это долгое время не удавалось, так как температура факела обычного в то время топлива - генераторного газа - была недостаточной для получения жидкой стали. В 1856 году братья Сименс предложили использовать для подогрева воздуха тепло горячих отходящих газов, устанавливая для этого регенераторы. Принцип регенерации тепла был использован Пьером Мартеном для плавки стали. Началом существования мартеновского процесса можно считать 8 апреля 1864 года, когда П. Мартен на одном из заводов Франции выпустил первую плавку.

Для выплавки стали в мартеновскую печь загружают шихту , состоящую из чугуна, скрапа, металлического лома и других компонентов. Под действием тепла от факела сжигаемого топлива шихта постепенно плавится. После расплавления в ванну вводят различные добавки для получения металла заданного состава и температуры. Готовый металл из печи выпускают в ковши и разливают. Благодаря своим качествам и невысокой стоимости мартеновская сталь нашла широкое применение. Уже в начале XX в. в мартеновских печах выплавляли половину общего мирового производства стали.

Первая мартеновская печь в России была построена в Калужской губернии на Ивано-Сергиевском железоделательном заводе С. И. Мальцевым в 1866-1867 гг. В 1870 г. первые плавки проведены в печи вместимостью 2,5 т, построенной известными металлургами А. А. Износковым и Н. Н. Кузнецовым на Сормовском заводе . По образцу этой печи позже на других русских заводах были построены аналогичные печи большей вместимости. Мартеновский процесс стал основным в отечественной металлургии. Огромную роль сыграли мартеновские печи в годы Великой Отечественной войны . Советским металлургам на Магнитогорском и Кузнецком металлургических комбинатах впервые в мировой практике удалось удвоить садку мартеновских печей без существенной их перестройки, организовав производство высококачественной стали (броневой, подшипниковой и т. п.) на действовавших в то время мартеновских печах. В настоящее время в связи с расширением конвертерного и электросталеплавильного производства стали масштабы производства мартеновской стали сокращаются.

В основной мартеновской печи можно переплавлять чугун и скрап любого состава и в любой пропорции и получать при этом качественную сталь любого состава (кроме высоколегированных сталей и сплавов, которые получают в электропечах). Состав применяемой металлической шихты зависит от состава чугуна и скрапа и от расхода чугуна и скрапа на 1 т стали. Соотношение между расходом чугуна и скрапа зависит от многих условий.

Электросталеплавильное производство

В настоящее время для массовой выплавки стали применяют дуговые сталеплавильные электропечи , питаемые переменным током, индукционные печи и получающие распространение в последние годы дуговые печи постоянного тока. Причём доля печей последних двух видов в общем объёме выплавки невелика.

В дуговых электропечах переменного тока выплавляют стали электропечного сортамента. Основными достоинствами дуговых электропечей является то, что в них в течение многих десятилетий выплавляют основную часть высококачественных легированных и высоколегированных сталей, которые затруднительно, либо невозможно выплавлять в конвертерах и мартеновских печах. Благодаря возможности быстро нагреть металл, можно вводить большие количества легирующих добавок и иметь в печи восстановительную атмосферу и безокислительные шлаки (в восстановительный период плавки), что обеспечивает малый угар вводимых в печь легирующих элементов. Кроме того, имеется возможность более полно, чем в других печах, раскислять металл, получая его с более низким содержанием оксидных неметаллических включений, а также получать сталь с более низким содержанием серы в связи с её хорошим удалением в безокислительный шлак. Также есть возможность плавно и точно регулировать температуру металла.

Легирование стали

Для придания стали разнообразных свойств используется процесс легирования стали. Легирование - это процесс изменения состава сплавов путём введения определенных концентраций дополнительных элементов. В зависимости от их состава и концентрации изменяется состав и свойства сплава. Основные легирующие элементы для стали являются: хром (Cr), никель(Ni), марганец (Mn), кремний (Si), молибден (Mo), ванадий (V), бор (B), вольфрам (W), титан (Ti), алюминий (Al), медь (Cu), ниобий (Nb), кобальт (Co). В настоящее время существует большое количество марок стали с различными легирующими элементами.

Порошковая металлургия

Принципиально иным способом производства сплавов на основе черных металлов является порошковая металлургия. Порошковая металлургия основана на применении порошков металлов с размерами частиц от 0,1 мкм до 0,5 мм, которые сначала спрессовывают, а затем спекаются.

Цветная металлургия

В цветной металлургии применяются очень разнообразные методы производства цветных металлов. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, где часто в качестве источника тепла и химического реагента используют серу , содержащуюся в рудах. Вместе с тем ряд металлов с успехом получают гидрометаллургическим способом с переводом их в растворимые соединения и последующим выщелачиванием.

Часто оказывается наиболее приемлемым электролитический процесс водных растворов или расплавленных сред.

Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду. Можно указать ещё на такие способы, как химико-термический, цианирование и хлорид-возгонка.

Производство меди

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Гидрометаллургический способ не нашёл широкого применения на практике. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличие от пирометаллургического не позволяет извлекать попутно с медью драгоценные металлы .

Большую часть меди (85-90 %) производят пирометаллургическим способом из сульфидных руд. При этом параллельно решается задача извлечения из руд помимо меди других ценных сопутствующих металлов. Пирометаллургический способ производства меди предусматривает несколько стадий. Основные стадии этого производства включают:

  • подготовка руд (обогащение и иногда дополнительно обжиг);
  • плавка на штейн (выплавка медного штейна),
  • конвертирование штейна с получением черновой меди,
  • рафинирование черновой меди (сначала огневое, а затем

В металлургический комплекс входят черная и цветная металлургия. Металлургия России, обеспечивая производство и научно-техническое развитие практически всех отраслей промышленности, базируется на отечественных сырьевых ресурсах, ориентируясь на зарубежного и российского потребителя. На долю России приходится 14% производства товарной железной руды и 10-15% цветных и редких металлов, добываемых в мире.

По объему производства, потребления и внешнеторговому обороту черные, цветные и редкие металлы, а также первичная продукция из них занимают второе место после топливно-энергетических ресурсов. Железные руды и первичная продукция черной металлургии, алюминий, никель, медь остаются важной статьей экспорта страны. Крупные металлургические предприятия имеют районообразующее значение. При их возникновении формируется ряд взаимосвязанных отраслей -- электроэнергетика, химическая промышленность, производство строительных материалов, металлоемкое машиностроение, разнообразные сопутствующие отрасли и, конечно же, транспорт.

Черная металлургия

Черная металлургия служит базой для развития машиностроения и металлообработки, и ее продукция находит применение практически во всех сферах экономики. Она охватывает такие стадии технологического процесса, как добыча, обогащение и агломерация руд черных металлов, производство огнеупоров, добыча нерудного сырья, коксование угля, производство чугуна, стали и проката, ферросплавов, вторичный передел черных металлов и др. Но основу черной металлургии составляет производство чугуна, стали и проката.

На территориальную организацию черной металлургии оказывает влияние:

  • · концентрация производства, по уровню которой Россия занимает ведущее место в мире -- металлургические заводы полного цикла Липецка, Череповца, Магнитогорска, Нижнего Тагила, Новотроицка, Челябинска и Новокузнецка производят более 90% чугуна и около 89% российской стали;
  • · производственное комбинирование, означающее объединение на одном предприятии нескольких взаимосвязанных производств различных отраслей;
  • · материалоемкость производства, обеспечивающая 85-90% всех затрат по выплавке чугуна (на производство 1 т чугуна идет 1,5 т железной и 200 кг марганцевой руды, 1,5 т угля, свыше 0,5 т флюсов и до 30 м3 оборотной воды);
  • · высокая энергоемкость, которая выше, чем в развитых странах мира;
  • · высокая трудоемкость на отечественных металлургических предприятиях.

Производственную базу черной металлургии составляют предприятия полного цикла: чугун -- сталь -- прокат, а также заводы, выпускающие чугун -- сталь, сталь -- прокат и раздельно чугун, сталь, прокат, относящиеся к передельной металлургии. Выделяется малая металлургия, или производство стали и проката на машиностроительных заводах в основном из металлолома.

Факторы размещения предприятий черной металлургии чрезвычайно разнообразны. Черная металлургия полного цикла располагается либо вблизи источников сырья (Уральская металлургическая база, металлургическая база центральных районов европейской части), либо вблизи топливных ресурсов (Западно-Сибирская металлургическая база), либо между источниками сырья и топливными ресурсами (Череповецкий металлургический завод).

Предприятия передельной металлургии, использующие в качестве сырья в основном металлический лом, ориентируются на районы развитого машиностроения и места потребления готовой продукции. Еще теснее связана с машиностроительными заводами малая металлургия.

Особыми факторами размещения отличается производство электросталей и ферросплавов. Электростали производят вблизи источников электроэнергии и металлического лома (г. Электросталь Московской обл.). Ферросплавы -- сплавы железа с легирующими металлами -- получают в доменных печах или электротермическим способом на металлургических предприятиях и специализированных заводах (Челябинск).

Природной основой черной металлургии служат источники металлического сырья и топлива. Россия хорошо обеспечена сырьем для черной металлургии, но размещены железные руды и топливо на территории страны неравномерно.

По запасам железной руды Россия занимает первое место в мире, из которых более половины сосредоточены в европейской части страны. Крупнейшим железорудным бассейном является Курская магнитная аномалия, расположенная в Центрально-Черноземном районе. Основные запасы железных руд КМА, признанных лучшими в мире по качеству, сосредоточены в Лебединском, Стойленском, Чернянском, Погромецком, Яковлевском, Гостищевском и Михайловском месторождениях. На Кольском полуострове и в Карелии эксплуатируются Ковдорское, Оленегорское и Костомукшское месторождения. Значительные ресурсы железных руд на Урале, где месторождения (Качканарская, Тагило-Кушвинская, Бакальская и Орско-Халиловская группы) тянутся с севера на юг параллельно Уральскому хребту. Выявлены месторождения железных руд в Западной (Горная Шория, Рудный Алтай) и Восточной Сибири (Ангаро-Питский, Ангаро-Илимский бассейны). На Дальнем Востоке перспективна Алданская железорудная провинция и Олекмо-Амгуньский район в Якутии.

Запасы марганца и хрома в России ограничены. Разрабатываются месторождения марганца, представленные в Кемеровской (Усинское) и Свердловской (Полуночное) областях, хрома -- в Пермском крае (Сараны).

Крупнейшим производителем чугуна и стали в России с ХVIII в. остается Уральская металлургическая база, которая является наиболее полифункциональной и дает 47% черных металлов в стране. Она работает на привозном топливе -- уголь Кузбасса и Караганды (Казахстан) -- и рудах КМА, Казахстана (Соколовско-Сорбайские), местном Качканарском месторождении. Здесь действуют предприятия полного цикла (Магнитогорск, Нижний Тагил, Челябинск, Новотроицк), передельные (Екатеринбург, Ижевск, Златоуст, Лысьва, Серов, Чусовой), по производству доменных ферросплавов (Серов, Челябинск), по выпуску трубопроката (Первоуральск, Каменск-Уральский, Челябинск, Северск). Это единственный регион в стране, где выплавляются природно-легированные металлы (Новотроицк, Верхний Уфалей) и чугун на древесном угле. На восточных склонах Уральских гор расположены предприятия полного цикла, на западных -- предприятия передельной металлургии.

Второй по значению является Центральная металлургическая база, охватывающая Центрально-Черноземный, Центральный, Волго-Вятский, Северный, Северо-Западный экономические районы, а также Верхнее и Среднее Поволжье. Она полностью работает на привозном топливе (донецкие, печорские угли), ядром ее является ТПК КМА.

На территории Центральной металлургической базы расположен ряд основных предприятий и производств. В Центральном Черноземье осуществляется выплавка чугуна и доменных ферросплавов (Липецк), находится Новолипецкий завод полного цикла, в Старом Осколе -- единственный в России электрометаллургический комбинат. В Центральном районе действует Новотульский комбинат полного цикла, завод по выплавке литейного чугуна и доменных ферросплавов (Тула), Орловский сталепрокатный завод, Московский передельный завод “Серп и молот”, комбинат “Электросталь”. Череповецкий завод, расположенный в Северном районе, использует железные руды Кольского полуострова и каменный уголь Печоры. В Волго-Вятском районе находятся металлургические заводы Выксы и Кулебак. В Верхнем и Среднем Поволжье передельная металлургия развивается во всех машиностроительных центрах -- Набережных Челнах, Тольятти, Ульяновске. Энгельсе и др.

В последние годы происходит процесс интенсивной реконструкции и технического переоснащения отрасли. Однако пока черная металлургия России в техническом и технологическом отношении существенно уступает аналогичным производствам в развитых странах. У нас до сих пор существует устаревшая технология мартеновского производства стали, беден ассортимент проката, низка доля высококачественных марок металла.

Цветная металлургия

Цветная металлургия специализируется на добыче, обогащении, металлургическом переделе руд цветных, благородных и редких металлов, а также на добыче алмазов. В ее состав входят отрасли: медная, свинцово-цинковая, никель-кобальтовая, алюминиевая, титаномагниевая, вольфрамомолибденовая, благородных металлов, твердых сплавов, редких металлов и др.

Цветная металлургия России развивается на основе использования собственных больших и разнообразных ресурсов и по выпуску продукции занимает второе место в мире после США. В России производится свыше 70 разнообразных металлов и элементов. Цветная металлургия России -- это 47 горнодобывающих предприятий, из которых 22 относятся к алюминиевой промышленности. К числу регионов с наиболее благополучным положением цветной металлургии относятся Красноярский край, Челябинская и Мурманская области, где на цветную металлургию приходится 2/5 промышленной продукции.

Отрасль отличается высокой концентрацией производства: АО «Норильский никель» выпускает свыше 40% металлов платиновой группы, перерабатывает более 70% российской меди и контролирует почти 35% мировых запасов никеля. Кроме того, это экологически вредное производство -- по степени загрязнения атмосферы, водных источников и почвы цветная металлургия превосходит все другие отрасли горнодобывающей промышленности. Отрасль отличают также самые большие расходы, связанные с потреблением топлива и транспортными перевозками.

В связи с разнообразием используемого сырья и широким применением продукции отрасли в современной промышленности цветная металлургия характеризуется сложной структурой. Технологический процесс получения металла из руды делится на добычу и обогащение исходного сырья, металлургический передел и обработку цветных металлов. Своеобразие ресурсной базы заключается в крайне низком содержании извлекаемого металла в руде: медь в рудах составляет 1-5%, свинцово-цинковые руды содержат 1,6-5,5% свинца, 4-6% цинка, до 1% меди. Поэтому в металлургический передел поступают только обогащенные концентраты, содержащие 35-70% металла. Получение концентратов руд цветных металлов дает возможность транспортировать их на большие расстояния и тем самым территориально разобщить процессы добычи, обогащения и непосредственно металлургический передел, который отличается повышенной энергоемкостью и размещается в районах дешевого сырья и топлива.

Основные факторы размещения цветной металлургии по-разному воздействуют на территориальную организацию отраслей и даже внутри одного технологического процесса. Тем не менее при чрезвычайно разнообразном наборе факторов размещения основных отраслей цветной металлургии общим является их ярко выраженная сырьевая ориентация.

Алюминиевая промышленность в качестве сырья использует бокситы, месторождения которых находятся на Северо-Западе (Бокситогорск), Севере (Иксинское, Тимшерское), Урале (Северо-Уральское, Каменск-Уральское), в Восточной Сибири (Нижне-Ангарское), а также нефелины Севера (Хибинское) и Западной Сибири (Кия-Шалтырское). Из-за дефицита высококачественного алюминиевого сырья ежегодно в Россию ввозят до 3 млн. т глинозема из бокситов.

Медная промышленность -- одна из старейших отраслей цветной металлургии России, развитие которой началось еще в ХVI в. на Урале. Производство меди включает три стадии: добыча и обогащение руд, выплавка черновой меди и выплавка рафинированной меди. Из-за низкого содержания металла в руде медная промышленность сохранилась в основном в районах добычи. На Урале разрабатываются многочисленные месторождения (Гайское, Блявинское, Красноуральское, Ревда, Сибай, Юбилейное), но металлургический передел значительно превосходит добычу и обогащение, и в силу нехватки собственного сырья используются привозные концентраты из Казахстана и Кольского полуострова. Здесь действует 10 медеплавильных (Красноуральск, Кировград, Среднеуральск, Медногорск и др.) и рафинирующих (Верхняя Пышма, Кыштым) заводов.

Из других районов выделяются Север (Мончегорск) и Восточная Сибирь (Норильск). В Забайкальском крае ведется подготовка к началу промышленного освоения Удоканского месторождения (третье в мире по разведанным запасам). Рафинирование и прокат меди в Москве возникли на основе использования медного лома.

Свинцово-цинковая промышленность базируется на использовании полиметаллических руд, а ее размещение характеризуется территориальным разрывом отдельных стадий технологического процесса. Получение концентратов руд с содержанием металла 60-70% делает выгодным их транспортировку на большие расстояния. Для получения металлического свинца требуется относительно небольшое количество топлива по сравнению с цинковым переделом. В целом свинцово-цинковая промышленность тяготеет к месторождениям полиметаллических руд, которые находятся на Северном Кавказе (Садон), в Западной (Салаир) и Восточной Сибири (Нерчинский завод, Хапчеранга), на Дальнем Востоке (Дальнегорск). На Урале цинк содержится в медных рудах. В Среднеуральске выпускают цинковые концентраты, а в Челябинске производят металлический цинк из привозных концентратов. Полный металлургический передел представлен во Владикавказе (Северный Кавказ). В Белово (Западная Сибирь) получают свинцовые концентраты и выплавляют цинк, в Нерченске (Восточная Сибирь) производят свинцовые и цинковые концентраты. Часть свинца поступает из Казахстана.

Никель-кобальтовая промышленность тесно связана с источниками сырья из-за низкого содержания металлов в рудах (0,2-0,3%), сложности их переработки, большого расхода топлива, многостадийности процесса и необходимости комплексного использования сырья. На территории России разрабатываются месторождения Кольского полуострова (Мончегорск, Печенга-Никель), Норильска (Талнахское) и Урала (Режское, Уфалейское, Орское).

Дальнейшее развитие металлургического комплекса России должно идти в направлении улучшения качества конечных видов металлопродукции, уменьшения издержек производства и проведения ресурсосберегающей политики, повышающей ее конкурентоспособность.

Металлургия является комплексной отраслью производства и ассортимент ее товарной продукции широк и разнообразен. Помимо основной металлургической продукции выпускаются и другие виды продукции, которые часто не имеют никакого отношения к металлургическим материалам: серная кислота, элементарная сера, кальцинированная сода, поташ, минеральные удобрения, цемент, минеральная вата и многие другие.

Кроме того, в металлургическом производстве получают многочисленные полупродукты и отходы основного производства: шлаки, штейны, газы, агломераты и спеки, кеки, шламы и т.д. Рассмотрим основные виды продукции металлургического производства.

Металлы и штейны

Металлы и сплавы являются основными видами товарной продукции металлургического производства, которые получают переработкой всех видов металлосодержащего сырья. В черной металлургии основными видами продукции являются чугуны, стали и ферросплавы.

В цветной металлургии в зависимости от используемой технологии и состава полученной продукции различают черновые и рафинированные металлы, но товарной продукцией, как правило, являются рафинированные металлы.

Черновыми называют металлы, содержащие примеси, в числе которых могут быть вредные примеси и ценные элементы – спутники основного металла, содержащиеся в сырье. Вредные примеси ухудшают характерные для данного металла свойства (электропроводность, пластичность, коррозионную стойкость и т.д.) и ограничивают сферу их непосредственного применения. Ценные спутники, к которым относятся благородные металлы, редкие и рассеянные элементы, необходимо попутно обязательно извлекать. Для очистки от примесей черновые металлы подвергают рафинированию. Сортамент рафинированных металлов регламентируется ГОСТом и в зависимости от степени очистки нередко выпускается 6–10 марок каждого конкретного металла.

Штейном называют сплав сульфида железа с сульфидами тяжелых цветных металлов (меди, никеля, свинца, цинка и пр.), в котором растворены примеси. Штейны являются промежуточными продуктами, образование которых определяется технологическими соображениями, и это очень характерно для пирометаллургии меди, никеля и частично свинца. В практике цветной металлургии получают медные, медноникелевые, никелевые и полиметаллические штейны. Они образуются при плавках в жидком состоянии и не смешиваются со шлаковыми расплавами, что облегчает их отделение отстаиванием. Наиболее успешно процесс отстаивания идет при разности плотностей шлака и штейна больше 1 г/см 3 .

Медные и медно-никелевые штейны являются хорошими коллекторами благородных металлов, что позволяет достаточно полно извлекать их в штейн при плавке рудного сырья. Полиметаллические штейны наряду с сульфидами меди и железа содержат заметные количества сульфидов свинца и цинка, что затрудняет их дальнейшую переработку, и поэтому в настоящее время их стараются не получать.

Плотность расплавленных штейнов возрастает с увеличением содержания в них меди и никеля в пределах 4,0–5,7 г/см 3 , а при высокой металлизации штейнов их плотность может достигать 7 г/см 3 .

Металлургические шлаки

Металлургические шлаки представляют собой сложный по составу сплав оксидов. По технологическим признакам и способу формирования их подразделяют на шлаки рудных плавок и рафинировочные шлаки.

Шлаки рудных плавок образуются из оксидов породы перерабатываемой руды и вводимых в шихту флюсов. Шлаки получаются в расплавленном состоянии и их роль в процессах плавки очень велика. Они являются той средой, в которой протекают основные физико-химические превращения и реакции, приводящие к образованию конечных продуктов – металла и шлака.

Шлаки содержат часть извлекаемого металла и поэтому нередко являются основной составляющей потерь металла. Количество образовавшегося шлака зависит в основном от состава рудного сырья и флюсов. Особенно высок выход шлака при плавках руд или концентратов цветных металлов – обычно составляет от 60 до 120 % от массы рудной составляющей. Количество образующихся шлаков и их свойства фактически определяют основные технико-экономические показатели металлургического производства: удельную производительность плавильных печей по рудному сырью, расход топлива, эксплуатационные затраты и в конечном итоге себестоимость передела.

При низком содержании извлекаемых металлов в шлаках они являются отходами металлургического производства, но считать их отвальными продуктами можно лишь условно, так как с развитием металлургической техники, они нередко подвергаются: дополнительной переработке.

Рафинировочные шлаки формируют из специально вводимых в плавильные печи флюсующих добавок, а также оксидов, рафинируемого металла и продуктов разрушения огнеупорной футеровки плавильного агрегата. Создание шлака над расплавом способствует очистке металла от вредных примесей и накопление их в шлаке, и, кроме того, шлаки защищают расплавленный металл от воздействия газовой среды в печи. Выход таких шлаков невелик, но они содержат значительное количество извлекаемого металла, и поэтому их используют в качестве оборотных материалов или подвергают специальной переработке.

Состав металлургических шлаков разнообразен и зависит от вида перерабатываемого сырья и особенностей металлургического процесса. Состав шлаков доменной плавки в черной металлургии (ДП) и основных разновидностей цветной металлургии (ПЦМ) приведен ниже (%):

Из приведенных данных видно, что шлаки различаются лишь содержанием оксидов железа, а в основе их лежат системы СаО-SiO 2 и CaОFeOSiO 2 .

Для каждого металлургического процесса и применяемого для этого аппарата установлен оптимальный состав шлаков, отвечающий определенным технологическим и экономическим требованиям. Прямой плавкой не всегда удается получить этот оптимальный состав и поэтому приходится добавлять флюсы.

Оксиды, образующие шлаки, по химической активности подразделяют на кислые (SiO 2 , Аl 2 О 3), основные (CaO, FeO, MgO и др.) и амфотерные (Fe 2 O 3 , ZnO и пр.). В зависимости от соотношения указанных оксидов шлаки подразделяют на кислые и основные. К кислым относятся шлаки, содержащие более 40 % (SiO 2 + Аl 2 О 3), а к основным – менее 40 % указанной суммы оксидов.

Однако эти критерии условны и дают представление лишь о промышленной классификации шлаков. Для правильного выбора параметров процесса необходимо знать важнейшие свойства шлаков: температуру плавления, вязкость, плотность, растворимость в шлаках извлекаемого продукта и поверхностные свойства.

Оксиды, образующие шлаки, имеют высокую температуру плавления, °С: 1713 – SiO 2 ; 1370 – FeO; 1540 – Fe 3 O 4 ; 2570 – CaO; 2800 – MgO; 2050 – Аl 2 О 3 . Однако температура плавления шлака значительно ниже температуры плавления чистых оксидов. Физико-химические свойства шлаков зависят от их химического состава и температуры, а также от их строения в расплавленном состоянии.

Вязкость шлаков характеризует жидкотекучесть, от величины которой зависит скорость отстаивания жидких продуктов плавки. Электропроводность шлаков имеет определяющее значение для работы электрических печей, которые широко применяются в черной и цветной металлургии. Плотность шлаков зависит от соотношения в них легких и тяжелых шлакообразующих компонентов. Плотность оксидов в твердом состоянии составляет (г/см 3): SiO 2 – (2,2–2,65); FeO – 5,7; CaO – 3,32; MgO – 3,65; Аl 2 O 3 – 3,99; Fe 3 O 4 – 5,2; BaO – 5,72; Na 2 O – 2,27.

Для получения шлаков оптимального состава часто в качестве флюсов используют кварциты и известняки. В цветной металлургии иногда в качестве флюса используют низкосортные золотые концентраты и кварцевые хвосты золотоизвлекательных фабрик, что позволяет без затрат извлекать при плавке в штейн или черновой металл благородные металлы. Для разжижения шлаковых расплавов в ряде случаев используют плавиковый шпат CaF 2 , соду Na 2 СОз и др.

Продукты гидрометаллургических производств

Продуктами гидрометаллургических процессов являются растворы, кеки и сточные воды.

Растворами в гидрометаллургии называют продукты процесса выщелачивания, в которых растворенное вещество находится в молекулярном состоянии, что делает их устойчивыми системами, не разделяющимися при сколь угодно длительной выдержке. В качестве растворителей при производстве цветных металлов используют воду и водные растворы кислот, солей, щелочей, органические реагенты.

Важнейшими технологическими характеристиками растворов являются концентрация в них растворенного вещества и водородный показатель (рН).

На практике концентрацию чаще всего выражают в виде отношения растворенного вещества к объему раствора в г/л или кг/м 3 .

Водородный показатель рН характеризует химическую активность среды и способность растворов к гидролитическому сложению. Водные растворы могут иметь величину рН от 1 до 14. Нейтральным растворам соответствует рН = 7, для кислых растворов рН меньше 7, а для щелочных – более 7. Гидролитическое разложение растворов происходит в строго определенных условиях, и для каждого гидроксида существует ограниченный интервал рН, в котором он осаждается. Ниже приведены рН начала выделения гидроксидов некоторых металлов:

Используя различия в значениях рН для осаждения гидроксидов, можно добиться селективного разделения металлов, находящихся в растворе.

Кеки представляют собой твердые порошкообразные материалы, которые в зависимости от образования разделяют на два вида Первый вид – это не растворившиеся остатки выщелачиваемого материала (пустая порода, нерастворимые соединения данного материала и другие ценные компоненты). К этому виду относятся, например, цинковые кеки от выщелачивания обожженных цинковых концентратов раствором серной кислоты. Ко второму виду относятся продукты (осадки) цементационного, химического или гидролитического осаждения растворенных металлов в свободном металлическом состоянии или в форме нерастворимых химических соединений. Примером этого вида кеков являются кадмиевые кеки цинкового производства, содержащие цинк, кадмий и медь в форме металлических порошков, и кобальтовые кеки никелевого производства, в которых кобальт находится в виде гидроксида Со(ОН) 3 .

Сточные воды являются отходами гидрометаллургических производств, и их состав отличается большим разнообразием ценных и загрязняющих компонентов. Состав сточных вод зависит от многих факторов, но определяющими являются состав перерабатываемого сырья, вид используемых растворителей, характер применяемого гидрометаллургического процесса и технология обработки сточных вод перед их выводом из производственного цикла

Таким образом, сточные воды гидрометаллургических процессов являются источниками потерь ценных компонентов и загрязнения окружающей среды. Основными компонентами сточных вод являются грубодисперсные взвеси частиц перерабатываемого материала или продуктов его переработки, а также растворенные в воде кислоты, соли, щелочи и другие химические соединения, включая органику. Самым эффективным путем предотвращения загрязнения окружающей среды сточными водами является организация на промышленных предприятиях систем оборотного водоснабжения.

Например).

Обобщённое название лиц, занятых в металлургии - металлург.

На металлургическом предприятии

Разновидности металлургии

В мировой практике исторически сложилось деление металлов на чёрные (железо и сплавы на его основе) и все остальные - нечерные (англ. Non-ferrous metals ) или цветные металлы. Соответственно, металлургия часто подразделяется на чёрную и цветную.

  • Пирометаллургия (от др.-греч. πῦρ - огонь) - металлургические процессы, протекающие при высоких температурах (обжиг , плавка и т. п.). Разновидностью пирометаллургии является плазменная металлургия .
  • Гидрометаллургия (от др.-греч. ὕδωρ - вода) - процесс извлечения металлов из руд, концентратов и отходов различных производств при помощи воды и различных водных растворов химических реактивов (выщелачивание) с последующим выделением металлов из растворов (например, цементацией , электролизом).

Во многих странах мира идет интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание , биоокисление , биосорбция , биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь , золото , цинк , уран , никель из сульфидного сырья . Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств .

Производство и потребление металлов

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами .

Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72-74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами , так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения .

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь , около 3 % (20-22 млн т) на алюминий, 1,5 % (8-10 млн т) - медь, 5-6 млн т - цинк, 4-5 млн т - свинец (остальные - менее 1 млн т). Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен, теллур, золото, платина - в тоннах, таких как иридий, осмий и т. п. - в килограммах .

В настоящее время основная масса металлов производится и потребляется в таких странах как США, Япония, Китай, Россия, Германия, Украина, Франция, Италия, Великобритания и другие.

В частности, обнаруженные в 50-60-х годах XX века в юго-западной части Малой Азии следы выплавки меди датируются VII-VI тысячелетием до н. э. Первые свидетельства того, что человек занимался металлургией в V-VI тысячелетии до н. э. были найдены в Майданпеке, Плочнике и других местах в Сербии (в том числе медный топор 5500 лет до н. э., относящийся к культуре Винча) , Болгарии (5000 лет до н. э.), Палмеле (Португалия), Испании, Стоунхендже (Великобритания). Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.

В культуре ранних времён присутствуют серебро , медь , олово и метеоритное железо , позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» - египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой , люди в 3500 годы до н. э. вступили в Бронзовый век .

В бронзовом веке (III-I тысячелетие до н. э.) применение получили изделия и орудия труда из сплавов меди с оловом (оловянная бронза). Этот сплав - древнейший сплав, выплавленный человеком. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н. э. восстановительной плавкой смеси медной и оловянной руд с древесным углем . Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др. бронзы, сплавы меди с цинком, называемые латунью, и др.). Бронзы применялись вначале для производства оружия и орудий труда, затем для отливки колоколов, пушек и т. д. В настоящее время наиболее распространены алюминиевые бронзы, содержащие 5-12 % алюминия с добавками железа, марганца и никеля.

Вслед за медью человек стал использовать железо.

Общее представление о трёх «веках»- каменном , бронзовом и железном - возникло ещё в античном мире (Тит Лукреций Кар). Термин «железный век» был введён в науку в середине XIX века датским археологом К. Томсеном .

Получение железа из руды и выплавка металла на основе железа было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века . В расшифрованных хеттских текстах XIX века до н. э. упоминается о железе как о металле, «упавшем с неба». Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян .

Железная колонна в Дели (Кутубская колонна)

Принято считать, что человек впервые познакомился с метеоритным железом . Косвенным подтверждением этому является названия железа на языках древних народов: «небесное тело» (древнеегипетский, древнегреческий), «звезда» (древнегреческий). Шумеры называли железо «небесной медью». Возможно, поэтому всё, что было связано в древности с железом, было окружено ореолом таинственности. Люди, добывающие и перерабатывающие железо, были окружены почётом и уважением, к которым примешивалось и чувство страха (их часто изображали колдунами).

Ранний железный век Европы охватывает период X-V веков до н. э.. Этот период получил название гальштатская культура по названию города Гальштат в Австрии, возле которого были найдены железные предметы того времени. Поздний или «второй железный век» охватывает период V-II веков до н. э.- начало н. э. и получил название латенская культура - по одноимённому месту в Швейцарии , от которого осталось много железных предметов. Латенская культура связывается с кельтами , считавшимися мастерами изготовления различных орудий из железа. Большое переселение кельтов, начавшееся в V веке до н. э., способствовало распространению этого опыта на территории Западной Европы. От кельтского названия железа «изарнон» произошли немецкое «айзен» и английское «айрон».

В конце II тысячелетия до н. э. железо появилось в Закавказье . В степях Северного Причерноморья в VII-I веках до н. э. обитали племена скифов , создавших наиболее развитую культуру раннего железного века на территории России и Украины.

Вначале железо ценилось очень дорого, использовалось для изготовления монет, хранилось в царских сокровищницах. Затем оно стало всё активнее использоваться как орудие труда, и как оружие. Об использовании железа в качестве орудий труда упоминается в «Илиаде » Гомера. Там же упоминается о том, что Ахилл наградил победителя дискобола диском из железа. Греческие мастера уже в древние времена использовали железо. В построенном греками храме Артемиды барабаны мраморных колонн храма были скреплены мощными железными штырями длиной 130, шириной 90 и толщиной 15 мм .

Пришедшие в Европу народы с Востока внесли свой вклад в распространение металлургии. По преданию, колыбелью монголов и туркменов были богатые рудами Алтайские горы . Своими богами эти народы считали тех, кто ведал кузнечным ремеслом. Доспехи и оружие воинственных кочевников из Средней Азии было сделано из железа, что подтверждает их знакомство с металлургией.

Богатые традиции производства изделий из железа имеются в Китае . Здесь, возможно ранее, чем у других народов, научились получать жидкий чугун и делать из него отливки. До наших дней сохранились некоторые уникальные отливки из чугуна, изготовленные в первом тысячелетии н. э., например, колокол высотой 4 и диаметром З метра, массой 60 тонн.

Известны уникальные изделия металлургов древней Индии . Классическим примером является знаменитая вертикально стоящая Кутубская колонна в Дели массой 6 тонн, высотой 7,5 метров и диаметром 40 см. Надпись на колонне гласит, что она сооружена примерно в 380-330 годах до н. э. Анализ показывает, она сооружена из отдельных криц , сваренных в кузнечном горне. На колонне нет ржавчины . В захоронениях древней Индии найдено стальное оружие, изготовленное в середине первого тысячелетия до н. э.

Таким образом, следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока , древний Египет и Анатолия (Турция), Карфаген , греки и римляне античной и средневековой Европы, Китай, Индия , Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи , чугун , сталь , гидромолоты и т. п.). Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

Рождение научной металлургии связывают с трудами Георгия Агриколы . Он создал фундаментальный труд «О металлах» в двенадцати томах. Первые шесть томов посвящены горному делу, 7-й -"пробирному искусству", то есть способам проведения опытных плавок, 8-й - обогащению и подготовке руд к плавке, 9-й -способам выплавки металла, 10-й - разделению металлов, 11-й и 12-й тома - различным устройствам и оборудованию.

Подвергая руду нагреванию, обжигу и прокаливанию, удаляют этим часть веществ, примешанных к металлу. Много отнимается примесей при дроблении руды в ступах, еще более при промывке, грохочении и сортировке. Однако этим путем нельзя еще отделить все, что скрывает металл от глаза. Плавка необходима, так как только посредством ее горные породы и затвердевшие соки (рассолы) отделяются от металлов, которые приобретают свойственный им цвет, очищаются и становятся во многих отношениях полезны человеку. Во время плавки отделяются вещества, которые ранее были примешаны к металлу. Руды сильно отличаются, во-первых, по металлам, которые в них содержатся, затем по количеству содержащегося в них металла, а также по тому, что одни из них быстро плавятся на огне, а другие - медленно. Поэтому существует много способов плавки.

Г. Агрикола

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и подготовке извлечённого сырья для дальнейшего передела. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть обогащена физическим, химическим, оптическим или электролитическим способом. Масштабы переработки руд в мире огромны. Только на территории СССР в конце 1980-х, начале 1990-х годов ежегодно добывалось и подвергалось обогащению более 1 млрд тонн руды.

Металлурги работают с тремя основными составляющими: сырьём (руда или окускованный промпродукт + добавки в виде флюсов и легирующих материалов) и отходами. Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание . Таким путём можно растворить минерал и получить обогащённый минералом раствор. Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.

Чёрная металлургия

Железо в природе находится в руде в виде оксидов Fe 3 O 4 , Fe 2 O 3 , гидроксида Fe 2 O 3 ×H 2 O, карбонатов FeCO 3 и других. Поэтому для восстановления железа и получения сплавов на его основе существует несколько стадий, включающих подготовку сырья к доменной плавке (окускование), доменное производство и производство стали.

Доменное производство чугуна

На первой стадии получения железосодержащих сплавов происходит высвобождение железа из руды или окускованного сырья в доменной печи при температуре свыше 1000 градусов Цельсия и выплавка чугуна . Свойства получаемого чугуна зависят от хода процесса в доменной печи . Поэтому задавая процесс восстановления железа в доменной печи можно получить два вида чугуна: передельный , который идёт в дальнейший передел для выплавки стали, и литейный чугун, из которого получают чугунные отливки.

Производство стали

Разлив стали на Краматорском металлургическом комбинате

Передельный чугун служит для производства стали. Сталь - это сплав железа с углеродом и легирующими элементами. Она прочнее чугуна и более пригодна для строительных конструкций и производства деталей машин. Выплавка стали происходит в сталеплавильных печах, где металл находится в жидком состоянии.

Методов получения стали существует несколько. Основными методами получения стали являются: кислородно-конверторный, мартеновский, электроплавильный. Каждый метод использует различное оборудование - конвертеры , мартеновские печи , индукционные печи , дуговые печи .

Кислородно-конвертерный процесс

Первым способом массового производства жидкой стали был бессемеровский процесс . Этот способ производства стали в конвертере с кислой футеровкой был разработан англичанином Г. Бессемером в 1856-1860 гг. Несколько позже, в 1878 году, - С.Томасом был разработан схожий процесс в конвертере с основной футеровкой, получивший название томасовский процесс . Сущность конвертерных процессов (бессемеровского и томасовского) на воздушном дутье заключается в том, что залитый в плавильный агрегат (конвертер) чугун продувают снизу воздухом. Кислород, содержащийся в воздухе, окисляет примеси чугуна, в результате чего он превращается в сталь. При томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера. При окислении выделяется тепло, которое обеспечивает нагрев стали до температуры около 1600 °С.

Мартеновский процесс

Сущность другого способа получения стали с помощью мартеновского процесса заключается в ведении плавки на поду пламенной отражательной печи , которая оборудована регенераторами для предварительного подогрева воздуха (иногда и газа). Идея получения литой стали на поду отражательной печи высказывалась многими учеными (например, в 1722 г. Реомюром), однако осуществить это долгое время не удавалось, так как температура факела обычного в то время топлива - генераторного газа - была недостаточной для получения жидкой стали. В 1856 году братья Сименс предложили использовать для подогрева воздуха тепло горячих отходящих газов, устанавливая для этого регенераторы. Принцип регенерации тепла был использован Пьером Мартеном для плавки стали. Началом существования мартеновского процесса можно считать 8 апреля 1864 года, когда П. Мартен на одном из заводов Франции выпустил первую плавку.

Для выплавки стали в мартеновскую печь загружают шихту , состоящую из чугуна, скрапа , металлического лома и других компонентов. Под действием тепла от факела сжигаемого топлива шихта постепенно плавится. После расплавления в ванну вводят различные добавки для получения металла заданного состава и температуры. Готовый металл из печи выпускают в ковши и разливают. Благодаря своим качествам и невысокой стоимости мартеновская сталь нашла широкое применение. Уже в начале XX в. в мартеновских печах выплавляли половину общего мирового производства стали.

Первая мартеновская печь в России была построена в Калужской губернии на Ивано-Сергиевском железоделательном заводе С. И. Мальцевым в 1866-1867 гг. В 1870 г. первые плавки проведены в печи вместимостью 2,5 т, построенной известными металлургами А. А. Износковым и Н. Н. Кузнецовым на Сормовском заводе . По образцу этой печи позже на других русских заводах были построены аналогичные печи большей вместимости. Мартеновский процесс стал основным в отечественной металлургии. Огромную роль сыграли мартеновские печи в годы Великой Отечественной войны . Советским металлургам на Магнитогорском и Кузнецком металлургических комбинатах впервые в мировой практике удалось удвоить садку мартеновских печей без существенной их перестройки, организовав производство высококачественной стали (броневой, подшипниковой и т. п.) на действовавших в то время мартеновских печах. В настоящее время в связи с расширением конвертерного и электросталеплавильного производства стали масштабы производства мартеновской стали сокращаются.

В основной мартеновской печи можно переплавлять чугун и скрап любого состава и в любой пропорции и получать при этом качественную сталь любого состава (кроме высоколегированных сталей и сплавов, которые получают в электропечах). Состав применяемой металлической шихты зависит от состава чугуна и скрапа и от расхода чугуна и скрапа на 1 т стали. Соотношение между расходом чугуна и скрапа зависит от многих условий.

Электросталеплавильное производство

В настоящее время для массовой выплавки стали применяют дуговые сталеплавильные электропечи , питаемые переменным током, индукционные печи и получающие распространение в последние годы дуговые печи постоянного тока. Причём доля печей последних двух видов в общем объёме выплавки невелика.

В дуговых электропечах переменного тока выплавляют стали электропечного сортамента. Основным достоинством дуговых электропечей является то, что в них в течение многих десятилетий выплавляют основную часть высококачественных легированных и высоколегированных сталей, которые затруднительно либо невозможно выплавлять в конвертерах и мартеновских печах. Благодаря возможности быстро нагреть металл, можно вводить большие количества легирующих добавок и иметь в печи восстановительную атмосферу и безокислительные шлаки (в восстановительный период плавки), что обеспечивает малый угар вводимых в печь легирующих элементов. Кроме того, имеется возможность более полно, чем в других печах, раскислять металл, получая его с более низким содержанием оксидных неметаллических включений, а также получать сталь с более низким содержанием серы в связи с её хорошим удалением в безокислительный шлак. Также есть возможность плавно и точно регулировать температуру металла.

Легирование стали

Для придания стали разнообразных свойств используется процесс легирования стали. Легирование - это процесс изменения состава сплавов путём введения определенных концентраций дополнительных элементов. В зависимости от их состава и концентрации изменяется состав и свойства сплава. Основные легирующие элементы для стали являются: хром (Cr), никель(Ni), марганец (Mn), кремний (Si), молибден (Mo), ванадий (V), бор (B), вольфрам (W), титан (Ti), алюминий (Al), медь (Cu), ниобий (Nb), кобальт (Co). В настоящее время существует большое количество марок стали с различными легирующими элементами.

Порошковая металлургия

Принципиально иным способом производства сплавов на основе черных металлов является порошковая металлургия. Порошковая металлургия основана на применении порошков металлов с размерами частиц от 0,1 мкм до 0,5 мм, которые сначала спрессовываются, а затем спекаются.

Цветная металлургия

В цветной металлургии применяются очень разнообразные методы производства цветных металлов. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, где часто в качестве источника тепла и химического реагента используют серу , содержащуюся в рудах. Вместе с тем ряд металлов с успехом получают гидрометаллургическим способом с переводом их в растворимые соединения и последующим выщелачиванием.

Часто оказывается наиболее приемлемым электролитический процесс водных растворов или расплавленных сред.

Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду. Можно указать ещё на такие способы, как химико-термический, цианирование и хлорид-возгонка.

Производство меди

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.

Гидрометаллургический способ не нашёл широкого применения на практике. Его используют при переработке бедно-окисленных и самородных руд. Этот способ в отличие от пирометаллургического не позволяет извлекать попутно с медью драгоценные металлы .

Большую часть меди (85-90 %) производят пирометаллургическим способом из сульфидных руд. При этом параллельно решается задача извлечения из руд помимо меди других ценных сопутствующих металлов. Пирометаллургический способ производства меди предусматривает несколько стадий. Основные стадии этого производства включают:

  • подготовка руд (обогащение и иногда дополнительно обжиг);
  • плавка на штейн (выплавка медного штейна),
  • конвертирование штейна с получением черновой меди,
  • рафинирование черновой меди (сначала огневое, а затем электролитическое).

Производство алюминия

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая стадия - это получение глинозёма (Аl 2 O 3) из рудного сырья и вторая - получение жидкого алюминия из глинозёма путём электролиза .

В мировой практике практически весь глинозём получают из бокситов в основном способом Байера , австрийского инженера, работавшего в России. На заводах в России глинозём получают двумя способами из разного типа руд. Из бокситов способом Байера и из бокситов и нефелинов способом спекания. Оба эти способа относятся к щелочным методам выделения глинозема из руд. Полученный глинозём в дальнейшем идёт в электролизное производство, которое предполагает получение алюминия путём электролиза глинозема, растворённого в расплавленном электролите . Основным компонентом электролита является криолит .

В чистом криолите Na 3 AlF 6 (3NaF AlF 3) отношение NaF: AlF 3 равно 3:1. Для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6-2,8:1, поэтому к криолиту добавляют фтористый алюминий AlF 3 . Кроме того, для снижения температуры плавления в электролит добавляют немного CaF 2 , MgF 2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих пропорциях: Na 3 AlF 6 (75-90)%; AlF 3 (5-12)%; MgF 2 (2-5)%; CaF 2 (2-4)%; Al 2 0 3 (2-10)%. При повышении содержания Аl 2 О 3 более 10 % резко повышается тугоплавкость электролита, при содержании менее 1,3 % нарушается нормальный режим электролиза.

Алюминий, извлекаемый из электролизных ванн, является алюминием-сырцом. Он содержит металлические (Fe, Si, Cu, Zn и др.) и неметаллические примеси, а также газы (водород , кислород , азот , оксиды углерода , сернистый газ). Неметаллические примеси - это механически увлеченные частицы глинозема, электролит, частицы футеровки и др. Для очистки от механически захваченных примесей, растворённых газов, а также от Na, Ca и Mg алюминий подвергают хлорированию.

Далее алюминий заливают в электрические печи-миксеры или в отражательные печи, где в течение 30-45 мин происходит его отстаивание. Цель этой операции - дополнительное очищение от неметаллических и газовых включений и усреднение состава путём смешения алюминия из разных ванн. Затем алюминий разливают на конвейерных разливочных машинах, получая алюминиевые чушки, либо на установках непрерывного литья в слитки для прокатки или волочения. Таким образом получают алюминий чистотой не менее 99,8 % Аl.

Производство других цветных металлов

Для производства других цветных металлов - свинца, олова, цинка, вольфрама и молибдена пользуются некоторыми технологическими приемами, рассмотренными выше, но естественно, что схемы производства этих металлов и агрегаты для их получения имеют свои особенности.

См. также

Базовой отраслью промышленности РФ, которая определяет жизнеспособность экономики, является металлургическая промышленность . Кроме этого это одна из ключевых направлений развития экономики страны, так как ее доля в ВВП составляет 5%.

Определение 1

Металлургическая промышленность – это отрасль тяжелой промышленности, которая включает в себя процессы изготовления металлов из руд или других материалов, а также металлических сплавов.

В структуру металлургической промышленности входят следующие процессы: непосредственное производство металлов; горячая и холодная обработка металлических изделий; сварка; нанесение металлических покрытий.

Сама процедура изготовления металлических изделий состоит из трех этапов: добыча и подготовка руды; переплавка; использование и утилизация.

В процессе производства металлов используется различное сырье. В зависимости от того, какое именно сырье применяется, выделяют черную и цветную металлургическую промышленность. К первой категории относятся металлы, в состав которых входят железо, марганец и хром. К другой группе – все остальные металлы.

Определение 2

Под черной металлургической промышленностью понимается извлечение из недр земли и последующая обработка руд черных металлов, а также сталелитейное и чугунолитейное производства, прокат заготовок и изготовление сплавов из железа.

Продукция, которая производится на металлургических комбинатах является: основной (или конечным продуктом); побочной (или той, что появляется при изготовлении основных изделий); попутной (или той продукцией, которая остается после производства основной и побочной продукции и может применяться как вторичное сырье).

Основной продукцией черной металлургической промышленности считается металлопрокат, чугун, метизы и др.

Если сравнивать черную с цветной металлургией, то при производстве цветных металлических изделий затрачивается много энергии. Это объясняется низким содержанием полезных веществ в цветных металлах и большими объемами отходов, которые требуют определенных способов утилизации.

Основными видами цветных изделий являются сортовый и листовой прокат.

Факторы размещения черной и цветной металлургии

Если рассматривать общие факторы размещения отраслей металлургиечкой промышленности, то выделяют три типа металлургических баз в России:

  • база, которая работает с собственной рудой и углем;
  • база, которая использует или собственную, или привозную руду, или работает одновременно с двумя видами;
  • база, которая функционирует рядом с угольными месторождениями или недалеко от потенциального и реального потребителя

Основными факторами, которые влияют на расположение металлургических центров, являются:

  1. потребительский (близость крупных потребителей стали – машиностроительные комплексы);
  2. экологический (устаревшие предприятия, которые применяют «грязный» способ изготовления изделий – доменный процесс);
  3. транспортный (предприятия из-за отдаленности от топливных источников используют привозные руду и уголь)
  4. сырьевой (предприятия, которые располагаются непосредственно рядом с местонахождением руды).

Базой для развития машиностроения и металлообработки является именно отрасль черной металлургии. Ее продукция используется практически во всех сферах экономики. Россия входит в пятерку мировых производителей черных металлов вместе с США, Японией, Китаем и Германией.

Производственную базу черной металлургии составляют предприятия полного цикла: чугун - сталь - прокат, а также комбинаты, которые выпускают чугун - сталь, сталь - прокат и отдельно чугун, сталь, прокат.

Факторы размещения предприятий черной металлургии довольно разнообразны. Особыми факторами выделяют в производстве электросталей и ферросплавов. Россия достаточно обеспечена сырьем для черной металлургии, но размещены железные руды и топливо на территории страны неравномерно.

Рисунок 1. Основные факторы размещения предприятий черной металлургии. Автор24 - интернет-биржа студенческих работ

Цветная металлургия в России развивается на основе применения собственных больших месторождений разнообразных руд цветных, благородных и редких металлов, а также на добыче алмазов. РФ занимает второе место после США по выпуску продукции цветной металлургической промышленности. В структуре промышленности 47 горнодобывающих предприятий, из которых 22 – это алюминиевая промышленность. В России производится более 70 разнообразных цветных металлов.

В территориальной организации предприятий цветной металлургии ярко выражена сырьевая ориентация. Это связано с большим разнообразием добываемых сырья и материалов для производства цветных изделий.

Рисунок 2. Основные факторы размещения предприятий цветной металлургической промышленности. Автор24 - интернет-биржа студенческих работ

География металлургического комплекса

Мировая металлургическая промышленность представлена в 98 странах. Из этих пятьдесят государств занимаются добычей руды. Лидерами считаются Китай, Россия, Бразилия, Индия и Австралия. Эти страны экспортируют до 80% всего добываемого сырья.

В настоящее время ежегодно добывается более 1 млрд т железной руды. Основные месторождения распределены следующим образом:

  1. зарубежная Азия - 310 млн. т;
  2. Латинская Америка – 235 млн. т;
  3. страны СНГ – 180 млн. т;
  4. Австралия и Океания – 170 млн. т;
  5. Северная Америка – 95 млн. т;
  6. Африка – 50 млн. т;
  7. зарубежная Европа -20 млн. т.

Замечание 1

Большая часть мировых запасов руд требует первичной обработки в процессе производства из-за среднего и низкого качество материала. Высокого качества руда практически отсутствует.

Огромные запасы руды находятся в Китае, а полезное железо добывается на территории РФ. Компаниями-лидерами, в чьих руках мировой процесс добычи и производства руды и материалов, являются: Arcelor Mittal; Hebei Iron & Steel; Nippon Steel.

Первая организация образовалась в результате слияния индийских и люксембургских компаний. В ее состав входят 60 предприятий, в том числе и российское «Северсталь-Ресурс» и украинское «Криворожсталь»

Hebei Iron & Steel Group – это государственное предприятие, зарегистрированное в Ките. Оно производи ультратонкий холоднокатанный лист и стальные плиты. Nippon Steel и Sumitomo Metal Industries - лидер по производству стали в Японии.

В России металлургическая промышленность находится на втором месте после нефтегазовой отрасли. На территории РФ размещены три базы черной металлургии, непосредственно вблизи источников руды и угля: на Урале, в Сибири и в центральной части страны.

Самым крупным и старым предприятием является Уральское, производящее половину всей продукции черной металлургии в России. Крупнейшие предприятия – Чусовский металлургический завод и Челябинский металлургический комбинат.

Самая молодое месторождение – Сибирская металлургическая база. Запасы сырья практически исчерпаны. Представлены два металлургических комбината – Западно-Сибирский и Кузнецкий.

Крупным металлургическим заводом Центральной базы считается Новолипецкий металлургический комбинат. На его долю и еще пяти крупных центров металлургии приходится 93% выпускаемой продукции. Это ПАО «Северсталь», ОАО «Магнитогорский металлургический комбинат», «Евраз», ОАО «Мечел», ОАО «Металлоинвест».