Лекции по "оценке и анализу рисков". Анализ связанной группы решений в условиях полной неопределенности. Альфа-критерий решения Гурвица

Государственный комитет РФ по рыболовству

Федеральное государственное образовательное

Учреждение высшего профессионального образования

Камчатский государственный технический университет

Кафедра математики

Курсовая работа по дисциплине

«Математическая экономика»

На тему: «Риск и страхование.»

Введение…………………………………………………………..……………….....3

1.КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ …………….............................................................................4 1.1. Определение и сущность риска…………………………………..……………..…...4

1.2. Матрицы последствий и рисков…………………………………….……..……6

1.3.Анализ связанной группы решений в условиях полной неопределенности…………………………………………………...……………......7

1.4. Анализ связанной группы решений в условиях частичной неопределенности…………………………………………………………………..8

1.5. Оптимальность по Парето…………………………………………………….9

2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ ОПЕРАЦИЙ……..…..…...12

2.1. Количественная оценка риска………………………………………………..12

2.2. Риск отдельной операции……………………………………………………..13 2.3. Некоторые общие измерители риска……………………………………….15

2.4. Риск разорения……………………………………………………………..…16

2.5. Показатели риска в виде отношений………………………………………..17

2.6. Кредитный риск……………………………………………………………….17

3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ……………………………………….…….18

3.1. Диверсификация………………………………………………………………18

3.2. Хеджирование…………………………………………………………………21

3.3. Страхование…………………………………………………………………...22

3.4. Качественное управление рисками………………………………….……….24

Практическая часть……………………………………………………………...….27

Заключение………………………………………………………..………….…. ..29

Список литературы…………………………………………….……….……..….30

Приложения……………………………………………………….…………..…...31

ВВЕДЕНИЕ

Развитие мировых финансовых рынков, характеризующееся усилением процессов глобализации, интернационализации, либерализации, оказывает непосредственное влияние на всех участников мирового экономического пространства, основными членами которого являются крупные финансово-кредитные институты, производственные и торговые корпорации. Все участники мирового рынка непосредственно ощущают на себе влияние всех вышеперечисленных процессов и в своей деятельности должны учитывать новые тенденции развития финансовых рынков. Число рисков, возникающих в деятельности таких компаний, существенно увеличилось в последние годы. Это связано с появлением новых финансовых инструментов, активно используемых участниками рынка. Применение новых инструментов хотя и позволяет снизить принимаемые на себя риски, но также связано с определенными рисками для деятельности участников финансового рынка. Поэтому все большее значение для успешной деятельности компании приобретает в настоящее время осознание роли риска в деятельности компании и способность риск-менеджера адекватно и своевременно реагировать на сложившуюся ситуацию, принять правильное решение в отношении риска. Для этого необходимо использовать различные инструменты страхования и хеджирования от возможных потерь и убытков, набор которых в последние годы существенно расширился и включает как традиционные приемы страхования, так и методы хеджирования с использованием финансовых инструментов.

От того, насколько правильно будет выбран тот или иной инструмент, будет зависеть, в конечном счете, эффективность деятельности компании в целом.

Актуальность темы исследования предопределена также незавершенностью разработки теоретической основы и классификации страхования финансовых рисков и выявления его особенностей в России.

Глава 1. КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ

ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Риск одно из важнейших понятий, сопутствующих любой активной деятельности человека. Вместе с тем это одно из самых неясных, многозначных и запутанных понятий. Однако, несмотря на его неясность, многозначность и запутанность, во многих ситуациях суть риска очень хорошо понимается и воспринимается. Эти же качества риска являются серьезной преградой для его количественной оценки, которая во многих случаях необходима и для развития теории и на практике.

Рассмотрим классическую схему принятия решений в условиях неопределенности.

1.1. Определение и сущность риска

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку и цель проведения которой заключается в максимизации дохода разности между конечной и начальной

оценками (или какого-нибудь другого подобного показателя).

Почти всегда финансовые операции проводятся в условиях неопределенности и потому их результат невозможно предсказать заранее. Поэтому финансовые операции рискованны : при их проведении возможны как прибыль, так и убыток (или не очень большая прибыль по сравнению с той, на что надеялись проводившие эту операцию).

Проводящий операцию (принимающий решение) называется ЛПР Лицо ,

принимающее решение . Естественно, ЛПР заинтересовано в успехе операции и является за нее ответственным (иногда только перед самим собой). Во многих случаях ЛПР это инвестор, вкладывающий деньги в банк, в какую то финансовую операцию, покупающий ценные бумаги и т.п.

Определение. Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Пример 1 .

Рассмотрим три операции с одним и тем же множеством двух исходов

альтернатив A , В , которые характеризуют доходы, получаемые ЛПР. Все три

операции рискованные. Понятно, что рискованными являются первая и вторая

операции, так как в результате каждой операции возможны убытки.

Но почему должна быть признана рискованной третья операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы третьей операции, видим, что можем получить доход в размере 20 единиц, поэтому возможность получения дохода в 15 единиц рассматривается как неудача, как риск недобрать 5 единиц дохода. Итак, понятие риска обязательно предполагает рискующего того, к кому этот риск относится, кто озабочен результатом операции. Сам риск возникает, только если операция может окончиться исходами, не равноценными для него, несмотря на, возможно, все его усилия по управлению этой операцией.

Итак, в условиях неопределенности операция приобретает еще одну характеристику риск. Как оценить операцию, с точки зрения ее доходности и риска? На этот вопрос на так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

1.2. Матрицы последствий и рисков

Допустим, рассматривается вопрос о проведении финансовой операции. Неясно, чем она может закончиться. В связи с этим проводится анализ нескольких возможных решений и их последствий. Так приходим к следующей общей схеме принятия решений (в том числе финансовых) в условиях неопределенности.

Предположим, что ЛПР рассматривает несколько возможных решений

i =1, …,n . Ситуация неопределенна, понятно лишь, что наличествует какой то из вариантов j =1,….,n . Если будет принято i– е решение, а ситуация есть j– я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q =(q ij) называется матрицей последствий (возможных решений). Допустим, мы хотим оценить риск, который несет i -е решение. Нам неизвестна реальная ситуация. Но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -я, то было бы принято решение, дающее доход q i =max q ij . Значит, принимая i -е решение, мы рискуем получить не q j , а только q ij , т.е. принятие i -го решения несет риск не добрать r ij =q j –q ij называется матрицей рисков .

Пример 2.

Пусть матрица последствий есть

Составим матрицу рисков. Имеем q 1 =max q i1 =8, q 2 =5, q 3 =8, q 4 =12. Следовательно, матрица рисков есть

1.3. Анализ связанной группы решений в условиях полной неопределенности

Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма).

Рассматривая i -е решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: a i =min q a 0 с наибольшим a i0 . Итак, правило Вальда рекомендует принять решение i 0 такое, что a i0 =max a i =max(min q ij).Так, в примере 2 имеем a 1 =2, a 2 =2, a 3 =3, a 4 = 1. Теперь из чисел 2, 2, 3, 1 находим максимальное - 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска).

При применении этого правила анализируется матрица рисков R =(r ij). Рассматривая i -е решение, будем полагать, что на самом деле складывается ситуация максимального риска b i =max r ij . Но теперь выберем решение i 0 с наименьшим b i0 . Итак, правило Сэвиджа рекомендует принять решение i 0 такое, что b i0 =min b i =min(max r ij).Так, в примере 2 имеем b 1 =8, b 2 =6, b 3 =5, b 4 =7. Теперь из чисел 8, 6, 5, 7 находим минимальное – 5.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации).

Принимается решение i, котором достигается максимум

{λ min q ij +(1 λ max q ij)},

где 0≤λ ≤1. Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0 правило Гурвица приближается к правилу «розового оптимизма» (догадайтесь сами, что это значит). В примере 2 при λ=1/2 правило Гурвица рекомендует второе решение.

1.4. Анализ связанной группы решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности р j того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.

Правило максимизации среднего ожидаемого дохода.

Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Q i с рядом распределения. Математическое ожидание М [Q i ] и есть средний ожидаемый доход, обозначаемый также Q i . Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход. Предположим, что в схеме примера 2 вероятности есть 1/2, 1/6, 1/6, 1/6.

Тогда Q 1 =29/6, Q 2 =25/6, Q 3 =7, Q 4 =17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска.

Риск фирмы при реализации i -го решения является случайной величиной R i с рядом распределения

Математическое ожидание M [R i ] и есть средний ожидаемый риск, обозначаемый также R i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск. Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем R 1 =20/6, R 2 =4, R 3 =7/6, R 4 =32/6. Минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению.

Замечание. Отличие частичной (вероятностной) неопределенности от полной неопределенности очень существенно. Конечно, принятие решений по правилам Вальда, Сэвиджа, Гурвица никто не считает окончательными, самыми лучшими. Но когда мы начинаем оценивать вероятность варианта, это уже предполагает повторяемость рассматриваемой схемы принятия решений: это уже было в прошлом, или это будет в будущем, или это повторяется где-то в пространстве, например, в филиалах фирмы.

1.5. Оптимальность по Парето

Итак, при попытке выбрать наилучшее решение мы столкнулись в предыдущем параграфе с тем, что каждое решение имеет две характеристики средний ожидаемый доход и средний ожидаемый риск. Теперь имеем оптимизационную двухкритериальную задачу по выбору наилучшего решения.

Существует несколько способов постановки таких оптимизационных задач.

Рассмотрим такую задачу в общем виде. Пусть А - некоторое множество операций, каждая операция а имеет две числовые характеристики Е (а ), r (а ) (эффективность и риск, например) и разные операции обязательно различаются хотя бы одной характеристикой. При выборе наилучшей операции желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b, и обозначать а >b, если Е (а )≥Е (b ) и r (а )≤r (b ) и хотя бы одно из этих неравенств, строгое. При этом операция а называется доминирующей , а операция b - доминируемой . Ясно, что ни при каком разумном выборе наилучшей, операции доминируемая операция не может быть признана таковой. Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество этих операций называется множеством Парето или множеством оптимальности по Парето .

Имеет место чрезвычайно важное утверждение.

Утверждение.

На множестве Парето каждая из характеристик Е , r - (однозначная) функция другой. Другими словами, если операция принадлежит множеству Парето, то по одной ее характеристике можно однозначно определить другую.

Доказательство. Пусть а ,b - две операции из множества Парето, тогда r (а ) и r (b ) числа. Предположим, что r (а )≤r (b ), тогда Е (а ) не может быть равно Е (b ), так как обе точки а , b принадлежат множеству Парето. Доказано, что по характеристике r E . Так же просто доказывается, что по характеристике Е можно определить характеристику r .

Продолжим анализ приведенного в § 10.2 примера. Рассмотрим графическую иллюстрацию. Каждую операцию (решение) (R, Q ) отметим как точку на плоскости доход откладываем вверх по вертикали, а риск вправо по горизонтали (рис. 10.1). Получили четыре точки и продолжаем анализ примера 2.

Чем выше точка (R, Q ), тем более доходная операция, чем точка правее, тем более она рисковая. Значит, нужно выбирать точку выше и левее. В нашем случае множество Парето состоит только из одной третьей операции.

Для нахождения лучшей операции иногда применяют подходящую взвешивающую формулу, которая для операции Q с характеристиками (R, Q ) даёт одно число, по которому и определяют лучшую операцию. Например, пусть взвешивающая формула есть f (Q )=2Q–R . Тогда для операций (решений) примера 2 имеем: f (Q 1)=2*29/6 20/6=6,33; f (Q 2)=4,33; f (Q 3)=12,83; f (Q 4)=0,33. Видно, что третья операция – лучшая, а четвертая худшая.

Глава 2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ

ОПЕРАЦИЙ

Финансовая операция называется вероятностной , если существует вероятность каждого ее исхода. Прибыль такой операции разность конечной и начальной денежных ее оценок является случайной величиной. Для такой операции удается ввести количественную оценку риска, согласующуюся с нашей интуицией.

2.1. Количественная оценка риска

В предыдущей главе дано определение рискованной операции, как имеющей, по крайней мере, два исхода, не равноценных в системе предпочтений ЛПР. В контексте данной главы вместо ЛПР можно, употреблять также термин «инвестор» или какой-либо подобный, отражающий заинтересованность проводящего операцию (возможно, пассивно) в ее успехе.

При исследовании риска операции встречаемся с фундаментальным утверждением.

Утверждение.

Количественная оценка риска операции возможна только при вероятностной характеристике множества исходов операции.

Пример 1.

Рассмотрим две вероятностные операции:

Несомненно, риск первой операции меньше риска второй операции. Что же касается того, какую операцию выберет ЛПР, это зависит от его склонности к риску (подобные вопросы подробно рассмотрены в дополнении к ч. 2).

2.2. Риск отдельной операции

Так как мы хотим количественно оценить рискованность операции, а это невозможно сделать без вероятностной характеристики операции, то ее исходам припишем вероятности и оценим каждый исход доходом, который ЛПР получает при этом исходе. В итоге получим случайную величину Q, которую естественно назвать случайным доходом операции, или просто случайным доходом . Пока ограничимся дискретной случайной величиной (д.с.в.):

где q j - доход, а р j вероятность этого дохода.

Операцию и представляющую ее случайную величину случайный доход будем отождествлять при необходимости, выбирая из этих двух терминов более удобный в конкретной ситуации.

Теперь можно применить аппарат теории вероятностей и найти следующие характеристики операции.

Средний ожидаемый доход математическое ожидание с.в. Q , т.е. М [Q ]=q 1 p 1 +…+q n p n , обозначается еще m Q , Q, употребляется также название эффективность операции .

Дисперсия операции - дисперсия с.в. Q , т.е. D [Q ]=М [(Q - m Q) 2 ], обозначается также D Q .

Среднее квадратическое отклонение с.в. Q , т.е. [Q ]=√(D [E ]), обозначается

также σ Q .

Отметим, что средний ожидаемый доход, или эффективность операции, как и среднее квадратическое отклонение, измеряется в тех же единицах, что и доход.

Напомним фундаментальный смысл математического ожидания с.в.

Среднее арифметическое значений, принятых с.в. в длинной серии опытов, примерно равно ее математическому ожиданию. Все более признанным становится оценка рискованности всей операции посредством среднего квадратического отклонения случайной величины дохода Q , т.е. посредством σ Q . В данной книге это основная количественная оценка.

Итак, риском операции называется число σ Q среднее квадратическое отклонение случайного дохода операции Q . Обозначается также r Q .

Пример 2.

Найдем риски первой и второй операций из примера 1:

Сначала вычисляем математическое ожидание с.в. Q 1:

т 1 = 5*0,01+25*0,99=24,7. Теперь вычислим дисперсию по формуле D 1 =M [Q 1 2 ]-m 1 2 . Имеем М [Q 1 2 ]= 25*0,01+625*0,99=619. Значит, D 1 =619 (24,7)2=8,91 и окончательно r 1 =2,98.

Аналогичные вычисления для второй операции дают m 2 =20; r 2 =5. Как и «полагала интуиция», первая операция менее рискованная.

Предлагаемая количественная оценка риска вполне согласуется с интуитивным пониманием риска как степени разбросанности исходов операции ведь дисперсия и среднее квадратическое отклонение (квадратный корень из дисперсии) и суть меры такой разбросанности.

Другие измерители риска.

По нашему мнению, среднее квадратическое отклонение является наилучшим измерителем риска отдельной операции. В гл. 1 рассмотрены классическая схема принятия решений в условиях неопределенности и оценки риска в этой схеме. Полезно познакомиться: с другими измерителями риска. В большинстве случаев эти измерители просто вероятности нежелательных событий.

2.3. Некоторые общие измерители риска

Пусть известна функция распределения F случайного дохода операции Q. Зная ее, можно придать смысл следующим вопросам и ответить на них.

1. Какова вероятность того, что доход операции будет менее заданного s . Можно спросить по другому: каков риск получения дохода менее заданного? Ответ: F (s ).

2. Какова вероятность того, что операция окажется неуспешной, т.е. ее доход будет меньше среднего ожидаемого дохода m ?

Ответ: F (m ) .

3. Какова вероятность убытков и каков их средний ожидаемый размер? Или каков, риск убытков и их оценка?

4. Каково отношение средних ожидаемых убытков к среднему ожидаемому доходу? Чем меньше это отношение, тем меньше риск разорения, если ЛПР вложил в операцию все свои средства.

При анализе операций ЛПР желает иметь доход побольше, а риск поменьше. Такие оптимизационные задачи называют двухкритериальными. При их анализе два критерия – доход и риск часто «свертывают» в один критерий. Так возникает, например, понятие относительного риска операции . Дело в том, что одно и то же значение среднего квадратического отклонения σ Q , которое измеряет риск операции, воспринимается по-разному в зависимости от величины среднего ожидаемого дохода т Q , поэтому величину σ Q / т Q иногда называют относительным риском операции. Такую меру риска можно трактовать как свертку двухкритериальной задачи

σ Q →min,

т Q →max,

т.е. максимизировать средний ожидаемый доход при одновременной минимизации риска.

2.4. Риск разорения

Так называется вероятность столь больших потерь, которые ЛПР не может компенсировать и которые, следовательно, ведут к его разорению.

Пример 3.

Пусть случайный доход операции Q имеет следующий ряд распределения, и потери 35 или более ведут к разорению ЛПР. Следовательно, риск разорения в результате данной операции равен 0,8;

Серьезность риска разорения оценивается именно величиной соответствующей вероятности. Если эта вероятность очень мала, то ею часто пренебрегают.

2.5. Показатели риска в виде отношений.

Если средства ЛПР равны С , то при превышении убытков У над С возникает реальный риск разорения. Для предотвращения этого отношение К 1 = У / С , называемое коэффициентом риска , ограничивают специальным числом ξ 1 . Операции, для которых этот коэффициент превышает ξ1, считают особо рискованными. Часто учитывают также вероятность р убытков У и тогда рассматривают коэффициент риска К 2 = р Y/ С , который ограничивают другим числом ξ 2 (ясно, что ξ 2 ≤ ξ 1). В финансовом менеджменте чаще применяют обратные отношения С / У и С /(рУ ), которые называют коэффициентами покрытия рисков и которые ограничиваются снизу числами 1/ ξ 1 и 1/ ξ 2 .

Именно такой смысл имеет так называемый коэффициент Кука, равный отношению:

Коэффициент Кука используется банками и другими финансовыми компаниями. В роли весов при «взвешивании» выступают вероятности риски потери соответствующей актива.

2.6. Кредитный риск

Так называется вероятность невозврата в срок взятого кредита.

Пример 4.

Статистика запросов кредитов такова: 10% государственные органы, 30% другие банки и остальные физические лица. Вероятности невозврата взятого кредита соответственно таковы: 0,01; 0,05 и 0,2. Найти вероятность невозврата очередного запроса на кредит. Начальнику кредитного отдела доложили, что получено сообщение о невозврате кредита, но в факсовом сообщении имя клиента было плохо пропечатано. Какова вероятность, что данный кредит не возвращает какой то банк?

Решение. Вероятность невозврата найдем по формуле полной вероятности. Пусть Н 1 - запрос поступил от госоргана, Н 2 от банка, Н 3 от физического лица и А - невозврат рассматриваемого кредита. Тогда

Р (А )= Р (Н 1)Р H1 А + Р (Н 2)Р H2 А + Р (Н з)P H3 А = 0,1*0,01+0,3*0,05+0,6*0,2=0,136.

Вторую вероятность найдем по формуле Байеса. Имеем

Р A Н 2 =Р (Н 2)Р H2 А / Р (А )= 0,015/0,136=15/136≈1/9.

Как в реальности определяют все приведенные в этом примере данные, например, условные вероятности Р H1 А ? По частоте невозврата кредита для соответствующей группы клиентов. Пусть физические лица взяли всего 1000 кредитов и 200 не вернули. Значит, соответствующая вероятность Р H3 А оценивается как 0,2. Соответствующие данные 1000 и 200 берутся из информационной базы данных банка.

Глава 3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ

Как правило, риск стараются уменьшить. Для этого существует немало методов. Большая группа таких методов связана с подбором других операций. Таких, чтобы суммарная операция имела меньший риск.

3.1. Диверсификация

Напомним, что дисперсия суммы некоррелированных случайных величин равна сумме дисперсий. Из этого вытекает следующее утверждение, лежащее в основе метода диверсификации.

Утверждение 1.

Пусть О 1 ,...,О n некоррелированные операции с эффективностями е 1 ,..., е n и рисками r 1 ,...,r 2 . Тогда операция «среднее арифметическое» О =(О 1 +...+O n)/ п имеет эффективность е =(e 1 +...+e n)/n и риск r =√(r 1 2 +…r 2 n)/n .

Доказательство этого утверждения простое упражнение на свойства математического ожидания и дисперсии.

Следствие 1.

Пусть операции некоррелированы и а≤ e i и b r i ≤c с для всех i =1,..,n . Тогда эффективность операции «среднее арифметическое» не меньше а (т.е. наименьшей из эффективностей операций), а риск удовлетворяет неравенству b n r c n и, таким образом, при увеличении n уменьшается. Итак, при увеличении числа некоррелированных операций их среднее арифметическое имеет эффективность из промежутка эффективностей этих операций, а риск однозначно уменьшается.

Этот вывод называется эффектом диверсификации (разнообразия) и представляет собой в сущности единственно разумное правило работы на финансовом и других рынках. Этот же эффект воплощен в народной мудрости «не клади все яйца в одну корзину». Принцип диверсификации гласит, что нужно проводить разнообразные, не связанные друг с другом операции, тогда эффективность окажется усредненной, а риск однозначно уменьшится.

При применении этого правила нужно быть осторожным. Так, нельзя отказаться от некоррелированности операций.

Предложение 2.

Предположим, что среди операций есть ведущая, с которой все остальные находятся в положительной корреляционной связи. Тогда риск операции «среднее арифметическое» не уменьшается при увеличении числа суммируемых операций.

Действительно, для простоты примем более сильное предположение, именно, что все операции О i ; i =1,...,n , просто копируют операцию O 1 в каких то масштабах, т.е. O i =k i O 1 и все коэффициенты пропорциональности k i положительны. Тогда операция «среднее арифметическое» О =(O 1 +...+O n)/n есть просто операция O 1 в масштабе

и риск этой операции

Поэтому, если операции примерно одинаковы по масштабности, т.е. k i ≈1, то и

Мы видим, что риск операции «среднее арифметическое» не уменьшается при увеличении числа операций.

3.2. Хеджирование

В эффекте диверсификации ЛПР составлял новую операцию из нескольких, имеющихся в его распоряжении. При хеджировании (от англ. hedge - изгородь) ЛПР подбирает или даже специально конструирует новые операции, чтобы, проводя их совместно с основной, уменьшить риск.

Пример 1.

По контракту российская фирма через полгода должна получить крупный платеж от украинской компании. Платеж равен 100 000 гривен (примерно 600 тыс. руб.) и будет произведен, именно в гривнах. У российской фирмы, есть опасения, что за эти полгода курс гривны упадет по отношению к российскому рублю. Фирма хочет подстраховаться от такого падения и заключает форвардный контракт с одним из украинских банков на продажу тому 100 000 гривен по курсу 6 руб. за гривну. Таким образом, что бы ни произошло за это время с курсом рубль гривна, российская фирма не понесет из за этого убытков.

В этом и заключается суть хеджирования. При диверсификации наибольшую ценность представляли независимые (или некоррелированные) операции. При хеджировании подбираются операции, жестко связанные с основной, но, так сказать, другого знака, говоря более точно, отрицательно коррелированные с основной операцией.

Действительно, пусть O 1 основная операция, ее риск r 1 , O 2 некоторая дополнительная операция, ее риск r 2 , О - операция сумма, тогда дисперсия этой операции D =r 1 2 +2k 12 r 1 r 2 +r 2 2 , где k - коэффициент корреляции эффективностей основной и дополнительной операций. Эта дисперсия может быть меньше дисперсии основной операции, только если этот коэффициент корреляции отрицателен (точнее: должно быть 2k 12 r 1 r 2 +r 2 2 <0, т.е. k 1 2 <–r 2 /(2r 1)).

Пример 2.

Пусть ЛПР решает проводить операцию O 1 .

Ему советуют провести одновременно операцию S , жестко связанную с О . В сущности обе операции надо изобразить с одним и тем же множеством исходов.

Обозначим суммарную операцию через О , эта операция есть сумма операций O 1 и S . Вычислим характеристики операций:

M [O 1 ]=5, D [O 1 ]=225, r 1 =15;

M [S ]=0, D [S ]=25;

M [O ]=5, D [O ]=100, r =10.

Средняя ожидаемая эффективность операции осталась неизменной, а риск уменьшился из-за сильной отрицательной коррелированности дополнительной операции S по отношению к основной операции.

Конечно, на практике не так легко подобрать дополнительную операцию, отрицательно коррелированную с основной, да еще с нулевой эффективностью. Обычно допускается небольшая отрицательная эффективность дополнительной операции и из-за этого эффективность суммарной операции становится меньше, чем у основной. Насколько допускается уменьшение эффективности на единицу уменьшения риска зависит от отношения ЛПР к риску.

3.3. Страхование

Можно рассматривать страхование как один из видов хеджирования. Поясним некоторые термины.

Страхователь (или застрахованный) тот, кто страхуется.

Страховщик - тот, кто страхует.

Страховая сумма - сумма денежных средств, на которую застраховано имущество, жизнь, здоровье страхователя. Эта сумма выплачивается страховщиком страхователю при наступлении страхового случая. Выплата страховой суммы называется страховым возмещением .

Страховой платеж выплачивается страхователем страховщику.

Обозначим страховую сумму ω , страховой платеж s , вероятность страхового случая р . Предположим, что застрахованное имущество оценивается в z. По правилам страхования ω≤ z.

Таким образом, можно предложить следующую схему:

Таким образом, страхование представляется выгоднейшим мероприятием с точки зрения уменьшения риска, если бы не страховой платеж. Иногда страховой платеж составляет заметную часть страховой суммы и представляет собой солидную сумму.

3.4. Качественное управление рисками

Риск столь сложное понятие, что весьма часто невозможна его количественная оценка. Поэтому широко развиты методы управления риском качественного характера, без количественной оценки. К таким относятся многие банковские риски. Наиболее важные из них это кредитный риск и риски неликвидности и неплатежеспособности.

1. Кредитный риск и способы его уменьшения . При выдаче кредита (или ссуды) всегда есть опасение, что клиент не вернет кредит. Предотвращение невозврата, уменьшение риска невозврата кредитов это важнейшая задача кредитного отдела банка. Какие же существуют способы уменьшения риска невозврата кредита.

Отдел должен постоянно систематизировать и обобщать информацию по выданным кредитам и их возвращению. Информация по выданным кредитам должна быть систематизирована по величине выданных кредитов, должна быть построена классификация клиентов, которые взяли кредит.

Отдел (банк в целом) должен вести так называемую кредитную историю, своих клиентов, в том, числе и потенциальных (т.е. когда, где, какие кредиты брал и как их возвращал клиент). Пока у нас в стране большинство клиентов не имеет своей кредитной истории.

Есть различные способы обеспечения кредита, например, клиент отдает что-то в залог и если не возвращает кредит, то банк становится собственником залога;

В банке должна быть четкая инструкция по выдаче кредита (кому какой кредит можно выдать и на какой срок);

Должны быть установлены четкие полномочия по выдаче кредита. Скажем, рядовой сотрудник отдела может выдать кредит не более $1000, кредиты до $10000 может выдать начальник отдела, свыше $10 000, но не более $100 000, может выдать вице-президент по финансам и кредиты свыше $100 000 выдает только совет директоров (читайте роман А. Хейли «Менялы»);

Для выдачи особо больших и опасных кредитов объединяются несколько банков и сообща выдают этот кредит;

Существуют страховые компании, которые страхуют невозврат кредита (но есть точка зрения, что невозврат кредита не подлежит страхованию это риск самого банка);

Существуют внешние ограничения по выдаче кредитов (например, установленные Центральным банком); скажем, не разрешается выдавать очень крупный кредит одному клиенту;

2. Риски неликвидности , неплатежеспособности и способы их уменьшения . Говорят, что средства банка достаточно ликвидны, если банк способен быстро и без особых для себя потерь обеспечить выплату своим клиентам денежных средств, которые они доверили банку на кратковременной основе. Риск неликвидности это и есть риск не справиться с этим. Впрочем, этот риск лишь для краткости назван так, полное его название риск несбалансированности баланса в части ликвидности .

Все активы банка по их ликвидности делятся на три группы:

1) первоклассные ликвидные средства (кассовая наличность, средства банка на корреспондентском счете в Центробанке, государственные ценные бумаги, векселя крупных надежных компаний;

2) ликвидные средства (ожидаемые краткосрочные платежи банку, некоторые виды ценных бумаг, некоторые материальные активы, которые могут быть быстро и без больших потерь проданы и т.п.);

3) неликвидные средства (просроченные кредиты и ненадежные долги, многие материальные активы банка, прежде всего здания и сооружения).

При анализе риска неликвидности учитываются в первую очередь первоклассные ликвидные средства.

Говорят, что банк платежеспособен, если способен расплатиться со всеми своими клиентами, но, возможно, для этого придется провести какие-нибудь крупные и длительные операции, вплоть до продажи оборудования, зданий, принадлежащих банку, и т.д. Риск неплатежеспособности возникает, когда неясно, сумеет ли банк расплатиться.

Платежеспособность банка зависит от очень многих факторов. Центральный банк устанавливает ряд условий, в которые банки должны выполнять для поддержания своей платежеспособности. Самые важные из них: ограничение обязательств банка; рефинансирование банков Центральным банком; резервирование части средств банка на корреспондентском счете в Центральном банке.

Риск неликвидности ведет к возможным излишним потерям банка: чтобы расплатиться с клиентом, банку, возможно, придется одолжить деньги у других банков по более высокой процентной ставке, чем в обычных условиях. Риск неплатежеспособности вполне может привести к банкротству банка.

Практическая часть

Предположим, ЛПР имеет возможность составить операцию из четырех некоррелированных операций, эффективности и риски которых даны в таблице.

Рассмотрим несколько вариантов составления операций из этих операций с равными весами.

1. Операция составлена только из 1-й и 2-й операций. Тогда e 12 =(3+5)/2=4;

r 12 = (2 2 +4 2)/2≈2,24

2. Операция составлена только из 1-й, 2-й и 3-й операций.

Тогда e 123 =(3+5+8)/3=5,3; r 123 =√(2 2 +4 2 +6 2)/3≈2,49.

3. Операция составлена из всех четырех операций. Тогда

e 1 4 =(3+5+8+10)/4=6,5; r 1 4 =√(2 2 +4 2 +6 2 +12 2)/4≈ 3,54.

Видно, что при составлении операции из всё большего числа операций риск растёт весьма незначительно, оставаясь близко к нижней границе рисков составляющих операций, а эффективность каждый раз равна среднему арифметическому составляющих эффективностей.

Принцип диверсификации применяется не только для усреднения операций, проводимых одновременно, но в разных местах (усреднение в пространстве), но и проводимых последовательно во времени, например, при повторении одной операции во времени (усреднение во времени). Например, вполне разумной является стратегия покупки акций какой-нибудь стабильно работающей компании 20-го января каждого года. Неизбежные колебания курса акций этой компании благодаря этой процедуре усредняются и в этом проявляется эффект диверсификации.

Теоретически эффект диверсификации только положителен эффективность усредняется, а риск уменьшается. Однако усилия по проведению большого числа операций, по отслеживанию их результатов могут, конечно, свести на нет все плюсы от диверсификации.

ЗАКЛЮЧЕНИЕ

Данная курсовая работа рассматривает теоретические и практические вопросы и проблемы рисков.

В первой главе рассматриваются классическая схема оценки финансовых операций в условиях неопределенности.

Во второй главе сделан обзор характеристик вероятностных финансовых операций. Под финансовыми рисками понимаются кредитные, коммерческие, риски биржевых операций и риск неправомерного применения финансовых санкций государственными налоговыми инспекциями.

В третьей главе показаны общие методы уменьшения рисков. Приведены примеры качественного управления рисками.

Список литературы

1.Малыхин В.И. Финансовая математика: Учеб. пособие для вузов. М.: ЮНИТИ ДАНА, 1999. 247 с.

2. Страхование: принципы и практика/ Составитель Дэвид Бланд: пер. с англ.–М.: Финансы и статистика, 2000.–416с.

3. Гвозденко А.А. Финансово-экономические методы страхования: Учебник.–М.: Финансы и статистика, 2000.–184с.

4. Сербиновский Б.Ю., Гарькуша В.Н. Страховое дело: Учебное пособие для вузов. Серия “Учебники, учебные пособия” Ростов н/Д: “Феникс”, 2000–384 с.

      16 - отказ от реализации проекта (избежание, риска)

Рис. 1.2. Блок-схема процесса управления риском

3. Количественный анализ предполагает определение вероятности наступления риска и его последствий, определение допустимого уровня риска.

Наиболее распространенными методами количественной оценки риска являются статистические методы и методы экспертных оценок.

Суть статистических методов заключается в том, что изучается статистика потерь и прибылей, имевших место в данной области, и составляется наиболее вероятный прогноз на будущее. Данные методы требуют наличия значительного массива данных и соответствующего математического сопровождения.

Использование методов экспертных оценок заключается в получении количественных оценок риска на основании обработки мнений опытных предпринимателей или специалистов.

4. Меры по устранению и минимизации риска включают следующие шаги:

  • оценку приемлемости полученного уровня риска;
  • оценку возможности снижения риска или его увеличения при повышении ожидаемой отдачи;
  • выбор методов снижения (увеличения) рисков.

Тема 2. Количественные характеристики и схемы оценки рисков в условиях неопределенности.

Матрица последствий. Матрица рисков. Анализ связанной группы решений в условиях полной неопределенности. Правило Вальда. Правило Сэвиджа. Правило Гурвица. Анализ связанной группы решений в условиях частичной неопределенности. Оптимальность по Парето при учете двух характеристик финансовой операции. Правило Лапласа равновозможности .

2.1. Матрицы последствий и матрицы рисков

Понятие риска предполагает наличие рискующего; будем называть его Лицом, Принимающим Решения (ЛПР).

Допустим, рассматривается вопрос о проведении финансовой операции в условиях неопределенности. При этом у ЛПР есть несколько возможных решений i = 1,2,...,т, а реальная ситуация неопределенна и может принимать один из вариантов j = 1,2,..., n . Пусть известно, что если ЛПР примет i- e решение, а ситуация примет j- ый вариант, то будет получен доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений) 4 .

Оценим размеры риска в данной схеме.

Пусть принимается i- е решение. Очевидно, если бы было известно, что реальная ситуация будет j -я, то ЛПР принял бы решение, дающее доход q j = . Однако, i- е решение принимается в условиях неопределенности. Значит, ЛПР рискует получить не q j , а только q ij . Таким образом, существует реальная возможность недополучить доход, и этому неблагоприятному исходу можно сопоставить риск r ij , размер которого целесообразно оценить как разность

r ij = q j - q ij . (2.1)

Матрица R = (r ij ) называется матрицей рисков 5 .

Пример 2.1. Используя формулу (2.1), составьте матрицу рисков

R = (r ij ) по заданной матрице последствий

Решение . Очевидно, q 1 = = 8; аналогично q 2 = 5, q 3 = 8, q 4 = 12 . Следовательно, матрица рисков имеет вид

2.2. Анализ связанной группы решений в условиях полной

неопределенности

Полная неопределенность означает отсутствие информации о вероятностных состояниях среды (“природы”), например, о вероятностях тех или иных вариантов реальной ситуации; в лучшем случае известны диапазоны значений рассматриваемых величин. Рекомендации по принятию решений в таких ситуациях сформулированы в виде определенных правил (критериев). Рассмотрим основные из них.

Критерий (правило) максимакса. По этому критерию определяется вариант решения, максимизирующий максимальные выигрыши - например, доходы – для каждого варианта ситуации. Это критерий крайнего (“розового”) оптимизма , по которому наилучшим является решение, дающее максимальный выигрыш, равный. Рассматривая i- е решение, предполагают самую хорошую ситуацию, приносящую доход, а затем выбирают решение с наибольшим a i .

Пример 2.2. Для матрицы последствий в примере 2.1 выбрать вариант решения по критерию максимакса.

Решение. Находим последовательность значений: a 1 =8, a 2 =12, a 3 =10, a 4 =8. Из этих значение находим наибольшее: a 2 =12 . Следовательно, критерий максимакса рекомендует принять второе решение (i=2 ).

Правило Вальда (правило максимина, или критерий крайнего пессимизма). Рассматривая i-e решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: b i = min q ij . Но теперь выберем решение i 0 с наибольшим. Итак, правило Вальда рекомендует принять решение i 0 такое, что = = .

Пример 2.3. Для матрицы последствий в примере 2.1 выбрать вариант решения по критерию Вальда.

Решение. В примере 2.1 имеем b 1 = 2, b 2 = 2, b 3 = 3, b 4 = 1. Теперь из этих значений выбираем максимальное b 3 = 3. Значит, правило Вальда рекомендует принять 3-е решение (i=3 ).

Правило Сэвиджа (критерий минимаксного риска). Этот критерий аналогичен предыдущему критерию Вальда, но ЛПР принимает решение, руководствуясь не матрицей последствий Q, а матрицей рисков R = (r ij). По этому критерию лучшим является решение, при котором максимальное значение риска будет наименьшим, т.е. равным. Рассматривая i-e решение, предполагают ситуацию максимального риска r i = и выбирают вариант решения i 0 с наименьшим = = .

Пример 2.4. Для исходных данных в примере 2.1 выбрать вариант решения в соответствии с критерием Сэвиджа.

Решение . Рассматривая матрицу рисков R, находим последовательность величин r i = : r 1 = 8, r 2 = 6, r 3 = 5, r 4 = 7. Из этих величин выбираем наименьшую: r 3 = 5. Значит, правило Сэвиджа рекомендует принять 3-е решение (i=3 ). Заметит, что это совпадает с выбором по критерию Вальда.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). По данному критерию выбирается вариант решения, при котором достигается максимум выражения c i = {λminq ij + (1 – λ)maxq ij }, где 0 λ 1. Таким образом, этот критерий рекомендует руководствоваться некоторым средним результатом между крайним оптимизмом и крайним пессимизмом . При λ=0 критерий Гурвица совпадает с максимаксным критерием, а при λ=1 он совпадает с критерием Вальда. Значение λ выбирается из субъективных (интуитивных) соображений.

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения c i = 1/2minq ij + 1/2maxq ij . Например, с 1 =1/2 * 2+1/2 * 8=5; аналогично находятся с 2 =7; с 3 =6,5; с 4 = 4,5. Наибольшим является с 2 =7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i=2 ).

2.3. Анализ связанной группы решений в условиях частичной

неопределенности

Если при принятии решения ЛПР известны вероятности p j того, что реальная ситуация может развиваться по варианту j, то говорят, что ЛПР находится в условиях частичной неопределенности. В этом случае можно руководствоваться одним из следующих критериев (правил).

Критерий (правило) максимизации среднего ожидаемого дохода . Этот критерий называется также критерием максимума среднего выигрыша. Если известны вероятности p j вариантов развития реальной ситуации, то доход, получаемый при i-ом решении, является случайной величиной Q i с рядом распределения

    q i1 q i2 q in
    p 1 p 2 p n

Математическое ожидание M [Q i ] случайной величины Q i и есть средний ожидаемый доход, обозначаемый также:

= M [Q i ] = .

Для каждого i-го варианта решения рассчитываются величины, и в соответствии с рассматриваемым критерием выбирается вариант, для которого достигается

Пример 2.6. Пусть для исходных данных примера 2.1 известны вероятности развития реальной ситуации по каждому из четырех вариантов, образующих полную группу событий:

p 1 =1/2, p 2 =1/6, p 3 =1/6, p 4 =1/6. Выяснить, при каком варианте решения достигается наибольший средний доход и какова величина этого дохода.

Решение. Найдем для каждого i-го варианта решения средний ожидаемый доход: =1/2*5+1/6*2+1/6*8+1/6*4= 29/6, = 25/6, = 7, = 17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска (другое название –критерий минимума среднего проигрыша ).

В тех же условиях, что и в предыдущем случае, риск ЛПР при выборе i-го решения является случайной величиной R i с рядом распределения

    r i1 r i2 r in
    p 1 p 2 p n

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также: = M = . . Правило рекомендует принять решение, влекущее минимальный средний ожидаемыйриск: .

Пример 2.7 . Исходные данные те же, что и в примере 2.6. Определить, при каком варианте решения достигается наименьший средний ожидаемый риск, и найти величину минимального среднего ожидаемого риска (проигрыша).

Решение. Для каждого i-го варианта решения найдем величину среднего ожидаемого риска. На основе заданной матрицы риска R найдем: = 1/2*3+1/6*3+1/6*0+1/6*8=20/6, = 4, = 7/6, = 32/6.

Следовательно, минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению: = 7/6.

Замечание . Когда говорят о среднем ожидаемом доходе (выигрыше) или о среднем ожидаемом риске (проигрыше), то подразумевают возможность многократного повторения процесса принятия решения по описанной схеме или фактическое неоднократное повторение такого процесса в прошлом. Условность данного предположения заключается в том, что реально требуемого количества таких повторений может и не быть.

Критерий (правило) Лаплпаса равновозможности (безразличия) . Этот критерий непосредственно не относится к случаю частичной неопределеннос-ти, и его применяют в условиях полной неопределенности. Однако здесь предполагается, что все состояния среды (все варианты реальной ситуации) равновероятны – отсюда и название критерия. Тогда описанные выше схемы расчета можно применить, считая вероятности p j одинаковыми для всех вариантов реальной ситуации и равными 1/n. Так, при использовании критерия максимизации среднего ожидаемого дохода выбирается решение, при котором достигается. А в соответсвии с критерием минимизации среднего ожидаемого риска выбирается вариант решения, для которого обеспечивается .

Краткое описание

В условиях рыночных отношений большинство управленческих решений принимается в условиях риска. Это связано с отсутствием полной информации, наличием противоборствующих тенденций, элементами случайности и т.д. Таким образом, проблема оценки и учета экономического риска приобретает самостоятельное значение как часть теории и практики управления.

Содержание работы

ТЕМА 1. РИСК КАК ЭКОНОМИЧЕСКАЯ КАТЕГОРИЯ, ЕГО СУЩНОСТЬ 3
1.1. ПОНЯТИЕ РИСКА 3
1.2. ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ЭКОНОМИЧЕСКОГО РИСКА 4
1.3. КЛАССИФИКАЦИЯ РИСКОВ 5
1.4. УПРАВЛЕНИЕ РИСКОМ 9
ТЕМА 2. КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ И СХЕМЫ ОЦЕНКИ РИСКОВ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ. 12
2.1. МАТРИЦЫ ПОСЛЕДСТВИЙ И МАТРИЦЫ РИСКОВ 12
2.2. АНАЛИЗ СВЯЗАННОЙ ГРУППЫ РЕШЕНИЙ В УСЛОВИЯХ ПОЛНОЙ 13
НЕОПРЕДЕЛЕННОСТИ 13
2.3. АНАЛИЗ СВЯЗАННОЙ ГРУППЫ РЕШЕНИЙ В УСЛОВИЯХ ЧАСТИЧНОЙ 14
НЕОПРЕДЕЛЕННОСТИ 14
2.4. ОПТИМАЛЬНОСТЬ ПО ПАРЕТО ДВУХКРИТЕРИАЛЬНЫХ ФИНАНСОВЫХ 16
ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ 16
ТЕМА 3. ИЗМЕРИТЕЛИ И ПОКАЗАТЕЛИ ФИНАНСОВЫХ РИСКОВ 18
3.1. ОБЩЕМЕТОДИЧЕСКИЕ ПОДХОДЫ К КОЛИЧЕСТВЕННОЙ ОЦЕНКЕ РИСКА 18
3.2. РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ И ОЖИДАЕМАЯ ДОХОДНОСТЬ 19
СОСТОЯНИЕ 19
3.3. КОМБИНАЦИИ ОЖИДАЕМОГО ЗНАЧЕНИЯ И ДИСПЕРСИИ КАК КРИТЕРИЙ РИСКА 23
3.4. КОЭФФИЦИЕНТЫ РИСКА И КОЭФФИЦИЕНТЫ ПОКРЫТИЯ РИСКОВ 31
ТЕМА 4. ЗАДАЧИ ФОРМИРОВАНИЯ ПОРТФЕЛЕЙ ЦЕННЫХ БУМАГ. 32
4.1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОРТФЕЛЯ ЦЕННЫХ БУМАГ. 32
4.2. ПОСТАНОВКА ЗАДАЧИ ОБ ОПТИМАЛЬНОМ ПОРТФЕЛЕ. 36
4.3. ФОРМИРОВАНИЕ ОПТИМАЛЬНОГО ПОРТФЕЛЯ С ПОМОЩЬЮ ВЕДУЩЕГО ФАКТОРА ФИНАНСОВОГО РЫНКА. 40
4.4 МНОГОФАКТОРНЫЕ МОДЕЛИ. ТЕОРИЯ АРБИТРАЖНОГО ЦЕНООБРАЗОВАНИЯ. 52
4.5 ПОЯСНЕНИЯ К РЕШЕНИЮ ЗАДАЧИ 1 СРЕДСТВАМИ EXCEL ЗАДАЧА МАРКОВИЦА О ФОРМИРОВАНИИ ПОРТФЕЛЯ ЗАДАННОЙ ДОХОДНОСТИ С УЧЕТОМ ВЕДУЩЕГО ФАКТОРА. 54
ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ С ПРИМЕНЕНИЕМ ПЭВМ. 64
СПИСОК ЛИТЕРАТУРЫ 65

Предположим, что ЛПР (лицо, принимающее решения) рассматривает несколько возможных решений: i = 1,…,m. Ситуация, в которой действует ЛПР, является неопределенной. Известно лишь, что наличествует какой-то из вариантов: j = 1,…, n. Если будет принято i -e решение, а ситуация есть j -я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет i -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть j -я, то было бы принято решение, дающее доход q ij .
Значит, принимая i -e решение мы рискуем получить не q j , а только q ij , значит принятие i -го решения несет риск недобрать r ij = q j - q ij . Матрица R = (r ij) называется матрицей рисков.

Пример №1 . Пусть матрица последствий есть
Составим матрицу рисков. Имеем q 1 = max(q i 1) = 8, q 2 = 5, q 3 = 8, q 4 = 12.. Следовательно, матрица рисков есть

Принятие решений в условиях полной неопределенности

Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма). Рассматривая i -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход a i Но теперь уж выберем решение i0 с наибольшим ai0 . Итак, правило Вальда рекомендует принять решение i0 , такое что
Так, в вышеуказанном примере, имеем a 1 = 2, a 2 = 2, a 3 = 3, a 4 = 1. Из этих чисел максимальным является число 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков R = (rij) . Рассматривая i -e решение будем полагать, что на самом деле складывается ситуация максимального риска b i = max
Но теперь уж выберем решение i0 с наименьшим bi0 . Итак, правило Сэвиджа рекомендует принять решение i0 , такое что
В рассматриваемом примере имеем b 1 = 8, b 2 = 6, b 3 = 5, b 4 = 7 . Минимальным из этих чисел является число 5. Т.е. правило Сэвиджа рекомендует принять 3-е решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i , на котором достигается максимум
, где 0 ≤ λ ≤ 1 .
Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0, правило Гурвица приближается к правилу "розового оптимизма" (догадайтесь сами, что это значит). В вышеуказанном примере при λ = 1/2 правило Гурвица рекомендует 2-е решение.

Принятие решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.
Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Qi с рядом распределения

qi1

qi2


qin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый доход, обозначаемый . Правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.
Предположим, что в схеме из предыдущего примера вероятности есть (1/2, 1/6, 1/6, 1/6). Тогда Максимальный средний ожидаемый доход равен 7, соответствует третьему решению.
Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации i -го решения, является случайной величиной R i с рядом распределения

ri1

ri2


rin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.
Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем Минимальный средний ожидаемый риск равен 7/6, соответствует третьему решению.
Анализ принимаемых решений по двум критериям: среднему ожидаемому доходу и среднему ожидаемому риску и нахождение решений, оптимальных по Парето, аналогично анализу доходности и риска финансовых операций. В примере множество решений, оптимальных по Парето операций, состоит только из одного 3-его решения.
В случае, если количество Парето-оптимальных решений больше одного, то для определения лучшего решения применяется взвешивающая формула .

Правило Лапласа

Иногда в условиях полной неопределенности применяют правило Лапласа, согласно которому все вероятности p j считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

Рассмотрим последовательную процедуру проверки гипотез. Все предыдущие правила проверки двух гипотез были основаны на фиксированном числе испытаний, то есть сначала проводится измерений, строится отношение правдоподобия и затем оно сравнивается с порогом. С точки зрения минимального значения среднего числа испытаний (для ускорения процесса записи выборки), А. Вальд предложил и обосновал последовательный анализ измеряемых значений, т.е. обработка данных проводится по мере поступления новых измерений.

После каждого испытания
строится отношение правдоподобия
, которое сравнивается с двумя порогамии, то есть проверяется условие

(4.23)

При выполнении условия

и
(4.24)

принимается решение о верности гипотезы
(гипотеза
отклоняется). А при выполнении условия

и
(4.25)

принимается решение о верности гипотезы
(гипотезаотклоняется).

Как видно множество разбивается на три части: подмножествопринятия гипотезы
, подмножествопринятия гипотезыи область неопределённости, где нельзя отдать предпочтение той или иной гипотезе (в этом случае измерения должны быть продолжены). Из правил проверки гипотез (4.24) и (4.25) в данном случае следует, что объём выборки
не фиксирован и зависит от конкретного значения выборки
, то есть объём выборки естьслучайная величина .

В качестве критерия разумно выбрать минимальную среднюю стоимость эксперимента . Если “цена” одного эксперимента не меняется с увеличением
, то этот критерий переходит в критерий минимума среднего числа испытаний, необходимых для принятия решенияили.

А.Вальд доказал, что среди всех правил принятия решений (последовательных и непоследовательных), для которых условные вероятности ошибок не превосходят
ипоследовательное правило принятия решения, состоящее в сравнении отношения правдоподобия
с двумя порогамии, приводит к наименьшему значению среднего числа испытаний при верности
или. При независимости выборок имеем

В случае последовательного критерия отношения правдоподобия процедура проверки строится следующим образом:

Выбираются пороги и, как функции значений
и, и проверяется неравенство (4.23) на каждом шаге испытаний
.

Если
, то в качестве пороговиможно принять величины

,
. (4.26)

Вместо сравнения
с порогамииобычно логарифмируют обе части неравенства (4.23) и при независимых испытаниях проводят проверку по правилу


. (4.27)

На рисунке 4.1 показан пример изменения значений суммы случайного числа случайных величин до принятия решения при увеличении числа испытаний. Нужно иметь в виду, что в процедуре проверки гипотез по Вальду размер выборки - величина случайная. Из теории вероятностей известно, если независимы, распределены одинаково и их дисперсия ограничена, то

.

Откуда получим математическое ожидание числа испытаний

В применении к последовательному анализу получим математическое ожидание числа испытаний при различных состояниях источника:

,
(4.28)

Математические ожидания
и
зависят от проверяемой гипотезы и границ принятия решений. Пренебрегая перескоком границ
и
значениями сумм в момент принятия решения об остановке процедуры проверки гипотез (4.27), запишем соответствующие математические ожидания сумм

, (4.29)

. (4.30)

Математические ожидания логарифма отношения правдоподобия

при состоянии источников
и
определяются как

,
,

где
- плотность распределения вероятности выборкиy при состоянии источника
, – область, на которой определена плотность распределения вероятности
.

В случае дискретного распределения выборочных значений имеем

,
,

где m – количество значений y , которое может принимать случайная величина при однократном измерении,
.

Преимуществом последовательного анализа перед всеми остальными процедурами проверки гипотез заключается в том, что последовательный анализ Вальда даёт приблизительно 48% выигрыша в числе испытаний при проведении серии процедур проверки гипотез.

Во всех правилах принятия решения, кроме минимаксного правила, используется отношение правдоподобия и решение принимается при нарушении неравенств
, гдеС – порог, зависящий от выбранного критерия. Но само отношение правдоподобия – случайная величина, имеющая плотность распределения вероятности
, зависящей от состояния источника. Запишем вероятности ошибок и вероятности правильного принятия решений, используя плотность распределения вероятности отношения правдоподобия

, (4.33)

, (4.35)

Приведённые равенства показывают, что вероятности ошибок
и, а также вероятности правильных решений
и
, можно вычислять как по многомерным областями, так и по одномерной области, определяемой плотностями вероятностей
и
, что облегчает вычисления. Сведём в одну таблицу рассмотренные критерии.

Таблица правил принятия решений

Априорные

сведения

Критерий

Примечание

,


Объём выборки

=

=

. Объём выборки фиксирован, вероятности ,  вычисляются по
и


Объём выборки

Минимаксный

=

=

Объём выборки фиксирован, вероятности ,  вычисляются по выбранным правилам

Объём выборки

Максимума апостериорной вероятности

=

, Объём выборки фиксирован, вероятности ,  вычисляются по
и

Объём выборки

Максимального

правдоподобия

1=

Объём выборки фиксирован, вероятности ,  вычисляются по
и


Объём выборки

Неймана-Пирсона

Объём выборки фиксирован,
выбирается из условия.

Последовательный анализ Вальда

Минимизирует среднее число испытаний

В предыдущих разделах данной главы предполагалось, что объем выборки, на основе которой выносится решение, фиксирован. В § 5.3 уже отмечалось, что значение риска, связанного с принятием решений, уменьшается при увеличении числа наблюдений. Вообще механизм вынесения решений может быть «выбран таким образом, чтобы» кроме основных решений, он позволял определять и необходимый объем выборки. Можно ожидать, что в этом случае удалось бы сократить время от начала наблюдения до принятия решения при том же самом значении было бы построено правило выбора решения, которое следовало бы признать лучше правила, основанного на выборке фиксированного объема. В данном параграфе будут изучены два таких последовательных правила (выбора решения для простого бинарного случая. Одно из них называется байесовским, а другое - последовательным правилом Вальда .

Напомним, что при проверке гипотез по выборке фиксированного объема отношение правдоподобия сравнивается с порогом . При последовательном анализе используются два порога и , которые могут изменяться с изменением числа наблюдений . Если на -м шаге отношение правдоподобия больше порога , то принимается гипотеза . Если оно меньше, чем , то принимается гипотеза . Если же значение отношения правдоподобия лежит между этими порогами, то необходимо произвести очередное наблюдение.

Отношение правдоподобия

где - совместная плотность вероятности выборки при гипотезе , (полученной за первые шагов. Для вычисления порога непоследовательного правила выбора решения необходимо знать априорные вероятности гипотез и . Аналогично для определения порогов последовательного правила на -м шаге необходимо знать априорные вероятности и этих гипотез перед -м шагом. Эти априорные вероятности можно рассматривать как апостериорные, вычисляемые после первых шагов. Их можно определить из соотношений:

Поделив обе части последнего выражения на соответствующие части предыдущего, получим простое выражение для отношения априорных вероятностей на -м шаге

. (5.109)

В качестве начального значения в этом соотношении следует выбрать отношение , которое использовалось бы при построении непоследовательного правила. На каждом шаге отношение априорных вероятностей подстраивается путем умножения на отношение правдоподобия :

. (5.110)

зависящее только от результатов наблюдений на предшествующих шагах. Если элементы выборки независимы, то отношение правдоподобия для «всей выборки можно записать как произведение отношений правдоподобия для наблюдений на разных шагах:

то рекуррентное соотношение (5.109) можно записать в следующей полезной форме:

. (5.113)

Определить среднее значение потерь при наличии решений о продолжении наблюдений (что необходимо при рассмотрении байесовского последовательного правила) довольно трудно. Поэтому обратимся к более простому подходу, предложенному Вальдом . Это правило, называемое обычно последовательным правилом Вальда, является модификацией непоследовательного правила Неймана-Пирсона.

Покажем, что пороги и последовательного правила Вальда связаны простыми соотношениями с вероятностями ложной тревоги и пропуска сигнала. Предположим, что при отношение правдоподобия оказалось равным порогу .

Следовательно, на этом шаге принимается гипотеза и

. (5.114)

Умножая обе части последнего равенства на величину и интегрируя в области принятия гипотезы получим

Это равенство можно записать следующим образом:

Если отношение правдоподобия равно значению порога , то принимается гипотеза . Поскольку при этом

, (5.117)

то нетрудно установить равенство, аналогичное равенству (5.116)

Из равенств (5.116) и (5.118) следует, что для обеспечения заданных значений вероятностей ложной тревоги и пропуска сигнала следует выбрать следующие значения порогов:

(5.119)

Из этих выражений, в частности, следует, что значения порогов последовательного правила Вальда не зависят от номера наблюдения , если вероятности и не зависят от .

При использовании последовательного правила объем выборки, при котором принимается одна из рассмотренных гипотез, оказывается случайным (можно показать, что одна из гипотез всегда принимается в результате конечного числа шагов). Поэтому желательно определить хотя бы среднее значение необходимого числа наблюдений. Предположим, что пересечение порогов невозможно Тогда существуют всего две возможности при завершении проверки: достигается либо порог , либо порог . Поскольку при этом может быть справедливой либо гипотеза , либо гипотеза , то возможны следующие четыре комбинации при окончании проверки на -м шаге:

(5.120)

Среднее значение отношения правдоподобия при окончании наблюдений (при объеме выборки )

(5.121)

Вычислим теперь отношение правдоподобия для , предположив для простоты, что элементы выборки независимы и одинаково распределены. В этом случае справедливо представление (5.111) при . Поэтому можно записать

Правую часть этого равенства можно рассматривать как произведение двух независимых случайных величин. Вычисляя натуральный логарифм от обеих частей этого равенства, получим

Найдем теперь математические ожидания обеих частей полученного равенства:

Здесь предполагается, что математическое ожидание не зависит от номера наблюдения . Равенство (5.124) записано с учетом того, что

Формулу (5.121) можно записать в несколько ином виде:

Учитывая теперь равенство (5.125), для математического ожидания объема выборки получаем

(5.127)

Интересно сравнить последовательное правило с аналогичным правилом, использующим выборку фиксированного объема. Такое сравнение для задачи с нормальными случайными величинами, дисперсии которых известны и одинаковы при рассматриваемых гипотезах, проведено в примере 5.5. Результаты сравнения для случая непрерывного времени будут приведены позже.

Пример 5.5 . Снова рассмотрим простую задачу различения двух гипотез:

где положительный параметр известен, т.е. гипотеза о среднем значении нормальной случайной величины с известной дисперсией проверяется против простой альтернативы. Как уже отмечалось ранее, при отыскании правила различения гипотез можно использовать различные подходы. Найдем теперь последовательное правило выбора решения. Ради простоты будем предполагать, что элементы выборки независимы (иногда в таком случае говорят, что шум измерения белый)

Согласно ф-ле (5.106) отношение правдоподобия

Значения порогов последовательного правила можно вычислить по ф-ле (5.119), если задать и считать постоянными вероятности ложной тревоги и пропуска сигнала, так что

Таким образом, последовательное правило выбора решения можно записать следующим образом если

,

то принимается гипотеза , если

,

то следует провести еще одно наблюдение, если

,

то принимается гипотеза .

Как и при выборке фиксированного объема, функцию от выборки можно рассматривать как достаточную статистику Пороги построенного таким образом последовательного правила изменяются с ростом номера наблюдения, (см рис.5.9). Разница между значениями порогов постоянна и равна

.

Рис.5.9 Пороги как функции числа наблюдений, тангенс угла наклона соответствующих прямых равен

Так как , то

Средний объем выборки, необходимой для принятия одной из рассматриваемых гипотез, можно вычислить по ф-ле (5.127) В результате получаем

Сравним теперь средний объем выборки, требуемый для принятия окончательного решения с помощью последовательного правила, с объемом выборки, который необходим для достижения тех же значений вероятностей ложной тревоги и пропуска сигнала при применении непоследовательного правила В примере 5.2 уже было показано, что для рассмотренного там непоследовательного правила выбора решения можно записать

;

,

где порог при использовании достаточной статистики определяется соотношением , а - порог этого правила. Зададим теперь некоторые значения вероятностей ложной тревоги и пропуска сигнала для этого непоследовательного правила Неймана-Пирсона и найдем требуемый объем выборки. Из трех предыдущих равенств получаем

Отсюда объем выборки, необходимый для обеспечения заданных вероятностей ошибок при использовании правила Неймана-Пирсона,

.

Это выражение получено из двух предыдущих равенств путем исключения переменной . Таким образом, для обоих рассматриваемых правил необходимое число наблюдений растет с увеличением дисперсии и уменьшается с ростом .

Интересно отметить, что объем выборки явно не зависит от порога правила , как это следовало бы ожидать, поскольку порог должен выбираться так, чтобы обеспечить заданные значения вероятностей и . Особенно важным является отношение . Значение этого отношения при заданных вероятностях и зависит от того, какая из гипотез справедлива. На рис 5.10 приведены графики изменения этого отношения при гипотезе .

Рис.5.10 Отношение объема выборки непоследовательного правила к среднему объему выборки последовательного правила при вероятностях ложной тревоги и пропуска сигнала, одинаковых для обоих правил, справедлива гипотеза

Оказывается что при использован и последовательного правила требуется в среднем меньший объем выборки, чем для непоследовательного. И эта экономия среднего числа наблюдений становится существенной при малых значениях вероятностей и .

Пример 5.6. Рассмотрим теперь задачу предыдущего примера, предположив, однако, что число отсчетов значений наблюдаемого процесса на конечном интервале времени может быть неограниченно увеличено. Это позволит построить последовательное правило выбора решения при непрерывном времени. Рассматриваемые гипотезы можно описать следующим образом:

где значение параметра известно, a - стационарный белый нормальный шум, среднее значение которого равно нулю, а ковариационная функция

Начнем с отсчетов непрерывного наблюдаемого процесса в дискретные моменты времени и примем, что

т.е. при любом элементы выборки предполагаются независимыми. Для этого частного случая отношение правдоподобия, рассматривавшееся в предыдущем примере, примет вид

Полученные в этом разделе соотношения можно легко модифицировать с тем, чтобы охватить задачи проверки сложных гипотез с помощью последовательных правил. Последовательность рассуждений при этом полностью совпадает с той, которая подробно описана в § 5.4.

Здесь следует использовать отношение правдоподобия

,
которое при наличии случайного параметра можно записать следующим образом:

. (5.128)

Последовательное правило проверки сложных гипотез после этого строится, как последовательное правило проверки соответствующих простых гипотез.

Вероятности ложной тревоги и пропуска сигнала в этом случае зависят от значения параметра, таr как

, (5.133)

в котором оценки максимального правдоподобия неизвестного параметра отыскиваются путем максимизации соответствующих условных плотностей вероятности но допустимым областям значений при фиксированной выборке .

Можно рассмотреть также задачу проверки нескольких гипотез с помощью последовательного правила. При этом необходимо ввести вероятности нескольких ошибок, которые служат аналогами вероятностей ложного обнаружения и пропуска сигнала. Соотношения, получающиеся при решении этой задачи, полностью аналогичны тем, которые были получены для бинарного случая.

Поскольку объем выборки, используемой для вынесения окончательного решения с помощью последовательного правила, является случайной величиной с математическим ожиданием то может оказаться необходимым ограничить максимально допустимое число наблюдений или время наблюдения. То есть, если после получения наблюдений окончательное решение с помощью последовательного правила не принято, то для выбора одной из рассматривающихся гипотез используется другое правило:

Вальд указал границы для вероятностей ложной тревоги и пропуска сигнала подобных усеченных последовательных правил.

В примерах данного раздела были рассмотрены простые задачи последовательного анализа для нормальных случайных величин. Теперь перейдем к анализу более полезного варианта этой задачи, который будет играть очень важную роль при изложении в гл. 7 результатов, полученных Калманом при решении задач фильтрации.