Особенности титана как металла с превосходной коррозийной стойкостью. Титан - металл

Монумент в честь покорителей космоса воздвигнут в Москве в 1964 г. Почти семь лет (1958-1964) ушло на проектирование и сооружение этого обелиска. Авторам пришлось решать не только архитектурнохудожественные, но и технические задачи. Первой из них был выбор материалов, в том числе и облицовочных. После долгих экспериментов остановились на отполированных до блеска титановых листах.

Действительно, по многим характеристикам, и прежде всего по коррозионной стойкости, титан превосходит подавляющее большинство металлов и сплавов. Иногда (особенно в популярной литературе) титан называют вечным металлом. Но расскажем сначала об истории этого элемента.

Окисел или не окисел?

До 1795 г. элемент № 22 назывался «менакином». Так назвал его в 1791 г. английский химик и минералог Уильям Грегор, открывший новый элемент в минерале менаканите (не ищите это название в современных минералогических справочниках - менаканит тоже переименован, сейчас он называется ильменитом).

Спустя четыре года после открытия Грегора немецкий химик Мартин Клапрот обнаружил новый химический элемент в другом минерале - рутиле - ив честь царицы эльфов Титании (германская мифология) назвал его титаном.

По другой версии название элемента происходит от титанов, могучих сыновей богини земли - Геи (греческая мифология).

В 1797 г. выяснилось, что Грегор и Клапрот открыли один и тот же элемент, и хотя Грегор сделал это раньше, за новым элементом утвердилось имя, данное ему Клапротом.

Но ни Грегору, ни Клапроту не удалось получить элементный титан . Выделенный ими белый кристаллический порошок был двуокисью титана TiO 2 . Восстановить этот окисел, выделить из пего чистый металл долгое время не удавалось никому из химиков.

В 1823 г. английский ученый У. Волластон сообщил, что кристаллы, обнаруженные им в металлургических шлаках завода «Мертир-Тидвиль», - не что иное, как чистый титан. А спустя 33 года известный немецкий химик Ф. Вёлер доказал, что и эти кристаллы были опять-таки соединением титана, на этот раз - металлоподобным карбонитридом.

Много лет считалось, что металлический титан впервые был получен Берцелиусом в 1825 г. при восстановлении фтортитаната калия металлическим натрием . Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент Шведской академии наук ошибался, ибо чистый titabnum быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а металлический титан Берцелиуса успешно сопротивлялся ее действию.

В действительности Ti был впервые получен лишь в 1875 г. русским ученым Д. К. Кирилловым. Результаты этой работы опубликованы в его брошюре «Исследования над титаном». Но работа малоизвестного русского ученого осталась незамеченной. Еще через 12 лет довольно чистый продукт - около 95% титана - получили соотечественники Берцелиуса, известные химики Л. Нильсон и О. Петерсон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметической бомбе.

В 1895 г. французский химик А. Муассан, восстанавливая двуокись титана углеродом в дуговой печи и подвергая полученный материал двукратному рафинированию, получил титан, содержавший всего 2% примесей, в основном углерода. Наконец, в 1910 г. американский химик М. Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов титана чистотой около 99%. Именно поэтому в большинстве книг приоритет получения металлического титана приписывается Хантеру, а не Кириллову, Нильсону или Муассану.

Однако ни Хантер, ни его современники не предсказывали титану большого будущего. Всего несколько десятых процента примесей содержалось в металле, но эти примеси делали титан хрупким, непрочным, непригодным к механической обработке. Поэтому некоторые соединения титана нашли применение раньше, чем сам металл. Четыреххлористый Ti, например, широко использовали в первую мировую войну для создания дымовых завес.

№22 в медицине

В 1908 г. в США и Норвегии началось изготовление белил не из соединений свинца и цинка , как делалось прежде, а из двуокиси титана. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же у титановых белил больше отражательная способность, они не ядовиты и не темнеют под действием сероводорода. В медицинской литературе описан случай, когда человек за один раз «принял» 460 г двуокиси титана! (Интересно, с чем он ее спутал?) «Любитель» двуокиси титана не испытал при этом никаких болезненных ощущений. TiO 2 входит в состав некоторых медицинских препаратов, в частности мазей против кожных болезней.

Однако не медицина, а лакокрасочная промышленность потребляет наибольшие количества TiO 2 . Мировое производство этого соединения намного превысило полмиллиона тонн в год. Эмали на основе двуокиси титана широко используют в качестве защитных и декоративных покрытий по металлу и дереву в судостроении, строительстве и машиностроении. Срок службы сооружений и деталей при этом значительно повышается. Титановыми белилами окрашивают ткани, кожу и другие материалы.

Ti в промышленности

Двуокись титана входит в состав фарфоровых масс, тугоплавких стекол, керамических материалов с высокой диэлектрической проницаемостью. Как наполнитель, повышающий прочность и термостойкость, ее вводят в резиновые смеси. Однако все достоинства соединений титана кажутся несущественными на фоне уникальных свойств чистого металлического титана.

Элементный титан

В 1925 г. голландские ученые ван Аркель и де Бур иодидным способом (о нем - ниже) получили титан высокой степени чистоты - 99,9%. В отличие от титана, полученного Хантером, он обладал пластичностью: его можно было ковать на холоде, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу. Но даже не это главное. Исследования физикохимических свойств металлического титана приводили к почти фантастическим результатам. Оказалось, например, что титан, будучи почти вдвое легче железа (плотность титана 4,5 г/см 3), по прочности превосходит многие стали. Сравнение с алюминием тоже оказалось в пользу титана: титан всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее и, что особенно важно, он сохраняет свою прочность при температурах до 500°С (а при добавке легирующих элементов - до 650°С), в то время как прочность алюминиевых и магниевых сплавов резко падает уже при 300°С.

Титан обладает и значительной твердостью: он в 12 раз тверже алюминия, в 4 раза - железа и меди . Еще одна важная характеристика металла - предел текучести. Чем он выше, тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести у титана почти в 18 раз выше, чем у алюминия.

В отличие от большинства металлов титан обладает значительным электросопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия - 60, железа и платины - 15, а титана - всего 3,8. Вряд ли нужно объяснять, что это свойство, как и немагнитность титана, представляет интерес для радиоэлектроники и электротехники.

Замечательна устойчивость титана против коррозии. На пластинке из этого металла за 10 лет пребывания в морской воде не появилось и следов коррозии. Из титановых сплавов сделаны несущие винты современных тяжелых вертолетов. Рули поворота, элероны и некоторые другие ответственные детали сверхзвуковых самолетов тоже изготовлены из этих сплавов. На многих химических производствах сегодня можно встретить целые аппараты и колонны, выполненные из титана.

Как получают титан

Цена - вот что еще тормозит производство и потребление титана. Собственно, высокая стоимость - не врожденный порок титана. В земной коре его много - 0,63%. Все еще высокая цена титана - следствие сложности извлечения его из руд. Объясняется она высоким сродством титана ко многим элементам и прочностью химических связей в его природных соединениях. Отсюда - сложности технологии. Вот как выглядит магниетермический способ производства титана, разработанный в 1940 г. американским ученым В. Кроллем.

Двуокись титана с помощью хлора (в присутствии углерода) переводят в четыреххлористый титан:

HO 2 + C + 2CI 2 → HCI 4 + CO 2 .

Процесс идет в шахтных электропечах при 800-1250°С. Другой вариант - хлорирование в расплаве солей щелочных металлов NaCl и KCl Следующая операция (в одинаковой мере важная и трудоемкая) - очистка TiCl 4 от примесей - проводится разными способами и веществами. Четыреххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136°С.

Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции

TiCl 4 + 2Mg → T + 2MgCl 2 .

Эта реакция идет в стальных реакторах при 900°С. В результате образуется так называемая титановая губка, пропитанная магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950°С, а титановую губку затем спекают или переплавляют в компактный металл.

Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермического. Эти два метода наиболее широко применяются в промышленности. Для получения более чистого титана и поныне используется иодидный метод, предложенный ван Аркелем и де Буром. Металлотермический губчатый титан превращают в иодид TiI 4 , который затем возгоняют в вакууме. На своем пути пары иодида титапа встречают раскаленную до 1400°С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этот метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно.

Несмотря на трудоемкость и энергоемкость производства титана, оно уже стало одной из важнейших подотраслей цветной металлургии. Мировое производство титана развивается очень быстрыми темпами. Об этом можно судить даже по тем обрывочным сведениям, которые попадают в печать.

Известно, что в 1948 г. в мире было выплавлено лишь 2 т титана, а спустя 9 лет - уже 20 тыс. т. Значит, в 1957 г. 20 тыс. т титана приходилось на все страны, а в 1980 г. только США потребляли. 24,4 тыс. т. титана... Еще недавно, кажется, титан называли редким металлом - сейчас он важнейший конструкционный материал. Объясняется это только одним: редким сочетанием полезных свойств элемента № 22. И, естественно, потребностями техники.

Роль титана как конструкционного материала, основы высокопрочных сплавов для авиации, судостроения и ракетной техники, быстро возрастает. Именно в сплавы идет большая часть выплавляемого в мире титана. Широко известен сплав для авиационной промышленности, состоящий из 90% титана, 6% алюминия и 4% ванадия . В 1976 г. в американской печати появились сообщения о новом сплаве того же назначения: 85% титана, 10% ванадия, 3% алюминия и 2% железа. Утверждают, что этот сплав не только лучше, но и экономичнее.

А вообще в титановые сплавы входят очень многие элементы, вплоть до платины и палладия . Последние (в количестве 0,1-0,2%) повышают и без того высокую химическую стойкость титановых сплавов.

Прочность титана повышают и такие «легирующие добавки», как азот и кислород. Но вместе с прочностью они повышают твердость и, главное, хрупкость титана, поэтому их содержание строжайше регламентируется: в сплав допускается не более 0,15% кислорода и 0,05% азота.

Несмотря на то что титан дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Вот характерный пример. Корпус химического аппарата, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава - 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый - 10 лет. Прибавьте затраты на замену стальных реакторов, вынужденные простои оборудования - и станет очевидно, что применять дорогостоящий титан бывает выгоднее, чем сталь.

Значительные количества титана использует металлургия. Существуют сотни марок сталей и других сплавов, в состав которых титан входит как легирующая добавка. Его вводят для улучшения структуры металлов, увеличения прочности и коррозийной стойкости.

Некоторые ядерные реакции должны совершаться в почти абсолютной пустоте. Ртутными насосами разрежение может быть доведено до нескольких миллиардных долей атмосферы. Но этого недостаточно, а ртутные насосы на большее неспособны. Дальнейшая откачка воздуха осуществляется уже особыми титановыми насосами. Кроме того, для достижения еще большего разрежения по внутренней поверхности камеры, где протекают реакции, распыляют мелкодисперсный титан.

Титан часто называют металлом будущего. Факты, которыми уже сейчас располагают наука и техника, убеждают, что это не совсем так - титан уже стал металлом настоящего.

Перовскит и сфен . Ильменит - метатитанат железа FeTiO 3 - содержит 52,65% TiO 2 . Название этого минерала связано с тем, что он был найден на Урале в Ильменских горах. Крупнейшие россыпи ильменитовых песков имеются в Индии. Другой важнейший минерал - рутил представляет собой двуокись титана. Промышленное значение имеют также титаномагнетиты - природная смесь ильменита с минералами железа. Богатые месторождения титановых руд есть в СССР, США, Индии, Норвегии, Канаде, Австралии и других странах. Не так давно геологи открыли в Северном Прибайкалье новый титансодержащий минерал, который был назван ландауитом в честь советского физика академика Л. Д. Ландау. Всего на земном шаре известно более 150 значительных рудных и россыпных месторождений титана.

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Этот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма - какова потребность в химическом элементе?

Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.

Титан (Titanium),Ti,- химический элемент IV группы периодической системы элементов Д. И. Мен­делеева. Порядковый номер 22, атомный вес 47,90. Состоит из 5 устойчивых изотопов; получены также искус­ственно радиоактивные изотопы.

В 1791 году английский химик У. Грегор нашёл в песке из местечка Менакан (Англия, Корнуолл) новую «зем­лю», названную им менакановой. В 1795 году немецкий хи­мик М. Клаирот открыл в минерале рутиле неиз­вестную еще землю, металл которой он назвал Титан [в греч. мифологии титаны - дети Урана (Неба) и Геи (Земли)]. В 1797 году Клапрот доказал тождество этой земли с открытой У. Грегором. Чистый титан выде­лен в 1910 году американским химиком Хантером посредством восстановления четырёххлористого титана натрием в же­лезной бомбе.

Нахождение в природе

Титан относится к числу наиболее распространённых в природе элементов, его содержание в земной коре составляет 0,6% (весовых). Встречается главным образом в ви­де двуокиси TiO 2 или её соединений - титанатов. Известно свыше 60 минералов, в состав которых входит титан Он содержится также в поч­ве, в животных и растительных организмах.Ильме­нит FeTiO 3 ирутил TiO 2 служат основным сырьём для получения титана. В качестве источника титана приобретают значение шлаки от плавкититано-магнетитов и ильменита.

Физические и химические свойства

Титан существует в двух состояниях: аморфный - темносерый порошок, плотность 3,392-3,395г/см 3 , и кристаллический, плотность 4,5 г/см 3 . Для кристаллического титана известны две модификации с точкой перехода при 885° (ниже 885° устойчивая гексагональная фор­ма, выше - кубическая); t° пл около 1680°;t° кип выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень хрупким. Технический металл поддаётся горячей обработ­ке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окисиTi 2 O 3 и нитридаTiN. В токе кислорода при красном калении окисляется до двуокисиTiO 2 . При высоких температурах реаги­рует с углеродом, кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте, влажному хлору, органическим кислотам и сильным щелочам. Рас­творяется в серной, соляной и плавиковой кислотах, лучше всего - в смесиHFиHNO 3 . Добавление к кислотам окислителя предохраняет металл от кор­розии при комнатной температуре. Галогениды четырёхвалентного титана, за исключениемTiCl 4 - кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калияK 2 TiF 6 . Важное значение имеют карбидTiCи нитридTiN- металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), туго­плавкостью (TiC,t° пл = 3140°; TiN,t° пл = 3200°) и хо­рошей электропроводностью.

Химический элемент №22. Титан.

Электронная формула титана имеет вид: 1s 2 |2s 2 2p 6 |3s 2 3p 6 3d 2 |4s 2 .

Порядковый номер титана в периодической системе химических элементов Д.И. Менделеева – 22. Номер элемента обозначает заряд ярда, следовательно у титана заряд ядра - +22, масса ядра – 47,87. Титан находится в четвертом периоде, в побочной подгруппе. Номер периода указывает на количество электронных слоев. Номер группы обозначает количество валентных электронов. Побочная подгруппа указывает на то, что титан относится к d-элементам.

Титан имеет два валентных электрона на s-орбитали внешнего слоя и два валентных электрона наd-орбитали предвнешнего слоя.

Квантовые числа для каждого валентного электрона:

4s4s
3d

С галогенами и водородом Ti(IV) образует соединения видаTiX 4 , имеющиеsp 3 →q 4 вид гибридизации.

Титан – металл. Является первым элементом d-группы. Наиболее устойчивым и распространенным являетсяTi +4 . Так же существуют соединения с более низкими степенями окисления –Ti 0 ,Ti -1 ,Ti +2 ,Ti +3 , но эти соединения легко окисляются воздухом, водой или другими реагентами вTi +4 . Отрыв четырех электронов требует больших затрат энергии, поэтому ионTi +4 реально не существует и соединенияTi(IV) обычно включают связи ковалентного характера.Ti(IV) в некоторых отношениях сходен с элементами –Si,Ge,SnиPb, особенно сSn.

СВОЙСТВА И ПРИМЕНЕНИЕ ТИТАНА

Титан (Ti) открыт в 1795 г. и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из самых распространенных элементов — содержание его в земной коре составляет примерно 0,6%. Титан существует в двух модификациях: до 882°С в виде модификации а с гексагональной плотно упакованной кристаллической решеткой, а выше 882°С устойчивостью является модификация β с объемноцентрированной кубической решеткой. Ниже приведены основные физические свойства титана:

Атомная масса

Плотность при 20°С, г/см3

Температура, °С:

плавления

Удельная теплоемкость, кал/г

Теплопроводность кал/(см·сек·град)

Скрытая теплота плавления, кал/г

Коэффициент линейного расширения, 1 /град

Удельное электросопротивление,

Временное сопротивление при растяжении титана, кГ/мм2

Модуль упругости, кГ/мм2

Твердость НВ, кГ/мм2

Титан сочетает большую прочность с малой плотностью и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Ряд титановых сплавов по прочности в два раза превосходит сталь при значительно меньшей плотности и лучшей коррозионной стойкости. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при работе на термическую усталость. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Титан высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает его пластические свойства уже в области малых концентраций.

Уменьшаются пластические свойства титана и при введении в него азота. При содержании азота в титане >0,2% наступает хрупкое его разрушение. Вместе с тем кислород и азот повышают временное сопротивление и выносливость титана и в этом отношении являются полезными примесями.

Вредной примесью в титане является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях.

На прочностные характеристики титана водород не оказывает заметного влияния в широком интервале концентраций.

Механические свойства титана в значительно большей степени, чем у других металлов, зависят от скорости приложения нагрузки. Поэтому механические испытания титана следует проводить при более строго регламентированных и фиксированных условиях, чем испытания других конструкционных материалов.

Ударная вязкость титана существенно возрастает при отжиге в интервале 200— 300°С, заметного изменения других свойств не наблюдается. Наибольшее повышение пластичности титана достигается после закалки с температур, превышающих температуру полиморфного превращения, и последующего отпуска.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью титана является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе α-Ti (альфитированный слой), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Этот слой имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.

Титан и сплавы на основе титана характеризуются высокой коррозионной стойкостью в атмосфере воздуха, в естественной холодной и горячей пресной воде, в морской воде, а также в растворах щелочей, неорганических солей, органических кислот и соединений даже при кипячении. Он не подвергается коррозии в морской воде, находясь в контакте с нержавеющей сталью и медно-никелевыми сплавами. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной пленки, которая защищает металл от дальнейшего взаимодействия с окружающей средой.

Как конструкционный материал титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Титан и его сплавы сохраняют высокие прочностные характеристики при высоких температурах и поэтому с успехом могут применяться для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время основное количество титана используется для приготовления титановых белил. Титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качестве поглотителя газов — при нагревании до 500°С титан энергично поглощает газы и тем самым обеспечивает в замкнутом объеме высокий вакуум.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него изготовляют детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно- активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для изготовления различных деталей гальванических ванн. Его широко используют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при высоких температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах титан корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Технический титан и его сплавы поддаются всем известным методам обработки давлением. Они могут прокатываться в холодном и горячем состояниях, штамповаться, обжиматься, поддаваться глубокой вытяжке, развальцовываться. Из титана и его сплавов получают стержни, прутки, полосы,

различные профили проката, бесшовные трубы, проволоку и фольгу.

Сопротивление деформации у титана выше, чем у конструкционных сталей или медных и алюминиевых сплавов. Титан и его сплавы обрабатываются давлением примерно так же, как и нержавеющие стали аустенитного класса. Наиболее часто титан подвергают ковке при 800—1000°С. Чтобы предохранить титан от загрязнения газами, нагрев и обработку его давлением производят в возможно короткое время. Ввиду того, что при температурах >500°С водород диффундирует в титан и его сплавы с огромными скоростями, нагрев ведут в окислительной атмосфере.

Титан и его сплавы имеют пониженную обрабатываемость резанием подобно нержавеющим сталям аустенитного класса. При всех видах резания наиболее успешные результаты достигаются при небольших скоростях и большой глубине резания, а также при использовании режущего инструмента из быстрорежущих сталей или твердых сплавов.

Из-за высокой химической активности титана при высоких температурах сварку его ведут в атмосфере инертных газов (гелия, аргона). При этом защищать от взаимодействия с атмосферой и газами необходимо не только расплавленный металл шва, но все сильно нагретые части свариваемых изделий.

Большие технологические трудности возникают при производстве из титана и его сплавов отливок.

СПЛАВЫ ТИТАНА

Многие сплавы титана с другими элементами являются более перспективными материалами, чем технический титан.

Основными легирующими элементами в промышленных титановых сплавах являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в титане и образование химических соединений, обладающих переменной растворимостью в титане, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

В зависимости от характера влияния, оказываемого на полиморфные превращения титана, все элементы можно разбить на три группы:

стабилизирующие α-фазу (алюминий);

повышающие стабильность β-фазы (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий, тантал);

легирующие, мало влияющие на стабильность α- и β-фаз (олово, цирконий, германий).

Титановые сплавы, легированные элементами, повышающими стабильность α-фазы, обычно не упрочняются термической обработкой. Сплавы, легированные элементами, повышающими стабильность β-фазы, значительно упрочняются в результате термической обработки.

Титановые сплавы можно подвергать всем основным видам термической обработки: закалке, отжигу, старению, отпуску, химико-термической обработке. Чаще всего применяют отжиг.

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности сплавы титана с алюминием превосходят многие нержавеющие и теплостойкие сплавы в интервале 400—500°С. Сплавы титана с алюминием обладают более высокой жаропрочностью и более высоким сопротивлением ползучести, чем многие другие сплавы титана.

Алюминий повышает модуль нормальной упругости титана.

Сплавы титана с алюминием не подвергаются коррозии и слабо окисляются при высоких температурах. Это позволяет производить горячую обработку сплавов при более высоких нагревах, чем нелегированного титана. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5%.

Добавка олова в сплавы титана с алюминием повышает прочностные характеристики сплава. При концентрации в таких сплавах олова до 5% заметного снижения пластических свойств не наблюдается. Кроме того, добавка олова в сплавы титана с алюминием повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4—5% Аl и 2—3% Sn, сохраняют значительную механическую прочность до 500°С.

Цирконий не оказывает большого влияния на механические свойства сплавов титана с алюминием, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Основой для получения высокожаропрочных титановых сплавов является сплав, содержащий —36% А1. Добавки в этот сплав других легирующих элементов дают жаропрочные материалы, обладающие высокой прочностью при 1000°С и выше и хорошими технологическими свойствами.

Сплав ВТ5 прокатывается, штампуется и куется в горячем состоянии, сваривается аргоно-дуговой и контактной сваркой, удовлетворительно обрабатывается резанием, обладает хорошей коррозионной стойкостью в концентрированной азотной кислоте и морской воде. Из этого сплава изготовляют детали, работающие при температурах до 400°С. Он обладает низкими антифрикционными свойствами и непригоден для изготовления трущихся деталей. Сплав ВТ5 поставляется в виде листов, прутков, паковок, труб и проволоки.

Сплавы типа ВТ5-1 предназначаются для изготовления деталей, работающих при температурах до 500°С при длительных нагрузках и до 900°С при кратковременных нагрузках. Они достаточно пластичны при горячей обработке давлением и могут изготовляться в виде листов, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки, хорошо свариваются и обладают высокой коррозионной стойкостью в атмосфере и растворах поваренной соли при цикличных нагрузках.

Сплав ВТ4 предназначен в основном для изготовления листов, лент и полос. Для деталей простой формы допускается штамповка в холодном состоянии. При штамповке деталей более сложной формы требуется подогрев до 500°С. Сплав обладает удовлетворительной обрабатываемостью резанием и сваривается аргоно-дуговой сваркой. По коррозионной стойкости сплав ВТ4 близок к сплавам ВТ5. Из сплава ВТ4 изготовляют детали, работающие при температурах до 350°С.

Сплав ОТ4 по свойствам и областям применения аналогичен сплаву ВТ4.

Сплав ВТ 10 обладает высоким сопротивлением ползучести и высокой термической стойкостью. Он удовлетворительно сваривается всеми видами сварки и предназначен для изготовления деталей, работаю-

щих при температурах до 500°С. Из сплава ВТ10 приготовляют поковки, штамповки прутки и полосы.

Сплавы ВТ5, ВТ5-1, ВТ4, ОТ4 и ВТ10 при комнатной температуре сохраняют кристаллическую решетку, присущую модификации α-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии. Температура их отжига выше температуры отжига технического титана. В качестве сплава с α-структурой можно рассматривать и технический титан (ВТ1-00, ВТ1-0, ВТ1-1, ВТ1-2).

Титановые сплавы с термодинамически устойчивой β-фазой можно получить лишь при высоких концентрациях легирующих элементов (ванадия, молибдена, ниобия, тантала и др.). Однако при этом теряется одно из основных преимуществ титановых сплавов — относительно малая плотность. Это является основной причиной того, что титановые сплавы со стабильной β-фазой не получили широкого распространения.

Титановые сплавы со структурой, представленной одной β-фазой, можно механически получить закалкой титановых сплавов, содержащих достаточно высокую концентрацию переходных элементов. К таким сплавам относится сплав ВТ 15, содержащий 3—4% А1, 7—8% Мо и 10—15% Сr. После закалки с 760—780° С и старения при 450— 480°С сплав имеет временное сопротивление 130—150 кГ/мм2, это эквивалентно стали с временным сопротивлением 255 кГ/мм2. Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Сплав поставляется в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси α- и β-фаз. Непременным компонентом почти во всех таких сплавах является алюминий. Содержание в сплавах алюминия не только расширяет область температур, при которых сохраняется стабильность α-фазы, но повышает и термическую стабильность β-фазы. Кроме того, алюминий уменьшает плотность сплава и тем самым компенсирует увеличение плотности, связанное с введением тяжелых легирующих элементов.

Из сплава ВТ6 изготовляют листы, прутки, поковки и штамповки. Они обладают хорошей прочностью и пластичностью. Температура нагрева сплава при обработке давлением обычно не превышает 1000°С. Детали из сплава ВТ6 можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Для восстановления пластичности металла после сварки требуется отжиг при 700—800°С. Сплавы этого типа удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде. Прочность сплавов повышается после закалки с последующим старением при 450—550°С. Сплавы обладают хорошей термической стабильностью.

К сплавам группы ВТ6 можно отнести и сплав BT5. Этот сплав, кроме алюминия и молибдена, легируется небольшим количеством кремния. Сплав в горячем состоянии хорошо поддается прокатке, штамповке и ковке. Ковка осуществляется при 900— 1000°С. Сплав обладает также высокой коррозионной стойкостью и термической стабильностью и сопротивлением ползучести. Он удовлетворительно обрабатывается резанием и хорошо сваривается точечной, роликовой и стыковой сваркой. Применяют сплав главным образом в термически обработанном состоянии.

Самостоятельную группу сплавов составляют сплавы ВТ3 и ВТ3-1. Эти сплавы обладают большей термохимической стабильностью по сравнению со сплавами типа ВТ6. Сплав ВТ3-1, содержащий, кроме алюминия и хрома, молибден, обладает более высокой термической стабильностью и меньшей склонностью к проявлению хрупкости при нагревании, чем сплав ВТ3, и имеет более мелкозернистую структуру.

Титановые сплавы, состоящие из смеси α- и β-фаз, применяют в отожженном или стабилизированном состоянии.

Для сплава ВТ3 рекомендуется проводить отжиг при 750±10°С и охлаждение на воздухе, для сплава ВТ3-1 гомогенизацию при 870 ±10°С, охлаждение с печью до 650°С, выдержку при этой же температуре примерно 1 ч и последующее охлаждение; для сплава ВТ6 — отжиг при 80 ±10°С и охлаждение на воздухе; для сплава ВТ8— гомогенизацию при 800±10°С в течение 1 ч, охлаждение на воздухе до 590±10°С, выдержку 1 ч, охлаждение на воздухе. Эффект от термического упрочнения сплавов ВТЗ, ВТЗ-1, ВТ6 и ВТ8 относительно невелик.

Для сплава ВТ 14 упрочняющей термической обработкой является закалка в воде с 860—880°С с последующим старением при 480—500°С. Отжиг этого сплава, обеспечивающий получение высокой пластичности и удовлетворительной прочности, проводится нагреванием до 750—850°С с последующим охлаждением на воздухе. Сплав ВТ 14 чувствителен к перегреву в процессе горячей обработки давлением и термической обработки. При нагревании выше 920—930°С резко ухудшаются его механические свойства. В связи с этим горячую деформацию сплава ВТ 14 целесообразно проводить при температурах не более 930°С.

В настоящее время разработаны титановые сплавы, обладающие в закаленном состоянии высокой пластичностью, необходимой для изготовления сложных деталей, и сильно упрочняющиеся при последующем старении или отпуске.

Практически все деформируемые титановые сплавы могут применяться в качестве литейных материалов. Наиболее часто для изготовления деталей методом литья применяется сплав ВТ6 и технический титан (ВТ1-1). Металл для фасонного литья выплавляют в вакуумных дуговых печах с графитовым тиглем, покрытым гарниссажем. Заливка металла и охлаждение форм производятся либо в атмосфере инертных газов, либо в вакууме. Формы изготовляют из графита, керамических материалов или металлов, которые не взаимодействуют с титаном и титановыми литейными сплавами.

Широкое применение находит карбид титана TiC и сплавы на основе карбида титана. Карбид титана обладает большой твердостью и очень высокой температурой плавления, что и определяет основные области его применения. Карбид титана давно применяют как компонент твердых сплавов для режущего инструмента и штампов. Особенно эффективно использование режущего инструмента, содержащего карбид титана, для вязких материалов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5КЮ, Т5К7, Т14К8, Т15К6, Т30К4 (первая цифра соответствует содержанию карбида титана, а вторая — содержанию цементирующего металлического кобальта в %. Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде.

Температура плавления карбида титана >3000°С. Он обладает большой электропроводностью, а при низких температурах— сверхпроводимостью. Ползучесть титана ничтожна мала вплоть до температуры 1800°С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах — соляной, серной, фосфорной, щавелевой, на холоде — в хлорной кислоте, а также в смесях некоторых кислот.

Многие методы получения чистого карбида титана сводятся к химическому отделению карбида из науглероженного ферросплава. Однако наибольшее практическое значение имеет метод науглероживания порошкообразного металлического титана или двуокиси титана ниже температуры плавления составляющих. Примером такого метода может служить прокаливание двуокиси титана с сажей в угольных патронах. Значительное количество карбида титана получается в виде промежуточного продукта при изготовлении четыреххлористого титана.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Легирование карбида титана металлами позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000—1100°С. Эти сплавы обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов на основе карбида титана мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы карбида титана с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава карбида титана с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100—1300°С и серебро при 980°С в вакууме, алюминий при 700°С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или карбидом тантала с добавкой до 15% Со при 900—1000° в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

Для приготовления сплавов на основе карбида титана составляющие их размалываются вместе до очень высокой степени дисперсности и затем смеси прессуют с применением пластификатора в заданные формы. Полученные таким образом заготовки спекают при высоких температурах. Композиции на основе карбида практически не обладают ковкостью. Слегка спеченные прессовки можно обрабатывать на токарном станке алмазным инструментом, а сложные детали — абразивными кругами. После окончательного спекания материал обрабатывается только шлифованием. Методом выдавливания из массы на основе карбида титана можно изготовить трубы, стержни, листы и изделия сложного сечения. Более плотный продукт можно получить методом горячего прессования. Основным исходным материалом для получения компактного титана и титановых полуфабрикатов является губчатый титан (титановая губка), получаемая различными методами из титанового сырья.

Области применения титана

При существующих высоких ценах на титан его применяют преимущественно для производства военного оборудования, где главная роль принадлежит не стоимости, а техническим характеристикам. Тем не менее известны случаи использования уникальных свойств титана для гражданских нужд. По мере снижения цен на титан и роста его производства применение этого металла в военных и гражданских целях будет все больше расширяться.
Авиация. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами. В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430° С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов. Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей.
При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей. Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя.
В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов. Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д.
Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана. Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок.
Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д.
Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков.
В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52.
Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг. В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета.
Применение титана позволяет уменьшить вес геликоптеров. Листовой титан используется для полов и дверей. Значительное снижение веса геликоптера (около 30 кг) было достигнуто в результате замены легированной стали титаном для обшивки лопастей его несущих винтов.
Военно-морской флот. Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Военно-морское министерство США обстоятельно исследует коррозионную стойкость титана против воздействия дымовых газов, пара, масла и морской воды. Почти такое же значение в военно-морском деле имеет и высокое значение удельной прочности титана.
Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.
Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.
Артиллерия. По-видимому, наиболее крупным потенциальным потребителем титана может явиться артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана. Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.
Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).
Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.
Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.
Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм) титановой броней одинаковой снарядостойкости (толщиной 16 мм) позволяет получить, по данным этих исследований, экономию в весе до 25%.
Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.
Транспорт. Многие из тех выгод, которые сулит использование титана при производстве бронетанковой материальной части, относятся и к транспортным средствам.
Замена конструкционных материалов, потребляемых в настоящее время предприятиями транспортного машиностроения, титаном должна привести к снижению расхода топлива, росту полезной грузоподъемности, повышению предела усталости деталей кривошипно-шатунных механизмов и т. п. На железных дорогах исключительно важно снизить мертвый груз. Существенное уменьшение общего веса подвижного состава за счет применения титана позволит сэкономить в тяге, уменьшить габариты шеек и букс.
Важное значение вес имеет и для прицепных автотранспортных средств. Здесь замена стали титаном при производстве осей и колес также позволила бы увеличить полезную грузоподъемность.
Все эти возможности можно было бы реализовать при снижении цены титана с 15 до 2-3 долларов за фунт титановых полуфабрикатов.
Химическая промышленность. При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования. Логически следует предположить, что титан мог бы дать ряд выгод при производстве из него оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.
Применение трубопроводов из титана способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла (показана в верхней части снимка). Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.
Прочие области применения. Применение титана целесообразно в пищевой, нефтяной и электротехнической промышленности, а также для изготовления хирургических инструментов и в самой хирургии.
Столы для подготовки пищи, пропарочные столы, изготовленные из титана, по качествам превосходят стальные изделия.
В нефте- и газобурильной областях серьезное значение имеет борьба с коррозией, поэтому применение титана позволит реже заменять корродирующие штанги оборудования. В каталитическом производстве и для изготовления нефтепроводов желательно применять титан, сохраняющий механические свойства при высокой температуре и обладающий хорошей коррозионной устойчивостью.
В электропромышленности титан можно применить для бронирования кабелей благодаря хорошей удельной прочности, высокому электрическому сопротивлению и немагнитным свойствам.
В различных отраслях промышленности начинают применять крепежные детали той или иной формы, изготовленные из титана. Дальнейшее расширение применения титана возможно для изготовления хирургических инструментов главным образом благодаря его коррозионной стойкости. Инструменты из титана в этом отношении превосходят обычные хирургические инструменты при многократном кипячении или обработке в автоклаве.
В области хирургии титан оказался лучше виталлиума и нержавеющих сталей. Присутствие титана в организме вполне допустимо. Пластинка и винты из титана для крепления костей находились в организме животного несколько месяцев, причем имело место прорастание кости в нитки резьбы винтов и в отверстие пластинки.
Преимущество титана заключается также в том, что на пластине образуется мышечная ткань.