Моделирование пуассоновского процесса. Смотреть страницы где упоминается термин пуассоновский поток

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

21477. ОРГАНИЗАЦИЯ И МЕТОДИКА НАУЧНОЙ, ИЗОБРЕТАТЕЛЬСКОЙ И РАЦИОНАЛИЗАТОРСКОЙ РАБОТЫ 72.5 KB
В настоящее время сформирована система научной медицинской и медикотехнической информации: ВИНИТИ Всероссийский институт научной и технической информации; ГЦНМБ Государственная центральная медицинская библиотека; МРЖ Медицинский реферативный журнал издаваемый ВНИИМИ с 1957 года. ВНТИЦ Всероссийский научнотехнический информационный центр Министерства науки и технической политики РФ издает сборники рефератов научноисследовательских и опытноконструкторских работ НИР и ОКР в нем публикуются рефераты отчетов о...
21478. ОРГАНИЗАЦИЯ РАБОТЫ ОТДЕЛЕНИЯ (КАБИНЕТА) ГБО 79.5 KB
Требования безопасности Организация работы отделений ГБО в лечебных учреждениях ВС России основывается на требованиях трех руководящих документов: методических указаний Организация и проведение гипербарической оксигенации в военных госпиталях отдельных медицинс ких батальонах 1989 года Отраслевых медицинских указаний Отделения гипербарической оксигенации правила эксплуатации и ремонта ОМУ 42212688 1991 года Отраслевых медицинских указаний Аппараты гипербарической оксигенации правила эксплуатации и ремонта ОМУ...
21479. ОРГАНИЗАЦИЯ СЛУЖБЫ ПЕРЕЛИВАНИЯ КРОВИ В МИРНОЕ И ВОЕННОЕ ВРЕМЯ 23.5 KB
ПЛАН СЕМИНАРА по теме N29 ОРГАНИЗАЦИЯ СЛУЖБЫ ПЕРЕЛИВАНИЯ КРОВИ В МИРНОЕ И ВОЕННОЕ ВРЕМЯ 1. Основные этапы развития учения о переливании крови. Структура службы крови МЗ России. Организация службы крови и ее задачи в ВС России в мирное время Станция переливания крови военного округа.
21480. ОСЛОЖНЕНИЯ ПРИ ПЕРЕЛИВАНИИ КРОВИ И КРОВЕЗАМЕНИТЕЛЕЙ 168.5 KB
Осложнения переливания крови: несовместимость крови донора и реципиента по антигенам эритроцитов клинические проявления гемолитические реакции гемотрансфузионный шок общие принципы терапии бактериальная загрязненность крови причины инфекционнотоксический шок клинические проявления общие принципы терапии недоброкачественность перелитой крови ее компонентов и препаратов погрешности в методике трансфузии: воздушная эмболия тромбоэмболия острые циркуляторные нарушения кардиоваскулярная недостаточность калиевая и цитратная...
21482. ОСОБЕННОСТИ АНЕСТЕЗИИ И ИНТЕНСИВНОЙ ТЕРАПИИ У ДЕТЕЙ 93.5 KB
Насыщенная кислородом ковь потупает от плаценты через пупочную вену и венозные протоки в короткую нижнюю полую вену где получает небольшую примесь крови оттекающей от нижних конечностей и органов брюшной полости.; отличительной особенностью терминального сосудистого русла у детей младшего возраста является недостаточное развитие мышечных элементов в артериолах и прекапиллярных сфинктерах артериовенозные анастомозы являются регуляторами кровообращения в ситрессовых ситуациях у детей чаще наступает централизация кровообращения; ...
21483. Острые нарушения кровообращения. Интенсивное наблюдение и лечение острого инфаркта миокарда 298 KB
Интенсивное наблюдение и лечение острого инфаркта миокарда Исполнитель: доцент кафедры анестезиологии и реаниматологии ВМедА Полковник м с А. При осмотре пациента на месте развития угрожающего состояния дома на рабочем месте на улице в поврежденном в результате аварии транспортном средстве На догоспитальном этапе мед. Таблица 1 Бальная оценка циркуляторной недостаточности при возникновении угрожающего состояния Баллы 0 1 2 3 4 Показатели Глубина Обычная дыхания Поверх ностное Наполнение Быстрое капилляров 2...
21484. Операционный риск в соответствии с соматическим состоянием больного и тяжестью оперативного вмешательства 47 KB
В отношении общехирургических больных в большинстве хирургических учреждений нашей страны и за рубежом принят рутинный комплекс предоперационного обследования позволяющий выявить нераспознанные заболевания способные осложнить течение общей анестезии операции и послеоперационного периода: общий анализ крови мочи биохимический анализ крови содержание глюкозы общего белка мочевины креатинина билирубина определение группы крови и резусфактора ЭКГ и рентгенография органов грудной клетки. Обязательным элементом предоперационной...
21485. ПОКАЗАНИЯ К НЕОТЛОЖНОЙ ПОМОЩИ У ОБОЖЖЕННЫХ 187 KB
положительных высевов из крови вторичных септических очагов что подтверждает примат метаболических нарушений в патогенезе развития осложнений при тяжелом ожоговом поражении.ЛЕЧЕНИЕ ОЖОГОВОГО ШОКА Принципиальным направлением в лечении гиповолемического ожогового шока в первые часы является двуединая задача: восполнение объема циркулирующей крови с одновременной регидратацией интерстициального пространства что достигается интенсивным введением глюкозосолевых растворов. На фоне проводимой инфузионной терапии должна выполняться базовая...

Пусть в предприятие сервиса через случайные интервалы времени обращаются клиенты, при этом поток заказов однороден (однотипные заказы) и в единицу времени обращается X клиентов. Вероятность прихода клиента не зависит от числа уже обратившихся клиентов, вероятность того, что одновременно обратятся сразу два клиента, мала. Кроме того, число обратившихся клиентов зависит от рассматриваемого интервала времени и не зависит от начала рассмотрения.

Тогда модель математически можно описать следующим образом. Пусть р к (х) означает вероятность прибытия к клиентов в интервале времени длительностью х, p 0 (t ) - вероятность того, что за время (0, /) не будет ни одного клиента, что, согласно (14.2), соответствует вероятности того, что интервал времени до прибытия первого клиента больше, чем t.

Рис. 14.2.

1. Если ijH т2 два неперекрывающихся интервала (рис. 14.2), то предположение о независимости имеет вид:

2. Среднее значение времени между прибытиями клиентов равно

3. Вероятность того, что клиент не придет в течение интервала времени нулевой длительности,

4. Вероятность того, что клиент не придет в течение интервала времени бесконечной длительности,

Такой поток заказов считается простейшим. Поток заказов называется простейшим, или пуассоновским, если он обладает тремя свойствами: стационарен, ординарен и без последействия.

Свойство стационарности к событий потока на любом интервале времени т зависит только от числа к и длительности т.

Свойство ординарности характеризуется тем, что вероятность появления более одного события за малый интервал времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Свойство отсутствия последействия характеризуется тем, что вероятность появления к событий потока на любом интервале времени т не зависит от того, появились или не появились события в моменты, предшествующие началу рассматриваемого интервала.

Пуассоновский поток играет фундаментальную роль в теории систем массового обслуживания, как нормальный процесс в статистике. Большинство других процессов, используемых в системах массового обслуживания, получаются путем модификации пуассоновского.

Рис. 14.3.

Часто на практике трудно установить, обладает ли поток перечисленными выше свойствами. В частности, установлено, что если поток представляет собой сумму (суперпозицию) очень большого числа независимых стационарных потоков, влияние каждого из которых на весь суммарный поток ничтожно мало, то этот суммарный поток при условии его ординарности близок к простейшему. На рис. 14.3 показан пример образования суммарного потока. Указанное свойство сродни центральной предельной теореме нормального распределения.

Рис. 14.4.

Случайный процесс N(t), описывающий такой поток и соответствующий числу прибывших клиентов, является дискретным и в случайные моменты времени может принимать только целочисленные значения. Процесс нестационарный, так как может только возрастать. Реализация процесса показана на рис. 14.4.

В течение малого интервала времени процесс может остаться в том же состоянии или изменить его (увеличить число клиентов на единицу). Другими словами, процесс из состояния Sj может перейти только в состояние $ ,. Пусть вероятность изменения состояния в малом интервале времени dx равна A,dx+o(dx), где А>0. Вероятность сохранения прежнего состояния l-^dx + o(dx). Так как поток ординарен, вероятность смены состояния более одного раза в интервале (/, t+ dx) есть бесконечно малая величина o(dx) высшего порядка по сравнению с dx.

Обозначим вероятность того, что N(t) = n, как р п (х), где x - t-t 0 - интересующий нас интервал времени, т.е. процесс за время х совершил п скачков. Пусть р п (х) зависит только от х и не зависит от начального момента t 0 , от которого отсчитывается х. Поэтому, несмотря на то что процесс нестационарный, случайное число появления запросов на сервис N(t) = п за интервал времени х = t-t Q является постоянной (стационарной) величиной.

Предположим также, что N(t ) не зависит от числа реализаций события, произошедших в любые интервалы времени, предшествующие т, т.е. процесс обладает свойством отсутствия последействия. Вычислим вероятность p n (x + dx) того, что в интервале (x+dx) произойдет п событий.

Очевидно, для того чтобы в интервале (х+dx) произошло п событий, должны совершиться два взаимоисключающих события:

О произошло п событий в интервале х и 0 событий в интервале dx. Вероятность этого в силу независимости равна р п (т)(1 - Xdx);

О произошло п - 1 событий в интервале т и 1 событие в интервале dx. Вероятность этого равна р { (x)A.dx.

Таким образом,

Перенесем в левую часть р п (х) и поделим на dx:

Перейдя к пределу при dx -? 0, получим дифференциальное уравнение:

Рассчитаем вероятность /? 0 (х)того, что на интервале (x+dx) событие не наступит ни разу. Ясно, что для этого событие не должно наступить в интервале х и в интервале dx. Вероятность этого равна /? 0 (х)(1-Ых).

Таким образом,

Соответствующее дифференциальное уравнение имеет вид:

Объединив (14.12) и (14.13) и положив начало рассмотрения процесса с момента^ = 0, а х = t, получим систему дифференциальных уравнений:

Зададимся следующими начальными условиями:

которые означают, что в начальный момент t 0 событие не произошло.

Как видно, уравнения (14.14) и (14.15) являются частным случаем уравнений Колмогорова-Чепмена в дифференциальной форме (13.11) для абсолютных вероятностей и описанный процесс является марковским.

Для нахождения общего решения системы удобно использо-

вать преобразование Лапласа. Пусть p{i) Применяя преобразование Лапласа к обеим частям уравнения (14.14) системы с учетом начальных условий (14.16), получаем

По теореме о начальном состоянии оригинала

По теореме о конечном состоянии оригинала

Полученные характеристики соответствуют рассматриваемой модели.

Обратное преобразование Лапласа (14.17) будет

Применяя преобразование Лапласа к обеим частям (14.15) с учетом начальных условий (14.16), получаем

Согласно (14.17) и (14.18),

По таблице преобразований Лапласа

Используя (14.20), из (14.19) получаем распределение Пуассона

которое дает вероятность того, что в момент t > 0 система находится в состоянии N(f) = п или что за время произойдет п изменений.

Рис. 14.5. Независимые пуассоновские процессы Хт { и Хх 2

Таким образом, число событий внутри фиксированного интервала в пуассоновском потоке распределено по закону Пуассона. При этом число событий N(t { ,t 2) и N{t 3 ,t 4) на неперекрываю- щихся интервалахT t = t 2 -1 { и т 2 = t 4 -1 3 , где t { независимы (рис. 14.5).

На рис. 14.6 показаны плотности вероятности прибытия 0,1,2, 3, 4 клиентов при поступлении их по пуассоновскому закону для интенсивностей X = 0,5 (рис. 14.6, а) и X = 1 (рис. 14.6, б). Как видно, с ростом интенсивности повышается вероятность прибытия клиентов в первые моменты времени.

Вероятность того, что за время t поступит не более п заказов, определяется функцией распределения

Рис. 14.6. Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4-р(3);5-р(4)

Согласно (11.41), производящая функция для распределения Пуассона (14.21) по дискретному значению п

(14.23)

Математическое ожидание числа прибывших клиентов, распределенных по Пуассону, в соответствии с (11.43)

Таким образом, среднее число событий N(t) в интервале / равно U.

Дисперсия, характеризующая рассеивание числа заказов в интервале /, согласно (11.44),

Как видно, дисперсия простейшего потока равна математическому ожиданию. Данное свойство может служить критерием соответствия потока заказов простейшему.

Формула Пуассона (14.21) отражает все свойства простейшего потока. В самом деле, из формулы видно, что вероятность появления п событий за время t при заданной интенсивности А, является функцией только /, что характеризует свойство стационарности. В формуле не используется информация о появлении событий до начала рассматриваемого промежутка, что характеризует свойство отсутствия последействия. Если и т 2 два неперекрывающихся интервала времени, то свойство независимости имеет место, так как

Вероятность появления более одного события за малый интервал времени р (/) = (А,/) 2 /2!. Эта вероятность пренебрежимо мала

по сравнению с вероятностью наступления одного события, равной АЛ, что характеризует свойство ординарности потока.

Найдем далее для пуассоновского процесса распределение вероятностей интервалов между двумя последовательными событиями. Пусть случайная величина Т характеризует длину этих интервалов. Обозначим через F{x) функцию распределения этой случайной величины. По определению, F(x) - это вероятность того, что Т Вероятность того, что в интервале времени не произошло событие, если оно произошло в момент t 0 , равна безусловной вероятности

т.е.

Следовательно, функция распределения длины интервала между двумя последовательными событиями имеет вид показательного закона:

Продифференцировав (14.25), получим соответствующую плотность вероятности интервала между двумя событиями:

С учетом (14.26) и (14.24) вероятность того, что заказ появится внутри интервала (x,T+dx), можно записать как

т.е. вероятность поступления заказа внутри интервала (x,T + dx) равна A,dx, не зависит от х и пропорциональна dx. Величина X называется параметром показательного закона. Поскольку X не зависит от длительности интервала х, экспоненциальное распределение не имеет памяти и не имеет возраста (см. рис. 10.7).

Таким образом, для простейшего потока с интенсивностью X случайная величина Т, представляющая интервал между соседними заказами (событиями), имеет экспоненциальное распределение с функцией распределения (14.25) и плотностью распределения (14.26). Если время между прибытиями клиентов имеет экспоненциальное распределение со средним значением Т, тогда случайная переменная N(t), представляющая число клиентов, прибывших в фиксированный интервал , имеет пуассоновское распределение с параметром Xt, где Х=/Т. В силу марковости процесса интервалы между событиями взаимно независимы. Отсюда процесс, у которого интервалы между событиями взаимно независимы и подчинены показательному закону, является пуассоновским процессом.

В соответствии с разностными уравнениями (14.11) можно изобразить граф пуассоновского процесса (рис. 14.7). Вершины графа обозначают состояния системы, которые для пуассоновского потока клиентов соответствуют числу поступивших клиентов. Над дугами показаны вероятности перехода.

Рис. 14.7.

При большом промежутке времени вероятность перехода в соседнее состояние стремится к единице, а вероятность остаться в том же состоянии - к нулю и граф на рис. 14.7 преобразуется в граф на рис. 14.8. Над дугами графа показана интенсивность, с которой осуществляются переходы. Время нахождения процесса в состоянии случайно и распределено по экспоненциальному закону с математическим ожиданием /Х. В среднем через время 1Д система переходит в следующее состояние, что соответствует поступлению очередного клиента. Так как процесс ординарен, переход возможен только в соседние состояния. Передаточная функция дуги соответствует преобразованию Лапласа экспоненциального распределения (10.47).

Под потоком событий в теории вероятностей понимается последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток включений приборов в бытовой электросети; поток заказных писем, поступающих в почтовое отделение; поток сбоев (неисправностей) электронной вычислительной машины; поток выстрелов, направляемых на цель во время обстрела, и т. п. События, образующие поток, в общем случае могут быть различными, но здесь мы будем рассматривать лишь поток однородных событий, различающихся только моментами появления. Такой поток можно изобразить как последовательность точек на числовой оси (рис. 19.3.1), соответствующих моментам появления событий.

Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени. Такой поток сравнительно редко встречается в реальных системах, но представляет интерес как предельный случай. Типичным для системы массового обслуживания является случайный поток заявок.

В настоящем мы рассмотрим потоки событий, обладающие некоторыми особенно простыми свойствами. Для этого введем ряд определений.

1. Поток событий называется стационарным, если вероятность попадания того или иного числа событий на участок времени длиной (рис. 19.3.1) зависит только от длины участка и не зависит от того, где именно на оси расположен этот участок.

2. Поток событий называется потоком без последействия, если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

3. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.

Если поток событий обладает всеми тремя свойствами (т. е. стационарен, ординарен и не имеет последействия), то он называется простейшим (или стационарным пуассоновским) потоком. Название «пуассоновский» связано с тем, что при соблюдении условий 1-3 число событий, попадающих на любой фиксированный интервал времени, будет распределено по закону Пуассона (см. 5.9).

Рассмотрим подробнее условия 1-3, посмотрим, чему они соответствуют для потока заявок и за счет чего они могут нарушаться.

1. Условию стационарности удовлетворяет поток заявок, вероятностные характеристики которого не зависят от времени. В частности, для стационарного потока характерна постоянная плотность (среднее число заявок в единицу времени). На практике часто встречаются потоки заявок, которые (по крайней мере, на ограниченном отрезке времени) могут рассматриваться как стационарные. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не может считаться стационарным (ночью плотность вызовов значительно меньше, чем днем). Заметим, что так обстоит дело и со всеми физическими процессами, которые мы называем «стационарными»: в действительности все они стационарны лишь на ограниченном участке времени, а распространение этого участка до бесконечности - лишь удобный прием, применяемый в целях упрощения анализа. Во многих задачах теории массового обслуживания представляет интерес проанализировать работу системы при постоянных условиях; тогда задача решается для стационарного потока заявок.

2. Условие отсутствия последействия - наиболее существенное для простейшего потока - означает, что заявки поступают в систему независимо друг от друга. Например, поток пассажиров, входящие на станцию метро, можно считать потоком без последействия потому, что причины, обусловившие приход отдельного пассажира именно в тот, а не другой момент, как правило, не связаны с аналогичными причинами для других пассажиров. Однако условие отсутствия последействия может быть легко нарушено за счет появления такой зависимости. Например, поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой.

Вообще нужно заметить, что выходной поток (или поток обслуженных заявок), покидающий систему массового обслуживания, обычно имеет последействие, даже если входной поток его не имеет. Чтобы убедиться в этом, рассмотрим одноканальную систему массового обслуживания, для которой время обслуживания одной заявки вполне определено и равно . Тогда в потоке обслуженных заявок минимальный интервал времени между заявками, покидающими систему, будет равен . Нетрудно убедиться, что наличие такого минимального интервала неизбежно приводит к последействию. Действительно, пусть стало известно, что в какой-то момент систему покинула обслуженная заявка. Тогда можно утверждать с достоверностью, что на любом участке времени , лежащем в пределах , обслуженной заявки не появится; значит, будет иметь место зависимость между числами событий на неперекрывающихся участках.

Последействие, присущее выходному потоку, необходимо учитывать, если этот поток является входным для какой-либо другой системы массового обслуживания (так называемое «многофазовое обслуживание», когда одна и та же заявка последовательно переходит из системы в систему).

Отметим, между прочим, что самый простой на первый взгляд регулярный поток, в котором события отделены друг от друга равными интервалами, отнюдь не является «простейшим» в нашем смысле слова, так как в нем имеется ярко выраженное последействие: моменты появления следующих друг за другом событий связаны жесткой, функциональной зависимостью. Именно из-за наличия последействия анализ процессов, протекающих в системе массового обслуживания при регулярном потоке заявок, гораздо сложнее, чем при простейшем.

3. Условие ординарности означает, что заявки приходят поодиночке, а не парами, тройками и т. д. Например, поток атак, которому подвергается воздушная цель в зоне действия истребительной авиации, будет ординарным, если истребители атакуют цель поодиночке, и не будет ординарным, если истребители идут в атаку парами. Поток клиентов, входящих в парикмахерскую, может считаться практически ординарным, чего нельзя сказать о потоке клиентов, направляющихся в ЗАГС для регистрации брака.

Если в неординарном потоке заявки поступают только парами, только тройками и т. д., то неординарный поток легко свести к ординарному; для этого достаточно вместо потока отдельных заявок рассмотреть поток пар, троек и т. д. Сложнее будет, если каждая заявка случайным образом может оказаться двойной, тройной и т. д. Тогда уже приходится иметь дело с потоком не однородных, а разнородных событий.

В дальнейшем мы для простоты ограничимся рассмотрением ординарных потоков.

Простейший поток играет среди потоков событий вообще особую роль, до некоторой степени аналогичную роли нормального закона среди других законов распределения. Мы знаем, что при суммировании большого числа независимых случайных величин, подчиненных практически любым законам распределения, получается величина, приближенно распределенная по нормальному закону. Аналогично можно доказать, что при суммировании (взаимном наложении) большого числа ординарных, стационарных потоков с практически любым последействием получается поток, сколь угодно близкий к простейшему. Условия, которые должны для этого соблюдаться, аналогичны условиям центральной предельной теоремы, а именно - складываемые потоки должны оказывать на сумму приблизительно равномерно малое влияние.

Не доказывая этого положения и даже не формулируя математически условия, которым должны удовлетворять потоки, проиллюстрируем его элементарными рассуждениями. Пусть имеется ряд независимых потоков (рис. 19.3.2). «Суммирование» потоков состоит в том, что все моменты появления событий сносятся на одну и ту же ось , как показано на рис. 19.3.2.

Предположим, что потоки сравнимы по своему влиянию на суммарный поток (т. е. имеют плотности одного порядка), а число их достаточно велико. Предположим, кроме того, что эти потоки стационарны и ординарны, но каждый из них может иметь последействие, и рассмотрим суммарный поток

на оси (рис. 19.3.2). Очевидно, что поток должен быть стационарным и ординарным, так как каждое слагаемое обладает этим свойством и они независимы. Кроме того, достаточно ясно, что при увеличении числа слагаемых последействие в суммарном потоке, даже если оно значительно в отдельных потоках, должно постепенно слабеть. Действительно, рассмотрим на оси два неперекрывающихся отрезка и (рис. 19.3.2). Каждая из точек, попадающих в эти отрезки, случайным образом может оказаться принадлежащей тому или иному потоку, и по мере увеличения удельный вес точек, принадлежащих одному и тому же потоку (и, значит, зависимых), должен уменьшаться, а остальные точки принадлежат разным потокам и появляются на отрезках независимо друг от друга. Достаточно естественно ожидать, что при увеличении суммарный поток будет терять последействие и приближаться к простейшему.

На практике оказывается обычно достаточно сложить 4-5 потоков, чтобы получить поток, с которым можно оперировать как с простейшим.

Простейший поток играет в теории массового обслуживания особенно важную роль. Во-первых, простейшие и близкие к простейшим потоки заявок часто встречаются на практике (причины этого изложены выше). Во-вторых, даже при потоке заявок, отличающемся от простейшего, часто можно получить удовлетворительные по точности результаты, заменив поток любой структуры простейшим с той же плотностью. Поэтому займемся подробнее простейшим потоком и его свойствами.

Рассмотрим на оси простейший поток событий (рис. 19.3.3) как неограниченную последовательность случайных точек.

Выделим произвольный участок времени длиной . В главе 5 (5.9) мы доказали, что при условиях 1, 2 и 3 (стационарность, отсутствие последействия и ординарность) число точек, попадающих на участок , распределено по закону Пуассона с математическим ожиданием

где - плотность потока (среднее число событий, приходящееся на единицу времени).

Вероятность того, что за время произойдет ровно событий, равна

. (19.3.3)

В частности, вероятность того, что участок окажется пустым (не произойдет ни одного события), будет

Важной характеристикой потока является закон распределения длины промежутка между соседними событиями. Рассмотрим случайную величину - промежуток времени между произвольными двумя соседними событиями в простейшем потоке (рис. 19.3.3) и найдем ее функцию распределения

.

Перейдем к вероятности противоположного события

.

Это есть вероятность того, что на участке времени длиной , начинающемся в момент появления одного из событий потока, не появится ни одного из последующих событий. Так как простейший поток не обладает последействием, то наличие в начале участка (в точке ) какого-то события никак не влияет на вероятность появления тех или других событий в дальнейшем. Поэтому вероятность можно вычислить по формуле (19.3.4)

Дифференцируя, найдем плотность распределения

Закон распределения с плотностью (19.3.6) называется показательным законом, а величина - его параметром. График плотности представлен на рис. 19.3.4.

Эффективность работы АЗС в значительной мере определяется степенью исправности топливораздаточных колонок (ТРК). Предположим, что на ТРК действует пуассоновский поток  


Рассмотрим особенности построения каждого из уровней. Практически наиболее часто входящие потоки требований предполагаются пуассоновскими /47, 70, 74, 80/. Пуассоновские потоки характеризуются стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства.  

В рассматриваемой макромодели входящие потоки требований в общем обладают свойствами стационарности, ординарности и отсутствия последействия. Пуассоновский поток полностью описывается одним параметром - интенсивностью потока Я. Приближенная формула для Я имеет вид  

В простейшем случае (пуассоновский поток) вероятность появления требования в любой малый промежуток времени пропорциональна длине этого промежутка и не зависит от того, возникали или нет требования в предшествующие промежутки времени.  

Так как мы рассматриваем однородный пуассоновский поток судов с интенсивностью ц, то совместное выполнение равенств  

Y(t) = k и Y(T-t)= q-k (это следует из отсутствия последействия в пуассоновском потоке). Поэтому  

Поток, получаемый в результате случайного разрежения или объединения пуассоновских потоков, также является пуассоновским.  

Например, при аналитическом описании потока данных это может быть пуассоновский поток требований, обладающий ординарностью, стационарностью и отсутствием последействия. Это может быть поток с равномерным распределением требований. Если распределение задается эмпирическими данными, значения 7i1 7i2,. .., щ могут быть элементами гистограмм и т.п.  

Часто встречаются преобразования, требующие объединения потоков, поступающих по различным входам. В этом случае выходной сигнал может представлять объединение этих потоков в один с другими характеристиками. Например, если по двум входам в блок С поступают пуассоновские требования, то выходной сигнал может представлять собой также пуассоновский поток с параметром, равным сумме параметров исходных потоков.  

Пусть единичные платежи следуют друг за другом через случайные промежутки времени, распределенные по показательному закону с параметром Я > 0 (пуассоновский поток платежей), дифференциальная функция распределения которого имеет вид  

Для нестационарного пуассоновского потока закон распределения промежутка / уже не является показательным, так как зависит от положения на оси Ot и вида зависимости Я(7). Однако для некоторых задач при сравнительно небольших изменениях Я(0 его можно приближенно считать показательным с интенсивностью Я, равной среднему значению Я(0-  

Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

В рассматриваемой модели емкость следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин (N - k), которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из (N - k) находится в эксплуатации. Генерирует пуассоновский поток требований с интенсив-  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий 53  

Заметим, что, в то время как сам пуассоновский поток k (t) наступлений обстоятельств, влекущих ликвидацию счета вкладчиком, является в рамках нашей модели ненаблюдаемым, вероятность q (tu,t) сохранения счета и ожидаемая продолжительность XI1 = Mt - 10 существования счета могут быть оценены, в принципе, по наблюдаемым статистическим данным. Имея же статистические оценки т - 10 и 4-(tu,t) для величин Мт - 0 и q (t0,t), легко получить оценки Л. =(т. -)" и Х =-(i-t0) ln (0 0 для параметра Л ненаблюдаемого пуассоновского процесса. Оцениваемый таким образом параметр Х имеет смысл ожидаемого числа появлений в единицу времени обстоятельств, влекущих закрытие счета.  

Процесс рождения популяции предпринимателей или новых предпринимателей таким образом можно рассматривать как простейший пуассоновский поток.  

Для простейшего пуассоновского потока вероятность того, что за время г произойдет ровно т событий, равна  

Определение 5.8. Стационарный пуассоновский поток называется простейшим.  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Следствие 6.1. В нестационарном пуассоновском потоке с интенсивностью A(t) вероятность того, что за промежуток времени от t0 до t0+r  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Интенсивность нестационарного пуассоновского потока A(t)  

Однако в последние года доказано, "что если на систему обслуживания, состоящую из /7 приборов поступает пуассоновский поток интенсивности /I и длительность обслуживания подчинена совершенно произвольному закону распределения Ц (ЭС), математическое овдание которого I/ с, то для предельных вероятностей Р, сохраняет свою силу формула (36), . Следовательно в стационарном режиме вероятности /. зависят не от особенностей распределения вероятностей длительности обслуживания, а только от средней длительности обслуживания... як  

Рассмотрим решение такой задачи в условиях Нефтекум-ского УБР. Анализ работы службы испытания позволил составить статистические ряды интенсивности сдачи скважин на испытание и продолжительности испытания. Изучение рядов позволило сделать вывод, что поток скважин, поступающих в испытание, является одинарным стационарным потоком без последствия, т. е. обладает свойствами пуассоновского потока. С достаточной степенью точности можно допустить, что время обслуживания распределяется по показательному закону . На основании статистических рядов составлены таблицы распределения интенсивности сдачи скважин на испытание (табл. 36)  

Задача эта формулируется следующим образом поток требований - пуассоновский с интенсивностью Я длительность обслуживания распределена но показательному закону , причем средняя длительность обслуживания iAy. Если число обслуживающих устройств равно п, то при стационарном пуассоновском потоке требований вероятности Pt (t) (вероятности того, что в момент t обслуживанием, заняты I прибороь) близки к их предельным значениям (формула Эрлаша)  

Если объединяются несколько независимых ординарных потоков с сопоставимыми интенсивностями, то с ростом числа слагаемых потоков объединенный поток приближается к простейшему с возможной нестационарностью. Если слагаемые потоки стационарны , то в пределе получается пуассоновский поток. Интенсивность объединенного потока равна сумме интенсивностей каждого из них.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых) ординарных потоков событий сводится к пуассоновскому распределению числа отказов агрегата на заданном промежутке времени т. Условия состоят в том, что складываемые потоки должны оказывать приблизительно одинаковое влияние на суммарный поток. В инженерной практике рекомендуется считать сумму более 5-7 потоков за пуассоновскии поток, если интенсивности этих потоков имеют одинаковый порядок. Данное утверждение основано на многократных исследованиях, проведенных методом статистических испытаний. Исходя из вышеизложенного, число отказов т каждого агрегата блока КЭС, возникающих за промежуток (/, М-т), имеет распределение вида  

В период нормальной эксплуатации агрегата (на центральном участке) при решении практических задач часто полагают Я,(/)= Я = onst, т.е. принимают модель стационарного пуассоновского потока отказов. При этом формула (2.8.1) принимает вид  

Согласно показателем безотказности блока КЭС принимается средняя наработка на отказ ТНБ, а показателем ремонтопригодности - среднее время восстановления работоспособного состояния после отказа ТВБ- Чтобы получить формулы для расчета этих показателей воспользуемся свойством

В предыдущих лекциях мы научились имитировать наступление случайных событий. То есть мы можем разыграть — какое из возможных событий наступит и в каком количестве. Чтобы это определить, надо знать статистические характеристики появления событий, например, такой величиной может быть вероятность появления события, или распределение вероятностей разных событий, если типов этих событий бесконечно много.

Но часто еще важно знать, когда конкретно наступит то или иное событие во времени.

Когда событий много и они следуют друг за другом, то они образуют поток . Заметим, что события при этом должны быть однородными, то есть похожими чем-то друг на друга. Например, появление водителей на АЗС, желающих заправить свой автомобиль. То есть, однородные события образуют некий ряд. При этом считается, что статистическая характеристика этого явления (интенсивность потока событий) задана. Интенсивность потока событий указывает, сколько в среднем происходит таких событий за единицу времени. Но когда именно произойдет каждое конкретное событие надо определить методами моделирования. Важно, что, когда мы сгенерируем, например, за 200 часов 1000 событий, их количество будет равно примерно величине средней интенсивности появления событий 1000/200 = 5 событий в час, что является статистической величиной, характеризующей этот поток в целом.

Интенсивность потока в некотором смысле является математическим ожиданием количества событий в единицу времени. Но реально может так оказаться, что в один час появится 4 события, в другой — 6, хотя в среднем получается 5 событий в час, поэтому одной величины для характеристики потока недостаточно. Второй величиной, характеризующей насколько велик разброс событий относительно математического ожидания, является, как и ранее, дисперсия. Собственно именно эта величина определяет случайность появления события, слабую предсказуемость момента его появления. Про эту величину мы расскажем в следующей лекции.

Поток событий — это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени. На оси времени эти события выглядят как показано на рис. 28.1 .


Примером потока событий могут служить последовательность моментов касания взлетной полосы самолетами, прилетающими в аэропорт.

Интенсивность потока λ — это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: λ = N /T н , где N — число событий, произошедших за время наблюдения T н .

Если интервал между событиями τ j равен константе или определен какой-либо формулой в виде: t j = f (t j – 1) , то поток называется детерминированным . Иначе поток называется случайным .

Случайные потоки бывают:

  • ординарные : вероятность одновременного появления двух и более событий равна нулю;
  • стационарные : частота появления событий λ (t ) = const(t ) ;
  • без последействия : вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Пуассоновский поток

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ (t ) = const(t ) , то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ) , то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0 ) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С ) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x – σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час] ). Необходимо промоделировать этот процесс в течение T н = 100 часов . m = 1/λ = 24/8 = 3 , то есть в среднем одна деталь за три часа. Заметим, что σ = 3 . На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3 .

Моделирование неординарных потоков событий

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что M k = 10 , σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6 ), нужно вставить фрагмент, показанный на рис. 28.8 .

Пример 2 . Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2 ? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8 , σ = 2 (см. лекцию 25). До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр. ср. = 24 · (t 1 пр. + t 2 пр. + t 3 пр. + t 4 пр. + … + t N пр.)/T н .

Задание 1 . Меняя величину σ , установите зависимость T пр. ср. (σ ) . Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2 . Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.

Моделирование нестационарных потоков событий

В ряде случаев интенсивность потока может меняться со временем λ (t ) . Такой поток называется нестационарным . Например, среднее количество за час машин скорой помощи, покидающих станцию по вызовам населения большого города, в течение суток может быть различным. Известно, например, что наибольшее количество вызовов падает на интервалы с 23 до 01 часа ночи и с 05 до 07 утра, тогда как в остальные часы оно вдвое меньше (см. рис. 28.11 ).

В этом случае распределение λ (t ) может быть задано либо графиком, либо формулой, либо таблицей. А в алгоритме, показанном на рис. 28.6 , в место, помеченное (**), нужно будет вставить фрагмент, показанный на рис. 28.12 .