Производство каких металлов относится к цветной металлургии. Основы металлургии цветных металлов. Производство в современных условиях

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Контрольные вопросы к экзамену по курсу «Технология производства цветных металлов»

1.Сущность получения сплавов совместным восстановлением из руд

сплав литейный алюминиевый магниевый

Сырьём для производства стали служит передельный чугун и стальной лом. Процесс переработки чугуна в сталь сводится к удалению (выгоранию) части углерода и примесей. Получают сталь также прямым восстановлением железа из руды, минуя доменный процесс.

Сталь -- широко распространённый конструкционный материал. Путем легирования и специальной обработки (термической, химико-термической, термомеханической и др.) стали можно придать нужные свойства, удовлетворяющие самым разнообразным требованиям современной техники.

Сталь обладает высокой прочностью и твёрдостью, достаточной пластичностью и вязкостью. Её можно обрабатывать резанием и давлением, отливать.

Развитие техники предъявляет всё новые требования к качеству и свойствам стали, поэтому непрерывно совершенствуются технологические процессы её получения, разрабатываются и внедряются новые марки.

Единой мировой классификации сталей не существует. Обычно сталь классифицируют по способу производства, химическому составу, назначению, качеству, степени раскисления, структуре, методу формообразования изделий из стали.

По способу производства сталь разделяют на мартеновскую, конверторную (кислородно-конверторную, бессемеровскую, томасовскую), электросталь и сталь, получаемую прямым восстановлением из обогащённой руды (окатышей). Мартеновский способ производства, бывший в свое время наиболее распространённым, сейчас утратил первостепенное значение и вытесняется более простым и экономичным, с точки зрения технологии производства, кислородно-конверторным способом. Предпочтение отдаётся также электроплавильным способам, которые позволяют получать сталь самого высокого качества.

По химическому составу сталь делят на углеродистую и легированную.

Углеродистая сталь -- железоуглеродистый сплав (0,02--2,14% С) с неизбежными примесями марганца (до 0,8%), кремния (до 0,5%), серы (до 0,06%), фосфора (до 0,07%) и газов (кислорода, водорода, азота), присутствующих в очень малых количествах -- тысячных долях процента. Железо и углерод являются основными компонентами, определяющими структуру и свойства стали.

Марганец, кремний, сера и фосфор относятся к постоянным, или обычным, примесям. Марганец и кремний необходимы по условиям технологии выплавки стали -- их вводят в расплав для её раскисления. Вредные примеси -- сера и фосфор -- попадают в сталь из руд и печных газов и не поддаются полному удалению на стадии металлургического передела.

Кислород, водород, азот также постоянно присутствуют в стали и относятся к скрытым вредным примесям.

Углеродистые стали в зависимости от содержания углерода подразделяют на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25-- 0,60% С) и высокоуглеродистые (свыше 0,60% С).

Легированными называют стали, в состав которых кроме железа, углерода, обычных и скрытых примесей входят легирующие элементы: хром, никель, молибден, вольфрам и другие элементы, которые специально вводятся в сталь для придания ей требуемых свойств. Сталь также считается легированной, если содержание в ней кремния превысит 0,5%, а марганца -- 1%. Легированные стали в зависимости от системы легирования делят на марганцевистые, хромистые, хромоникелевые и т.д.

В зависимости от содержания легирующих элементов различают стали низколегированные (суммарное содержание легирующих элементов до 2,5%), среднелегированные (2,5--10%) и высоколегированные (более 10%). Если суммарное содержание легирующих элементов превышает 50%, т.е. преобладает над железной основой, то такой материал называется сплавом. Например, сплавы с заданным температурным коэффициентом линейного расширения, жаропрочные сплавы и многие другие.

По назначению стали классифицируют на конструкционные, инструментальные и специального назначения (с особыми свойствами).

Конструкционные стали применяют в машиностроении и строительстве для изготовления деталей машин, элементов конструкций и сооружений. В зависимости от назначения и требуемых свойств содержание углерода в различных марках конструкционной стали изменяется в пределах от 0,05 (листовая) до 1% (подшипниковая). Важнейшими характеристиками сталей, по которым осуществляется их выбор, являются механические свойства и прокаливаемость.

Среди конструкционных сталей различают цементуемые, улучшаемые, высокопрочные, автоматные, рессорно-пружинные, подшипниковые и некоторые другие.

Инструментальные стали служат для изготовления режущих, измерительных инструментов, штампов холодного и горячего деформирования. Основным требованием, предъявляемым к инструментальным сталям, является высокая твёрдость, в связи с чем они отличаются повышенным содержанием углерода (исключение -- стали для горячештампового инструмента, подвергаемого в процессе эксплуатации значительным динамическим нагрузкам). При выборе марки инструментальной стали в первую очередь учитывается её теплостойкость (красностойкость), т.е. способность стали длительно сохранять структуру и свойства при повышенных температурах в результате нагрева инструмента в процессе работы. Теплостойкость создают специальной системой легирования инструментальных сталей и применением особых режимов термической обработки.

Стали и сплавы специального назначения делят на две группы: с особыми химическими и с особыми физическими свойствами.

Стали и сплавы с особыми химическими свойствами (коррозионно-стойкие, жаростойкие, жаропрочные) предназначены для работы в агрессивных средах и при высоких температурах.

Стали и сплавы с особыми физическими свойствами (магнитные, с зданным температурным коэффициентом линейного расширения и др.) применяются в основном в приборостроении, электротехнической, радиотехнической и электронной промышленности.

2. сущность получения сплавов металлотермическим способом

Различные исследователи изучали восстановление галоидных солей (хлоридов, фторидов), а также окислов лантаноидов щелочными металлами, алюминием, магнием и щелочноземельными металлами.

Из теплот и свободной энергии образования галогенидов лантаноидов и распространенных металлов-восстановителей, можно заключить, что для хлоридов подходящими восстановителями могут служить натрий и кальций, а для фторидов -- кальций. При восстановлении хлоридов натрием, однако, не удалось получить редкоземельные металлы в виде слитка, хорошо отделяющегося от шлака.

При восстановлении галогенидов магнием и алюминием получаются сплавы редкоземельных элементов с восстановителями, причем выход в сплав недостаточно высокий. Магний может быть отделен от редкоземельного металла вакуумной дистилляцией при температуре выше температуры плавления лантаноидов, но алюминий достаточно полно этим способом не удаляется.

Лучшие результаты в отношении выхода, выплавки слитка и чистоты металлов получены при восстановлении галогенидов кальцием.

Этим методом могут быть получены все лантаноиды за исключением самария, европия и иттербия, восстановление которых протекает только до низших галогенидов. Для получения самария, европия и иттербия разработан метод восстановления их окислов лантаном, с одновременной вакуумной возгонкой этих металлов.

3. Сущность получения сплавов путем электролиза

Электролиз - это совокупность процессов, протекающих в растворе или расплаве электролита, при пропускании через него электрического тока. Электролиз является одним из важнейших направлений в электрохимии.

Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ.

Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов - получение возможно более чистых незагрязненных примесями веществ.

Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель), щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов.

Нормальные электродные потенциалы веществ, указанные в табл. 1, являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса.

Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.

4. Сущность процесса получения сплавов непосредственным сплавлением металлов.

Плавление - это физический процесс перехода металла из твердого состояния в жидкое расплавленное. Плавление - процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Поскольку жидкий металл обладает большей внутренней энергией, чем твердый, при кристаллизации выделяется теплота. Между теплотой Q и температурой кристаллизации Тк существует определенная связь. Степень перегрева при плавлении металлов не превышает нескольких градусов. В жидком состоянии атомы вещества из-за теплового движения перемещаются беспорядочно, в жидкости имеются группировки атомов небольшого объема, в их пределах расположение атомов аналогично расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и снова появляются в жидкости. При переохлаждении жидкости некоторые крупные группировки становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Для осуществления процесса плавления необходимо наличие некоторого перегрева над равновесной температурой, т. е. термодинамического потенциала. Выше равновесной температуры более устойчив жидкий металл, он имеет меньший запас свободной энергии. Ниже этой температуры более устойчив твердый металл. При равновесной температуре свободные энергии жидкого и твердого состояния одинаковы, поэтому при этой температуре обе фазы (жидкая и твердая) могут сосуществовать одновременно и притом бесконечно долго. Равновесная температура очень близка к температуре плавления Тпл, с которой ее часто сравнивают. При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить до температуры ниже температуры плавления.

Жидкости, находящиеся при температуре, близкой к температуре плавления называются расплавами. Расплавы бывают металлическими, ионными, полупроводниковыми, органическими и высокополимерными. В зависимости от того, какие химические соединения образуют расплавы, выделяют солевые, оксидные, оксидно-силикатные и другие расплавы.

Большинство расплавов имеют в составе искосаэдрические частицы.

В процессе плавления химические связи в расплавах подвергаются видоизменению. В полупроводниках наблюдается образование металлической проводимости, у некоторых галогенидов вместо ионной проводимости происходит снижение электрической проводимости из-за образования расплава с молекулярным составом. Уровень температуры также влияет на тип связи в расплавах.

Среднее координационное число и межатомные расстояния также являются характеристиками расплавов. В процессе плавления металлов происходит уменьшение координационного числа примерно на 10-15 %. В тоже время межатомные расстояния остаются прежними. При плавлении полупроводников происходит увеличение их координационного числа в 1,5 раза, расстояние между атомами также увеличивается. Многокомпонентные расплавы характеризуются неравновесными, метастабильными состояниями, которые имеют взаимосвязь со структурой первоначальных твердых фаз.

5. Назначение литейных и деформируемых литейных сплавов

Деформируемые сплавы. Эти сплавы алюминия могут быть подвергнуты упрочнению закалкой с послед. старением - естественным (при комнатной температуре) или искусственным (при повышенной температуре). В результате закалки образуется пересыщенный твердый раствор легирующих элементов в алюминии. из которого при старении выделяется избыток растворенных элементов в виде зон, метастабильных фаз и стабильных интерметаллидов. Некоторые сплавы алюминия, в частности содержащие хром, марганец, цирконий и железо, способны закаливаться из жидкого состояния; при этом концентрация элементов в пересыщенном твердом растворе может существенно превосходить максимальную равновесную для твердого состояния.

Дополнительное упрочнение деформируемых сплавов алюминия достигается применением нагартовки-холодной прокатки или растяжения полуфабрикатов. Эта операция используется для улучшения механических свойств термически неупрочняемых сплавов, при этом повышаются прочностные свойства и особенно предел текучести, а пластичность снижается. Для термически упрочняемых сплавов алюминия нагартовка производится после закалки перед старением либо после старения; в результате повышаются прочностные свойства при сохранении прежней вязкости разрушения. Полуфабрикаты из деформируемых сплавов алюминия изготавливают из слитков, получаемых методом непрерывной отливки с непосредственным охлаждением водой.

Деформируемые сплавы алюминия по величине разделяют на сплавы низкой (менее 300 МПа), средней (300-480 МПа) и высокой (выше 480 МПа) прочности. К первым относят А1 - Мn, большинство магналиев, Al-Mg-Si. Из них изготавливают фольгу для консервных банок, пробок, молочных фляг, электропровода, оконные рамы, окантовки дверей и др. Сплавы средней прочности - дуралюмины, ковочные Al-Cu-Mg и Al-Cu-Mg-Si, жаропрочные ковочные Al-Cu-Mg-Fe-Ni, криогенные и жаропрочные свариваемые Al-Cu-Mn, сплавы пониженной плотности Al-Li-Mg. Эти сплавы используют для изготовления осн. элементов несущих конструкций (работающих при комнатной и повышенной температурах и в криогенной технике), элементов двигателей внутреннего сгорания, газотурбинных двигателей и др. Высокопрочные сплавы Al-Zn-Mg-Cu, Al-Cu -- Mg-Li и Al-Cu-Li используют в сильно нагруженных конструкциях.

Порошковые и гранульные сплавы алюминия получают распылением жидкого Аl в воздухе или инертной атмосфере в специальных установках, обеспечивающих сверхвысокую скорость охлаждения (сотни тысяч - миллионы градусов в секунду). Размер частиц порошковых сплавов 5-500 мкм, гранульных - 1-2 мм.

Наибольшее применение имеют порошковые сплавы алюминия - САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). В САП упрочняющая фаза - мельчайшие частицы А1 2 О 3 , образующегося при размоле в мельницах в окислительной атмосфере. Этот материал отличается высокой термической и коррозионной стойкостью. Он сохраняет прочность при температурах до 660°С (т-ра плавления А1) и даже несколько выше. САС содержит 25-30% Si и 5-7% Ni. Упрочняющая фаза - мельчайшие частицы интерметаллидов и А1 2 О 3 . Этот сплав имеет более низкий температурный коэффициент линейного расширения [(11,5-13,5)*10 -6 К -1 ], чем большинство остальных сплавов алюминия сплавы.

Благодаря тому, что скорость охлаждения при получении порошковых и гранульных сплавов очень велика, удается создать материалы, представляющие собой пересыщенные твердые растворы. К ним относятся высокопрочные сплавы Al-Zn-Mg-Cu, жаропрочные Al-Fe-Ce, сплавы пониженной плотности А1-Mg-Li, пластичные Al-Cr-Zr. Св-ва порошковых и гранульных сплавов, особенно пластичность, улучшаются после вакуумной дегазации. Заготовки из порошковых сплавов алюминия сплавы имеют форму брикетов, из которых обработкой давлением получают полуфабрикаты. Порошковые сплавы применяют для изготовления деталей и узлов малонагруженных конструкций, работающих в интервале 250-500°С, высоконагруженных конструкций, работающих при комнатной температуре, в приборостроении.

Высокомодульные деформируемые сплавы Al-Be-Mg -- двухфазные гетерогенные системы. Они превосходят по модулю упругости пром. легкие сплавы в 2-3 раза; их плотн. 2,0-2,4 г/см 3 , модуль упругости 45 000-220 000 МПа, относит. удлинение 15-10%. Такие сплавы обладают также повыш. теплоемкостью и теплопроводностью. более высокой усталостной прочностью (в т.ч. уникальной акустич. выносливостью), меньшей скоростью роста усталостных трещин. Применяют их преим. для изготовления тонких жестких элементов несущих конструкций, что позволяет уменьшить массу изделия до 40%.

При получении изделий из сплавов алюминия обработкой давлением возможно использование сверхпластичности этих сплавов, которая реализуется при размере зерна в структуре сплава менее 10 мк, причем эта структура должна изменяться при температуре, превышающей половинное значение температуры плавления. Большая группа сплавов алюминия сплавы обладает эффектом сверхпластичности и находит промышленное применение. По свойствам различают три группы литейных сплавов: высокопрочные и средней прочности; жаропрочные (для работы до 200-400°С); коррозионностойкие (для работы в морской воде). Сплавы высокопрочные и средней прочности малопроницаемы для газов и жидкостей (могут выдерживать без утечки жидкости давление до 15-25 МПа); из них изготавливают отливки практически любых конфигураций и размеров всеми существующими методами литья. Для измельчения структуры и улучшения свойств силуминов в их расплав перед разливкой вводят небольшие кол-ва Na (в виде солей). Возникающая при этом пористость подавляется кристаллизацией под давлением в автоклавах.

Наибольшей жаропрочностью среди литейных сплавов обладают Al-Cu-Mg-Ni и Al-Cu-Ni-Mn; из них изготавливают литые поршни.

6. Маркировка алюминиевых сплавов

Состав промышленных алюминиевых сплавов регулируется ГОСТ 4784-97, ГОСТ 1583-93, ГОСТ 114-78 и др.

Для маркировки деформируемых алюминиевых сплавов применяют смешанную буквенную и буквенно-цифровую маркировки. Примеры приведены в таблице:

Вид алюминия (сплава алюминия)

Маркировка

Алюминий чистый, нелегированный

А999, А995, А99, А97, А95, А85, А8, А7, А7Е, А6, А5, А5Е, А0, АД0, АД1, АД00

Деформируемые алюминиевые сплавы с низким содержанием магния (до 0,8%)

Д1, В65, Д18, Д1П, АД31, АД

Деформируемые алюминиевые сплавы с повышенным содержанием магния (до 1,8%)

Д12, Д16, АМг1, Д16П

Литейные алюминиевые сплавы с низким содержанием меди (до 1,5%)

АЛ5, АЛ32, АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9-1, АЛ34, АК9 (АЛ4В), АК7 (АЛ9В), АЛ5-1

Литейные алюминиевые сплавы с высоким содержанием меди (более 1,5%)

АЛ3, АЛ6, АК5М2 (АЛ3В), АК7М2 (АЛ14В), АЛ7, АЛ19, АК5М7 (АЛ10В), АЛ33 (ВАЛ1)

Литейные алюминиевые сплавы с высоким содержанием кремния

АЛ1, АЛ21, АЛ25, АЛ30, АК21М2,5Н2,5, АК18, КС-740

Деформируемые алюминиевые сплавы с высоким содержанием магния

АМг2, АМг3, АМг4, АМг5, АМг5п, АМг6

Литейные алюминиевые сплавы с высоким содержанием магния

АЛ8, АЛ27, АЛ27-1, АЛ13, АЛ22, АЛ23, АЛ23-1, АЛ28

Деформируемые алюминиевые сплавы с высоким содержанием цинка

В95, 1915 и 1925

Литейные алюминиевые сплавы с высоким содержанием цинка

АЛ11, АК4М4, АК4М2Ц6

7. Особенности плавки алюминиевых сплавов

Приготовление алюминиевых сплавов.

Алюминиевые сплавы легко окисляются при расплавлении, насыщаются водородом (содержание водорода может достигать 0,5-,0 см 2 сна 100 г металла) и другими неметаллическими включениями.

Основные окислители - кислород и пары воды. В зависимости от температуры, парциального давления кислорода и паров воды, а также кинетических условий взаимодействия при окислении образуется оксид алюминия (Аl 2 O 3) и субоксиды (Al 2 O и AlO).

В обычных условиях плавки термодинамически устойчивой фазой является оксид алюминия г - Аl 2 O 3 , который не растворяется в алюминии и не образует легкоплавких соединений.

Кроме оксидов алюминия в расплавах могут присутствовать: оксид магния (MgO), магнезиальная шпинель MgAl 2 O 4 , нитриды алюминия, магния, титана (AlN , Mg 3 N 3 , TlN0, карбиды алюминия (Al 2 C), бориды алюминия и титана (AlB 2 . TlB 3) и др.

Большинство легирующих элементов (Сu, Si, Mn) не оказывают влияния на процесс окисления алюминия; щелочные и щелочно - земельные металлы (К, Na, Li, Ba, Ca, Sr, Mg), а также цинк увеличивают окисляемость алюминия из-за образования рыхлых оксидных плен.

Порядок загрузки шихтовых материалов: чушковый алюминий, крупногабаритные отходы, отходы литейных и механических цехов (литники, некачественные отливки, брикетизированная стружка и т.п.), переплав, лигатуры (чистые металлы). Компоненты шихты вводят в жидкий металл при температуре, о С: 730 (не выше) - стружку и мелкий лом; 740-750 - медь, при 700-740 - кремний, 700-740 - лигатуры; цинк загружают перед магнием к концу плавки. Температура нагрева литейных алюминиевых сплавов не должна превышать 800-830 о С.

Обязательной операцией является рафинирование от неметаллических включений и растворенного водорода.

Основным источником водорода являются пары воды, оксидные пленки на шихтовых материалах, легирующие элементы и лигатуры. Максимальная скорость плавки и минимальная длительность выдержки в печи перед разливкой способствуют повышению его чистоты.

Уменьшение компактности и увеличение удельной поверхности шихтовых материалов оказывают существенное влияние на степень загрязнения алюминиевых сплавов неметаллическими включениями и водородом.

При плавке алюминиевых сплавов, содержащих кремний, следует предусмотреть меры от загрязнения сплавов железом. Перед плавкой необходимо очистить печь (тигель) от остатков шлака предыдущей плавки. Чугунный тигель и плавильный инструмент очищают от следов расплава и окрашивают защитной краской.

При плавке алюминиевых сплавов, содержащих магний, медь и марганец, вначале в печь загружают чушковый алюминий и силумин, затем лигатуры и чушковые отходы. Магний вводят после рафинирования при 720-730 о С с помощью окрашенного колокольчика, после чего сплавы модифицируют и разливают.

Плавку сложнолегированных алюминиевых сплавов с высоким содержанием магния проводят только в графитовых тиглях в связи с минимально допустимым содержанием вредных примесей железа и кремния.

Применяемый плавильно - разливочный инструмент должен быть из графита или титана.

При использовании для приготовления сплавов возврата собственного производства порядок плавки должен быть следующий: расплавление чистого алюминия и лигатуры Аl - Be; введение при 670-700 о С возврата собственного производства. После расплавления возврата порядок загрузки остальных составляющих шихты и режимы плавки сохраняются такими же, как и при приготовлении на чистых металлах. Температура перегрева сплавов не должна превышать 750 о С.

8. Рафинирование расплава алюминия

Алюминий высокой чистоты в промышленном масштабе получают методом электролитического рафинирования по трехслойному способу. Этот процесс осуществляется в электролизерах для рафинирования алюминия. Серия электролизеров для рафинирования располагается, как правило, в одном корпусе, аналогичном по своей конструкции корпусу электролиза алюминия.

Основным сырьем для электролитического рафинирования служит расплавленный алюминий технической чистоты, поэтому корпуса электролитического рафинирования входят в состав электролизного цеха. Обычно они называются отделением рафинирования.

Электролитическое рафинирование алюминия по трехслойному методу основано на способности алюминия в процессе электролизаего сплава с медью к электрохимическому растворению на аноде и восстановлению на катоде: на аноде Al--Зе>Al 3+ ; на катодеAl 3+ +3e>Al.

В результате электролиза более электроположительные элементы (железо, кремний, медь и др.) накапливаются в анодномсплаве. Более электроотрицательные элементы (натрий, барий, кальций и др.) переходят в электролит, не выделяясь на катоде,так как потенциал их выделения выше потенциала алюминия.

Для создания условий протекания этого процесса приготавливают анодный сплав алюминия с 30--40 % Сu, плотность которого3,2--3,5 г/см 3 , и он располагается на подине шахты электролизера. Катодом служит рафинированный алюминий, имеющий притемпературе протекания процесса электролиза плотность 2,3 г/см 3 . Между анодным сплавом и катодным металлом находится слойэлектролита плотностью 2,7 г/см 3 , который состоит из криолита, хлористого бария и хлористого натрия.

В настоящее время применяются электролизеры для производства алюминия высокой чистоты на силу тока до 100 кА (рис. 136).Габариты и конструкция этих электролизеров зависят от их мощности. Величина катодной и анодной плотностей тока при рафинировании в зависимости от мощности электролизеров составляет 0,5--0,7 А/см 2

Рафинировочные электролизеры монтируют в сварном металлическом кожухе прямоугольной формы с днищем. С наружнойстороны к кожуху для увеличения жесткости приваривают вертикальные и горизонтальные “ребра” жесткости из профилированной стали. Футеровка кожуха до уровня подины аналогична футеровке электролизеров для производства алюминия; боковые стенки кожуха футерованы токонепроводящими материалами: листовым асбестом, шамотным и магнезитовым кирпичом, стойким к действию электролита, применяемого при рафинировании. С одной из сторон электролизера смонтирован футерованный магнезитовымкирпичом загрузочный карман, который на уровне подины соединен каналом с шахтой ванны.

Перед началом эксплуатации нагревают шахту ванны и обжигают межблочные швы теплом от сжигания газообразного или жидкого топлива, подаваемого в зону обжига форсунками. Прогрев подины и боковых стенок шахты необходимо вести равномерно по всей поверхности, так как местные перегревы могут привести к образованию трещин в подовых блоках и боковой футеровке.

Пуск рафинировочного электролизера производят в следующем порядке. На очищенную подину устанавливают предварительно подогретые графитированные катоды, соединенные через алюминиевую штангу с катодными шинами. Затем на подину через карман заливают анодный сплав, и электролизер включают в электрическую цепь. После этого в ванну заливают электролит и одновременно поднимают катодное устройство. При включении электролизера в цепь обязательно проверяют равномерность распределения тока по катодам; при обнаружении нарушения обычно заменяют катоды. Для создания нормальных условий протекания процесса электролиза катоды поднимают из электролита на необходимую высоту.

Для создания катодного слоя алюминия в начале работы электролизера применяют высокосортный алюминий-сырец, который заливают в ванну до создания слоя не менее 100 мм.

9. Модифицирование сплавов алюминия

Модифицирование. Для измельчения макрозерна и различных фаз, а также для придания им благоприятной формы алюминиевые сплавы модифицируют. Доэвтектические и эвтектические силумины модифицируют с целью измельчения кристаллов эвтектического кремния. Для этого вводят 0,05... 0,1 % натрия или стронция в виде солей NaF и NaCl на поверхность металла, очищенную от шлака. В результате реакций, происходящих в металле, выделяется натрий, производящий модифицирующее воздействие:

6NaF + Al = Na3AlF6 + 3Na.

С целью ускорения этого процесса металл следует перемешивать. Эффект модифицирования сохраняется 20...30 мин, в течение которых металл должен быть залит в формы. Модифицирующее действие стронция сохраняется в течение 2...3 ч.

Стронций вводят в виде лигатуры алюминий--стронций, содержащей 10 % Sr. Заэвтектические силумины модифицируют для измельчения первичных кристаллов кремния. В качестве модификатора используют фосфор в виде лигатуры Си--Р (10% Р), смеси красного фосфора с фторцирконатом калия и хлористым калием, а также смеси фосфорорганических веществ. Следует заметить, что модифицирование фосфором в виде лигатуры Си--Р требует повышенной температуры (880...920°С) и длительной выдержки (20...30 мин).

Широкое распространение получили так называемые универсальные флюсы, выполняющие функции рафинирующих флюсов и модификаторов. В составе этих флюсов кроме КС1, NaCl и Na3AlF6 содержится свыше 25 % NaF, обеспечивающего модифицирующее действие флюса.

Расход дегазирующих и модифицирующих добавок зависит от способа их применения. Так, по данным ВАЗа расход порошкообразного гексахлорэтана составляет 0,2 %, а при использовании его в виде таблеток расход не превышает 0,05 % от массы расплава. Модифицирующие средства в прессованном виде также расходуются в меньшем количестве, чем порошковые (0,1 против 1 %). Это объясняется отсутствием просыпи при вводе таблетки, а, кроме того, постепенное разложение таблетки исключает возможность выброса непрореагировавшего реагента на поверхность металла, что характерно при усвоении порошкообразного вещества.

В последние годы разработаны модификаторы для сплавов алюминия, содержащих до 26 % Si. Это смеси фосфористой меди и гидрата лития, лигатуры А1--(10... 50 %) Sr, Al--Ti--В и др.

10. Особенности технологии производства фасонных отливок из алюминиевых сплавов

Литье в кокиль

Литье в кокиль - это процесс изготовления фасонных отливок в формах, изготовляемых из чугуна, стали или других сплавов. Метод литья в кокиль имеет ряд преимуществ перед литьем в песчаные формы: металлическая форма выдерживает большое количество заливок (от нескольких сот до десятков тысяч) в зависимости от сплава, заливаемого в форму.

Отливки, залитые в кокиль, имеют большую точность размеров и лучшую чистоту поверхности, чем при литье в песчаные формы, и требуют меньшего припуска на механическую обработку. Структура металла получается более мелкозернистой, вследствие чего повышаются его механические свойства; кроме того, устраняется необходимость в формовочной смеси, улучшаются технико-экономические показатели производства и санитарно-гигиенические условия труда. Литье в кокиль имеет и свои недостатки. К ним относятся большая стоимость изготовления формы, повышенная теплопроводность формы, что может привести к пониженной заполняемости форм металлом вследствие быстрой потери жидкотекучести, частое получение поверхностного отбела (образование ледебуритного цементита) у чугунных отливок, что затрудняет их механическую обработку.

Фасонные отливки при литье в кокиль изготовляют из стали, чугуна, медных, алюминиевых, магниевых и других сплавов.

Конструкции кокилей чрезвычайно разнообразны. Кокиль для простых отливок изготовляют из двух частей, соответствующих верхней и нижней опокам при литье в песчаные формы. Для сложных отливок форму изготовляют из нескольких разъемных частей; каждая из них образует часть отливки; поверхность разъема форм определяется конструкцией отливки.

Для получения внутренней полости отливки применяют песчаные и металлические стержни. Для отливок из легкоплавких сплавов преимущественно применяют металлические стержни, а для чугунных и стальных отливок -- песчаные.

Алюминиевые поршни отливают с металлическим стержнем. Корпус кокиля состоит из трех частей (1, 2 и 3). Литниковая система 4 расположена в плоскости разъема. Внутреннюю полость отливки образует металлический стержень. Для обеспечения возможности выемки металлического стержня из отливки его делают разъемным (из нескольких частей). На рис.1 показан металлический стержень из трех частей. После заливки и затвердевания сплава сначала вынимают центровую конусообразную часть 1, а затем боковые части 2 и 3.

Форма для изготовления алюминиевого поршня.

Схема технологии отливки поршня в кокиль на заводе-автомате: 1 -- транспортер для загрузки чушек алюминиевых сплавов; 2 -- загрузочная площадка; 3 -- плавильный агрегат; 4 -- дозирующее устройство; 5 -- литейная машина с шестью металлическими формами; 6 -- механическая рука; 7 -- перегрузочное устройство; 8 -- фрезерный станок для обрезки литников; 9 -- склиз; 10 -- конвейер отпускной печи; 11 -- отпускная печь; 12 -- конвейер для охлаждения поршней воздухом до температуры цеха; 13 -- склиз для подачи поршней к прессу Бринеля; 14 -- пресс Бринеля; 15 -- склиз для подачи поршней в бункер на хранение; 16 -- бункер; 17--19 -- транспортеры для подачи литников и отходов на загрузочную площадку.

11. Состав и свойства магниевых сплавов

Магний и магниевые сплавы

Литейные и деформируемые магниевые сплавы в отечественных стандартах (ГОСТ) обозначаются следующим образом:

МЛ - магниевые литейные сплавы (ГОСТ 2856); МА - магниевые деформируемые сплавы (ГОСТ 14957); пч - повышенной чистоты; он - общего назначения.

Литейные магниевые сплавы подразделяются в зависимости от способа литья: в песчаные формы, в кокиль, литье под давлением и др.

Деформируемые магниевые сплавы классифицируются следующим образом: сплавы для прессования, ковки, штамповки, для горячей и холодной прокатки.

Кроме того, литейные и деформируемые магниевые сплавы классифицируются по прочности при нормальных и повышенных температурах, коррозионной стойкости и плотности.

По уровню прочности и ряду других основных свойств (жаропрочности, плотности) магниевые деформируемые сплавы подразделяются на 4, а литейные - на 3 группы.

По предельно допустимым рабочим температурам и длительности работы при них магниевые сплавы подразделяются следующим образом:

Марки литейных сплавов

Марки деформируемых сплавов

Длительно до 150°С, кратковременно до 200°С

МЛ3, МЛ4, МЛ4пч, МЛ5, МЛ5пч, МЛ5он, МЛ6, МЛ8

МА1, МА2, МА2-1, МА5, МА2-1пч, МА15, МА19, МА20

Длительно до 200°С, кратковременно до 250°С

Длительно до 200-300°С, кратковременно до 300-400°С

МЛ9, МЛ10, МЛ11, МЛ19

Длительно до 125°С

Длительно до 60°С

По коррозионной стойкости во всех климатических атмосферных условиях магниевые сплавы можно разделить на 3 основные группы:

По степени свариваемости магниевые сплавы можно классифицировать:

В США и некоторых других странах магниевые сплавы обозначаются по системе, разработанной Американским обществом по испытаниям материалов (ASTM), включающей основные данные по химическому составу и состоянию поставки. Обозначение сплавов начинается с двух букв, представляющих два основных легирующих элемента. Буквы располагаются по убыванию содержания элементов или, при равных их количествах - по алфавиту. За буквами следуют цифры, указывающие содержание элементов в целых процентах. Последующие буквы (А, В, С) отражают модификацию сплава по содержанию второстепенных легирующих элементов или примесей. Чистота сплава увеличивается от С до А, т.е. А - наиболее чистый. Символ "Х" обозначает, что сплав новый и пока не стандартизирован, т.е. так называемый "временно стандартизированный сплав", например АZ81ХА.

12. Особенности плавки магниевых сплавов

Для плавки магниевых сплавов применяют тигельные печи с выемным или стационарным тиглем вместимостью 200-450 кг или отражательные печи большой вместимости. При этом после расплавления всей шихты сплав переливают в тигельные раздаточные печи, в которых производится его рафинирование.

В разогретый тигель или печь загружают небольшое количество размолотого флюса и около половины всего количества магния, поверхность которого также засыпается флюсом. После расплавления первой порции магния постепенно загружают остальное количество магния. Затем, когда расплавится весь магний, в сплав при температуре 680-700 °С вводят предварительно мелко раздробленную лигатуру алюминий-марганец.

Марганец в магниевые сплавы вводят при температуре 850 °С в виде смеси металлического марганца или хлористого марганца О флюсом ВИЗ. Затем в тигель постепенно загружают возврат. В течение всего процесса плавки поверхность сплава должна быть покрыта слоем флюса ВИЗ.

Цинк присаживается в конце плавки при температуре расплава 700-720 °С. При той же температуре в сплав присаживается бериллий в виде лигатур магний - бериллий или марганец-алюминий-бериллий или в виде фторбериллата натрия NaBeF4. Лигатуры, содержащие бериллий, вводят в сплав до рафинирования, а фторбериллат натрия - во время рафинирования.

Церий, являясь компонентом некоторых новых магниевых сплавов, входит в состав мишметалла, имеющего следующий состав (%): 45-55 церия, до 20 лантана, 15 железа, остальное- редкоземельные элементы первой группы. При расчете шихты учитывают суммарное содержание всех редкоземельных элементов. Мишметалл добавляют в расплав после рафинирования при помощи железного сетчатого стакана, погружаемого на глубину 70-100 мм от зеркала сплава.

Цирконий вводят в сплав в виде фторцирконата натрия Na2ZrFe при температуре 850-900 °С.

Если в магниевый сплав необходимо ввести значительное количество циркония, как, например, в новый теплопрочный литейный сплав МЛ12, содержащий 4-5% Zn, 0,6-1,1% Zr, остальное- магний, приходится пользоваться так называемой шлак-лигатурой, Для приготовления шлак-лигатуры используют шихту следующего состава, %: 50 фторцирконата калия; 25 карналлита; 25 магния. Шлак-лигатуру приготавливают одновременно в двух тиглях. В одном тигле расплавляют карналлит и после прекращения бурления при температуре 750-800 °С замешивают фторцирконат калия до получения однородной расплавленной массы. Затем в эту смесь вливают расплавленный в другом тигле магний, нагретый до 680-750 °С. Полученная шлак-лигатура содержит 25-50% циркония.

Заключительной стадией плавки любого магниевого сплава является обработка его в жидком состоянии с целью рафинирования, а также модифицирования структуры. Рафинирование магниевого сплава проводят после введения всех легирующих добавок и доведения температуры расплава до 700-720 °С. Лишь в случае обработки магниевого сплава фторбериллатом натрия температура нагрева сплава перед рафинированием повышается до 750-760 °С. Обычно рафинирование производят путем перемешивания сплава железной ложкой или шумовкой в течение 3-6 мин; при этом поверхность расплава посыпают размолотым флюсом ВИЗ. Перемешивание начинают с верхних слоев сплава, затем ложку постепенно опускают вниз, не доходя до дна примерно на 1/2 высоты тигля. Рафинирование считается законченным, когда поверхность сплава приобретает блестящий, зеркальный вид. По окончании рафинирования с поверхности сплава счищают флюс, а зеркало сплава вновь покрывают ровным слоем свежей порции размолотого флюса ВИЗ. Затем магниевые сплавы, кроме сплавов МЛ4, МЛ5 и МЛ6, нагревают до 750-780 °С и выдерживают при этой температуре в течение 10-15 мин.

Магниевые сплавы марок МЛ4, МЛ5 и МЛ6 перед разливкой подвергают модифицированию. После снятия с поверхности сплава загрязнений, образовавшихся при модифицировании, и после засыпки поверхности расплава свежей порцией флюса эти сплавы выдерживают, при этом температура понижается до 650-700 °С, затем производят заливку форм.

В ходе плавки тщательно наблюдают за состоянием поверхности жидкого сплава. Если сплав начинает гореть, его необходимо засыпать порошкообразным флюсом при помощи пневматического флюсораспылителя.

13. Рафинирование и модифицирование расплавов из магния

Рафинирование под флюсами проводят путем перемешивания расплава движениями мешалки вниз -- вверх в течение 5...6 мин при температуре 700...720°С. При этом на поверхность металла добавляют порции сухого измельченного флюса. Расплавленный флюс обволакивает нежелательные примеси, содержащиеся в металле, и при последующей выдержке металла осаждает их на дно тигля. Рафинирование считается законченным, когда поверхность металла приобретает блестящий зеркальный вид. После этого наносят свежий флюс и выдерживают под ним металл в течение 10... 15 мин при 750...800°С. Затем снижают температуру до 700 °С и выдают металл из печи.

Для рафинирования магниевых сплавов используют также продувку аргоном при 720...740°С или фильтрацию через сетчатые и зернистые фильтры. Зернистые фильтровальные материалы (магнезит, графит, кокс в смеси с другими веществами) обеспечивают наиболее полную очистку расплава. Стальные сетчатые фильтры снижают загрязненность приблизительно в пять раз. Для связывания водорода в устойчивые гидриды в расплав перед разливкой иногда вводят до 0,1 % Са.

При ответе на вопросы желательно привести примеры и иллюстрации.

Литература

1. Б.В. Захаров. В.Н. Берсенева «Прогрессивные технологические процессы и оборудование при термической обработке металлов» М. «Высшая школа» 1988 г.

2. В.М. Зуев «Термическая обработка металлов» М. Высшая школа 1986 г.

3. Б.А. Кузьмин «Технология металлов и конструкционные материалы» М. «Машиностроение» 1981 г.

4. В.М. Никифоров «Технология металлов и конструкционные материалы» М. «Высшая школа» 1968 г.

Размещено на Allbest

Подобные документы

    Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.

    курсовая работа , добавлен 05.02.2007

    Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация , добавлен 29.09.2013

    Исследование основных литейных свойств сплавов, изучение способа получения отливок без дефектов и описание технологии отлива детали под давлением. Изучение схемы прокатного стана и механизма его работы. Анализ свариваемости различных металлов и сплавов.

    контрольная работа , добавлен 20.01.2012

    Химико-физические свойства медных сплавов. Особенности деформируемых и литейных латуней - сплавов с добавлением цинка. Виды бронзы - сплавов меди с разными химическими элементами, главным образом металлами (олово, алюминий, бериллий, свинец, кадмий).

    реферат , добавлен 10.03.2011

    Особенности медных сплавов, их получение сплавлением меди с легирующими элементами и промежуточными сплавами - лигатурами. Обработка медных сплавов давлением, свойства литейных сплавов и область их применения. Влияние примесей и добавок на свойства меди.

    курсовая работа , добавлен 29.09.2011

    Зависимость свойств литейных сплавов от технологических факторов. Основные свойства сплавов: жидкотекучесть и усадка. Литейная форма для технологических проб. Графики зависимости жидкотекучести, линейной и объемной усадки от температуры расплава.

    лабораторная работа , добавлен 23.05.2014

    Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие , добавлен 29.01.2011

    Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.

    контрольная работа , добавлен 24.08.2011

    Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Трубы и детали трубопроводов из цветных металлов и их сплавов, их конфигурация, техническая характеристика, области применения.

    курсовая работа , добавлен 19.09.2008

    Основные сварочные материалы, применяемые при сварке распространенных алюминиевых сплавов. Оборудование для аргонно-дуговой сварки алюминиевых сплавов. Схема аргонно-дуговой сварки неплавящимся электродом. Электросварочные генераторы постоянного тока.

Цветные металлы, их свойства и сплавы

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.

Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.

Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.

Цветные металлы по ряду признаков разделяют на следующие группы:

-
тяжёлые металлы
- медь , никель , цинк , свинец , олово ;

- лёгкие металлы - алюминий , магний , титан , бериллий , кальций , стронций , барий , литий , натрий , калий , рубидий , цезий ;

-
благородные металлы
- золото , серебро , платина , осмий , рутений , родий , палладий ;

-
малые металлы
- кобальт , кадмий , сурьма , висмут , ртуть , мышьяк ;

-
тугоплавкие металлы
- вольфрам , молибден , ванадий , тантал , ниобий , хром , марганец , цирконий ;

-
редкоземельные металлы
- лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;

-
рассеянные металлы
- индий, германий, таллий, таллий, рений, гафний , селен, теллур;

-
радиоактивные металлы
- уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.

Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.

Цветные металлы подвергают всем видам механической обработки и обработки давлением - ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.

Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий.

Некоторые химические элементы Национальная Комиссия Украины (НКУ) рекомендует называть так: Серебро - Аргентумом, Золото - Аурумом, Углерод - Карбоном, Медь - Купрумом и т.д. Названия элементов в определённых случаях употребляются как имена собственные - пишутся с большой буквы в середине предложения. В школах дети (на уроках химии) называют азотную кислоту нитратной, серную - сульфурной и т.д. В остальных случаях (география, история и пр.) применяются общеупотребительные названия, т.е. золото называется золотом, медь - медью и т.д.

Цветные металлы и сплавы

Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.

Медь- металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180… ...240 МПа при высокой пластичности б>50%.
Латунь - сплав меди с цинком (10...40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию
Бронза - сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр - бронза, О - олово, Ц - цинк, С -свинец, цифры 3, 12, 5--содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: бв=15О...21О МПа, б=4...8%, НВ60 (в среднем).
Алюминий - легкий серебристый металл, обладающий низкой прочностью при растяжении - аа = 80… ...100 МПа, твердостью - НВ20, малой плотностью - 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газооб-разователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мп, Си, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п.
Силумины - сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ои = 200 МПа, твердостью НВ50...70 при достаточно высокой пластичности 6== =5...10 %. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.

Дюралюмины - сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8%). марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500...520°С с последующим старением). Старение осуществляют на воздухе в течение 4...5 сут при нагреве на 170°С в течение 4...5 ч.

Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400...480 МПа и может быть повышен до 550...600 МПа в результате наклепа при обработке давлением.

В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100...300 кг/м3
Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов АЬОз.

Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость.
Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.

Технологии подготовки поверхности металла

Надёжная антикоррозионная защита металла возможна только при высоком уровне подготовки поверхности.

Перед нанесением антикоррозионного лакокрасочного материала необходимо, прежде всего, выбрать технологию и метод подготовки поверхности металла перед окраской.

Существуют механические и химические методы подготовки поверхности. Механические методы имеют ряд ограничений в применении и не способны обеспечить хорошие защитные свойства лакокрасочных покрытий, особенно при их эксплуатации в жёстких условиях. В настоящее время широкое распространение получили химические методы подготовки поверхности. Данные методы позволяют обрабатывать изделия любой формы и сложности, легко поддаются автоматизации и обеспечивают высокое качество поверхности окрашиваемых изделий.

Как выбрать технологический процесс подготовки поверхности?

Какую схему подготовки поверхности следует выбрать для разных металлов, различных лакокрасочных покрытий и условий эксплуатации? Давайте обо всём по порядку.

Выбор технологии подготовки поверхности зависит от трёх основных факторов: условий эксплуатации окрашенных изделий, типа металла и применяемого лакокрасочного покрытия.

С точки зрения подготовки поверхности металлы можно разделить на две категории:

Чёрные металлы - сталь, чугун и др.;

Цветные металлы - алюминий, сплавы цинка, титана, меди, оцинкованная сталь и др.

Для подготовки поверхности чёрных металлов применяют фосфатирование, для обработки цветных металлов - фосфатирование или хроматирование. При одновременной обработке цинка и алюминия с чёрными металлами предпочтение отдают фосфатированию. Пассивирование применяют на заключительной стадии после операций фосфатирования, хроматирования и обезжиривания.

Технологические процессы подготовки поверхности изделий, эксплуатирующихся внутри помещений, могут состоять из 3-5 стадий.

Практически во всех случаях после проведения химической подготовки поверхности изделия сушат от влаги в специальных камерах.

Полный цикл химической подготовки поверхности выглядит так:

Обезжиривание;

Промывка питьевой водой;

Нанесение конверсионного слоя;

Промывка питьевой водой;

Промывка деминерализованной водой;

Пассивация.

Технологический процесс кристаллического фосфатирования предусматривает стадию активации непосредственно перед нанесением конверсионного слоя. При применении хроматирования могут быть введены стадии осветления (при использовании сильнощелочного обезжиривания) или кислотной активации.

Выбор технологии, обеспечивающей высокое качество подготовки поверхности перед окраской, обычно ограничен размерами производственных площадей и финансовыми возможностями. Если таких ограничений нет, то следует выбирать многостадийный технологический процесс, гарантирующий необходимое качество получаемых лакокрасочных покрытий.

Однако, как правило, с ограничивающими факторами приходится считаться. Поэтому для выбора оптимального варианта предварительной обработки поверхности следует провести предварительные испытания предполагаемых покрытий на месте.

Какой метод химической обработки металла лучше?

Для химической обработки металла применяют распыление (струйная обработка низкого давления), погружение, паро- и гидроструйный методы.

Для реализации первых двух методов используют специальные агрегаты химической подготовки поверхности (АХПП).

Выбор метода подготовки поверхности зависит от производственной программы, конфигурации и габаритов изделий, производственных площадей и ряда других факторов.

Обработка металла распылением. Для обработки металла методом распыления можно применять АХПП как тупикового, так и проходного типов. Высокую производительность обеспечивают агрегаты проходного типа непрерывного действия.

Максимальная скорость движения конвейера в АХПП ограничивается возможностью качественного нанесения ЛКМ в камере окраски и составляет, как правило, не более 2,0м/мин. При возрастании скорости конвейера потребуется расширение производственных площадей.

Большим достоинством АХПП проходного типа является возможность применения единого конвейера для участков подготовки поверхности и окраски изделий.

Обработка металла погружением. Для обработки металла методом погружения используют АХПП, состоящие из ряда последовательно расположенных ванн, оборудования перемешивания, транспортёра, разводки трубопроводов, камеры сушки. Изделия транспортируют с помощью тельфера, автооператора или кран-балки. Агрегат обработки погружением занимает значительно меньше производственной площади по сравнению с агрегатом обработки распылением. Но в этом случае после подготовки поверхности потребуется введение дополнительной операции - перевешивания изделий на конвейер окраски.

Пароструйный метод. Для подготовки к окраске крупногабаритных изделий, а также при отсутствии необходимых производственных площадей возможно применение пароструйной обработки металла (обезжиривание с одновременным аморфным фосфатированием). Металлообработка производится оператором вручную стволом-очистителем, из которого на изделия распыляется пароводяная смесь при температуре 140°С с добавками специальных химикатов.

Для пароструйной обработки можно применять стационарные и передвижные установки. В стационарных установках нагрев осуществляется паром при давлении 4,5- 5,0ати.

Обработка металла

Выбор технологии подготовки поверхности и обработки металла - ответственный этап организации покрасочных работ, так как он во многом определяет качество будущего лакокрасочного покрытия и должен производиться с привлечением квалифицированных специалистов.

Только такой подход может обеспечить высокое качество антикоррозионного покрытия и заданный срок службы металлической конструкции.

Термическая обработка цветных металлов

Термическая обработка цветных металлов. Как правило, цветные металлы подвергают термической обработке для удобства работы с ними.

Медь отжигают, нагревая ее до температуры 500- 650°С и охлаждая в воде. Если мягкую медь нагреть, а потом постепенно охладить на воздухе, она станет более твердой.

Латунь и алюминий отжигают при нагревании соответственно до 600-750°С и 350-410°С с последующим охлаждением на воздухе.

Бронзу закаливают нагреванием до 800-850°С с последующим охлаждением в воде. Если ее нагреть до той же температуры и охладить на воздухе, она отпустится.

Дюралюминий Д1 и Д6 закаливают нагреванием до 500°С с последующим охлаждением в воде, однако окончательную твердость он приобретет при комнатной температуре через 4-5 дн. Этот процесс называется старением. Для облегчения сгибания, особенно под острыми углами, дюралюминиевые детали отжигают. Для этого деталь нагревают до 350-400°С, затем медленно охлаждают на воздухе.

Особенности цветных металлов

1. Некоторые металлы (медь, магний, алюминий) обладают сравнительно высокими теплопроводностью и удельной теплоемкостью, что способствует быстрому охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.

2. Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна даже проваливается под действием собственного веса (алюминий, бронза).

3. Все цветные сплавы при нагреве в значительно больших объемах, чем черные металлы, растворяют газы окружающей атмосферы и химически взаимодействуют со всеми газами, кроме инертных. Особенно активные в этом смысле более тугоплавкие и химически более активные металлы: титан, цирконий, ниобий, тантал, молибден. Эту группу металлов часто выделяют в группу тугоплавких, химически активных металлов.

Особенности обработки цветных металлов

Цветные металлы прочны и долговечны, способны переносить высокие температуры. Недостаток только один - способность корродировать и разрушаться под воздействием кислорода.

Одним из самых эффективных методов защиты цветного металла от атмосферной коррозии считается нанесение защитных лакокрасочных материалов. Существуют три группы средств для защиты металлических поверхностей: грунтовки, краски и универсальные препараты «три в одном». Грунтовка - незаменимое средство борьбы с атмосферным окислением, одно- или двухслойное грунтование производится перед окрашиванием, помимо защитных свойств сообщая финишному покрытию лучшую адгезию к основанию. При выборе состава важно знать, что для разных металлов используются разные грунтовки

Для алюминиевых оснований используют специальные грунтовки на цинковой основе либо уретановые краски. Медь, латунь и бронзу обычно не красят - эти металлы поставляются на рынок с заводской обработкой, защищающей поверхность и подчеркивающей ее красоту. Если же целостность такого «фирменного» покрытия со временем нарушается, его лучше полностью удалить с помощью растворителя, после чего основание следует отполировать и покрыть эпоксидным или полиуретановым лаком.

LIKONDA® 25: Процесс бесцветного хроматирования цветных металлов

Процесс бесцветного хроматирования цветных металлов

Процесс Likonda 25 предназначен для получения на серебре, меди и ее сплавах бесцветных хроматных пленок , полирующих и защищающих металлическую поверхность от коррозии.

Особенности процесса

Бесцветные хроматные пленки получаются при одностадийной обработке .

Коррозионная стойкость бесцветных хроматных пленок к воздействию влаги (по ГОСТ 9.012.73) составляет не менее 240 ч .

Получаемые пленки стойки к истиранию в мокром виде , поэтому хроматирование можно проводить во вращательных установках .

Раствор Likonda 25 может быть применен как на автоматических установках , так и при ручном обслуживании .

Корректировка хроматирующего раствора во время эксплуатации осуществляется добавлением композиции Likonda 25 .

Хроматирование проводится методом погружения обрабатываемых деталей в раствор.

Состав раствора и режим работы

1. Композиция Likonda25 , г/дм3

Параметр

Значение

Не контролируется

Температура, ºС

Продолжительность хроматирования, с.

Существует несколько методов нанесения защитных металлических покрытий: гальванический, диффузионный, металлизация, плакирование и погружение в расплавленный металл.

Гальваника – один из наиболее распространённых методов защиты металлических изделий от коррозии и придания им определённых свойств или улучшения их, путём нанесения специальных металлических или химических покрытий. На настоящее время гальваника распространена в машиностроении и строительстве. Гальваническое производство выполняет различные виды покрытий: никелирование, цинкование, хромирование, анодирование, фосфатирование и другие.

Свойства антикоррозийных покрытий напрямую зависят от толщины защитного слоя, толщина которого, в зависимости от резкости климатических условий, меняется в сторону увеличения.

Никелирование – это процесс нанесения тонкого слоя никеля на поверхность металлических изделий для защиты от коррозии. Никелирование бывает нескольких типов: электрохимическое, химическое, покрытие «чёрный никель».

При электрохимическом никелировании - никелем покрывают изделия из стали и цветных металлов для достижения высокой степени антикоррозийности и повышения износостойкости. Главным плюсом химического никелирования, в состав которого входит ещё до 12% фосфора, является равномерное распределение покрытия по поверхности изделия, а также повышенная антикоррозийная стойкость, износостойкость и твёрдость, полученные после термообработки.

Анодирование – это процесс получения защитной или декоративной поверхности различных сплавов (алюминиевых, магниевых и др.) под воздействием тока. Полученная плёнка обладает повышенными электроизоляционными, водостойкими и антикоррозионными свойствами.

Хромирование - это процесс, при котором наносится хром или его сплав на изделие из металла. При этом само изделие наделяется такими свойствами, как износостойкость, антикорозийность, жаростойкость и т.д. В наше современное время процесс хромирования очень распространен. Его в достаточном объеме используют как в машиностроении, так и в промышленности. Сам хром отличается большой стойкостью против негативного воздействия различных кислот, а также щелочей. Хром не может быть растворим в серной, азотной, соляной кислоте и т.д. Он не тускнеет, даже если его нагреть до 700 К.

Для красоты и ограждения от коррозии люди хромируют большое количество различных изделий. Процесс хромирования широко распространен в различных сферах. Например, часто хромируют предметы интерьера, среди которых некоторые детали мебели, ручки к дверям, таблички, статуэтки и т. д. Хромирование используют для долговечности нагрудных знаков (ордена, медали, значки и т. д.), аксессуаров к вещам (запонки, пряжки, зажимы к галстукам), ювелирных украшений. Также распространенная сфера применения - покрытие медицинских инструментов.

1.Алмазирование: -профильные шлифовальные круги d 10:300мм. Высотой до 100мм. -напильники длиной до 350мм. -шлифовальные оправки, надфили, шарошки и т. п. 2.Гальванические покрытия Никелирование, меднение: -мелкие детали для обработки во вращательной установке -детали для покрытия на подвесках габаритами до 420x500мм. Цинкование: -аналогично никелированию, но необходим выпрямитель электрического тока до 100 ампер. 3.Дополнительная обработка гальванопокрытий с целью повышения коррозионной стойкости при повышенной влажности – пропитка ГФЖ / гидрофобизирующая жидкость/. После обработки поверхность приобретает Водоотталкивающие свойства. 4.Рекуперация Снятие остаточного алмазного слоя на никелевой связке с алмазного инструмента для повторного использования стальной заготовки.

Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

Расплавление породы

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием - оксидом кальция (CaO) - распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Раскисление металла

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном;
  • сосуды конверторов и их несущие кольца;
  • оборудование для фильтрации пыли;
  • система для удаления конверторного газа.

Участок электропечей:

  • печи индукционного типа;
  • дуговые печи;
  • емкости, с помощью которых выполняется загрузка;
  • участок складирования металлического лома;
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

  • LF-оборудование;
  • SL-оборудование.

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей;
  • ковши литейного и разливочного типа;
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами;
  • оборудование для осуществления непрерывной разливки;
  • вагонетки, на которых транспортируются промежуточные ковши;
  • лотки и сосуды, предназначенные для аварийных ситуаций;
  • промежуточные ковши и площадки для складирования;
  • пробочный механизм;
  • мобильные мешалки для чугуна;
  • оборудование для обеспечения охлаждения;
  • участки, на которых выполняется непрерывная разливка;
  • внутренние транспортные средства рельсового типа.
Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

Цветные металлы обладают рядом характерных только для них свойств, определяющих применение их в машино- и приборостроении, несмотря на то, что встречаются они в природе гораздо реже, чем железо. Это и высокие тепло- и электропроводность, хорошая коррозионная стойкость, малый или наоборот большой удельный вес, низкая или высокая температура плавления, высокая пластичность или наоборот прочность.

Основной продукцией цветной металлургии являются слитки цветных металлов для производства проката и отливок, лигатуры (сплавы с легирующими элементами для изготовления легированных сплавов), чистые и особо чистые металлы для электроники и приборостроения.

ПРОИЗВОДСТВО МЕДИ

За год в мире производится 3 … 5 млн. тонн меди. Она обладает важными для современной техники свойствами, такими как высокие электро- и теплопроводность, пластичность, хорошая коррозионная стойкость. Около половины всего годового производства чистой металлической меди идёт на изготовление проводов, кабелей, шин и прочих токопроводящих изделий электротехнической промышленности. Вместе с тем с давних пор широко применяются сплавы меди с цинком (латуни) и с оловом (бронзы).

В настоящее время главнейшим источником для получения меди служат сульфидные руды, содержащие халькопирит (медный колчедан) CuFeS 2 , халькозин CuS, пирит FeS 2 и сульфиды цинка, свинца, никеля, а нередко серебро и золото. Другим источником для получения меди являются окисленные медные руды, содержащие куприт Cu 2 O или азурит 2CuCO 3 ×Cu(OH) 2 .

Указанные руды бедные. Содержание меди в них незначительно – 1 … 5%, поэтому руды перед плавкой подвергают обогащению. Обогащение флотацией позволяет выделить из руды отдельно медный концентрат, содержащий 11 … 35% меди, а также цинковый или пиритный концентраты.

Природные запасы меди постоянно сокращаются. Поэтому в настоящее время существенным становится использование металлолома и других отходов промышленности, содержащих медь. Крупнейшие промышленно развитые страны из отходов получают меди больше, чем выплавляют её из руд.

Для получения меди из руд обычно используют пирометаллургический способ, состоящий из плавки на штейн и восстановительной плавки, но некоторые руды успешно перерабатывают и гидрометаллургическим способом, например выщелачиванием серной кислотой.

Процесс производства меди наиболее распространенным, пирометаллургическим способом можно разделить на следующие этапы: измельчение медных руд, их обогащение, обжиг концентрата, получение медного штейна, переработка медного штейна, рафинирование меди (рис. 1.16).

Обогащение медных руд осуществляют методом флотации, основанном на различном смачивании водой соединений меди и пустой породы. Для обогащения образуют пульпу, состоящую из измельченной руды, воды и флотационного реагента (пихтового масла). Последний адсорбируется на частицах руды в виде пленок, не смачиваемых водой. При продувке пульпы пузырьки воздуха собираются на поверхности этих частиц и увлекают их вверх, образуя на поверхности слой пены. Смачиваемая водой пустая порода оседает на дно ванны. Пену с поверхности ванны собирают, сушат и получают концентрат с необходимым содержанием меди.

Обжиг концентрата производят при 750 … 850 °С в воздушной среде для окисления сульфидов и уменьшения содержания серы. Наиболее производительным является обжиг в кипящем слое. Измельченный концентрат загружается в окно в средней ее части, а снизу в печь через поддон подается воздух. Давление воздуха устанавливается таким, чтобы частицы концентрата находились во взвешенном (кипящем) состоянии. Обожженный концентрат «переливается» через порог печи в виде огарка. Отходящие сернистые газы очищаются в циклоне от твердых частиц и направляются в сернокислотное производство.

Получение медного штейна. Штейн в застывшем виде – это сплав сульфидов меди и железа и сульфидов цинка, свинца, никеля, содержащий 20 … 60% меди, 10 … 60% железа и до 25% серы. Жидкие штейны хорошо растворяют в себе золото и серебро, и, если эти металлы есть в руде, они почти полностью концентрируются в штейне. Цель плавки на штейн – отделение сернистых соединений меди и железа от содержащихся в руде примесей, присутствующих в ней в виде окисных соединений.

В зависимости от химического состава руды и ее физического состояния штейн получают либо в шахтных печах, если сырьем служит кусковая медная руда, содержащая много серы, либо в отражательных или дуговых электропечах, если исходным продуктом служат порошкообразные флотационные концентраты.

В качестве огнеупоров отражательных печей используют динасовые или магнезитовые кирпичи. Огнеупор выбирают в зависимости от преобладания в шихте основных или кислотных оксидов, так как соответствие состава шихты и огнеупорных материалов удлиняет срок их службы. Отражательные печи отапливают мазутом, угольной пылью или газом, вдувая топливо форсунками. Максимальная температура в головной части печи 1550 °С, в хвостовой – 1250 … 1300 °С. Шихту в эти печи загружают через отверстия в своде, расположенные вдоль печи у боковых стенок. При загрузке шихта ложится откосами вдоль стен, предохраняя кладку от прямого воздействия шлаков и газов. По мере нагрева шихты начинаются реакции частичного восстановления высших оксидов железа и меди, окисления серы и шлакообразования:

FeS + 3Fe 3 O 4 + 5SiO 2 = 5(2FeO*SiO 2) + SO 2 ;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 .

Сульфиды меди и железа, сплавляясь, дают первичный штейн, который, стекая по откосам, изменяет свой состав, обедняясь железом и обогащаясь медью:

2FeS + 2Cu 2 O + SiO 2 = 2FeO*SiO 2 + 2Cu 2 S.

При этом 2FeO*SiO 2 поступает в шлак, а 2Cu 2 S – в штейн. Штейн, имеющий плотность около 5000 кг/м 3 , собирается на поду печи, а шлак (плотность около 3500 кг/м 3) образует второй верхний жидкий слой. Его выпускают по мере накопления через шлаковое окно, расположенное в хвостовой части печи. Выпуск штейна производят по мере его образования и потребности в нем последующего конвертерного передела.

Переработка медного штейна. Расплавленный штейн перерабатывают на черновую медь продувкой его воздухом в конвертере – горизонтально расположенном цилиндрическом сосуде из листовой стали длиной 5 … 10 и диаметром 3 … 4 м, футерованном магнезитовым кирпичом.

Переработка штейна протекает в два периода. В конвертер загружают кусковой кварц, заливают расплавленный штейн и продувают его воздухом. Воздух, энергично перемешивая штейн, окисляет сульфиды меди и железа:

2FeS + 3O 2 = 2FeO + 2SO 2 + 940 кДж;

2Cu 2 S + 3O 2 = 2Cu 2 O + 2SO 2 + 775 кДж,

при этом закись меди благодаря обменному взаимодействию вновь превращается в сульфид:

Cu 2 O + FeS = Cu 2 S + FeO.

Поэтому в первом периоде идет практически окисление только железа, а закись железа шлакуется кварцем:

2FeO + SiO 2 = 2FeO*SiO 2 .

Образующийся шлак периодически сливают и в конвертер добавляют свежие порции медного штейна и кускового кварца. Температура заливаемого штейна составляет около 1200 °С, но за время продувки, за счет большого выделения тепла при окислении сульфидов температура повышается до 1350 °С. Продолжительность первого периода зависит от количества меди в штейне и составляет 6 … 10 ч. Добавка в воздушное дутье кислорода повышает температуру в конвертере и позволяет загружать в него холодный концентрат, заменив им некоторую часть расплавленного штейна.

Первый период закончится, когда в продуваемом штейне окислится сернистое железо. После этого тщательно удаляют шлак и продолжают продувку без добавки штейна и кварца. Воздух окисляет теперь только Cu 2 S, и образовавшаяся закись меди способствует появлению в конвертере металлической меди по реакции

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 .

Второй период заканчивается, когда в конвертере весь штейн превращается в медь, на что обычно уходит 2 … 3 ч. В конвертере и во втором периоде образуется небольшое количество богатого медью шлака, который остается в нем после выливания черновой меди и перерабатывается в следующем цикле.

Черновую медь по окончании процесса, наклоняя конвертер, выпускают в ковш и разливают в изложницы. Полученную медь называют черновой, так как она содержит до 1,5% примесей железа, цинка, никеля, мышьяка, сурьмы, кислорода, серы.

Рафинирование меди. Черновая медь подвергается рафинированию для удаления примесей, ухудшающих ее качество, а также для извлечения из нее золота и серебра. В современной практике применяют огневое и электролитическое рафинирование.

Огневое (пирометаллургическое) рафинирование заключается в окислении примесей в отражательных печах при продувке черновой меди воздухом. Кислород воздуха соединяется с медью и образует оксид Cu 2 O, который затем реагирует с примесями металлов (Me) по реакции

Me + Cu 2 O = MeO + 2Cu.

Одновременно окисляется и сера:

Cu 2 S + 2Cu 2 O = 6Cu + SO 2.

После этого приступают к раскислению меди – восстановлению Cu 2 O. Для этого медь перемешивают деревянными жердями. Бурное выделение паров воды и углеводородов способствует удалению газов и восстановлению меди:

4Cu 2 O + CH 4 = 8Cu + 2H 2 O + CO 2 .

После огневого рафинирования чистота меди достигает 99 … 99,5%.

Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой. Анодами служат пластины из черновой меди размером 1х1 м и толщиной 50 мм, катодами – листы толщиной 0,5 мм из чистой меди.

При прохождении тока напряжением 2 … 3 В и плотностью 100 … 400 А/м 2 анод растворяется, медь переходит в раствор в виде катионов, которые затем разряжаются на катодах и откладываются слоем чистой меди.

Примеси, имеющие более отрицательный потенциал (Zn, Fe, Ni, Bi, Sb, As и др.) переходят в раствор, но не могут выделиться на катоде при наличии в нем большого количества ионов меди. Золото и серебро не переходят в раствор и оседают на дно ванны вместе с не успевшими раствориться на аноде отдельными кусочками меди, образуя шлам. В шлам переходят также соединения серы, селена и теллура. Иногда в шламе содержатся до 35% Ag, 6% Se, 3% Fe, 1% Au и другие ценные элементы. Поэтому шламы обычно перерабатывают и извлекают эти элементы.

ПРОИЗВОДСТВО АЛЮМИНИЯ

Алюминий является достаточно распространенным в природе металлом. Насчитывается 250 минералов, содержащих алюминий. Основные алюминиевые руды – это бокситы, нефелины, алуниты, каолины. В них он встречается в виде гидроокисей (АlООН, Аl(OH) 3), каолинита (Al 2 O 3 ×2SiO 2 ×2H 2 O), корунда (Al 2 O 3).

Основной рудой, используемой для производства алюминия, являются бокситы. Алюминий в них содержится в виде гидрооксидов Al 2 O 3 ×Н 2 О и Al 2 O 3 ×3Н 2 О. В руде много примесей, однако, производство экономически целесообразно при содержании глинозёма в ней не менее 12 … 14%. В нашей стране главные месторождения бокситов находятся в Ленинградской области, на Урале и в Красноярском крае.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из руд, его электролиз с целью получения алюминия и рафинирование. Последовательность технологических операций приведена на рис. 1.17.

Наиболее распространённым в мировой практике способом получения глинозёма из бокситов является мокрый щелочной способ.

Существует определенная последовательность технологических операций.

Подготовка боксита, заключающаяся в прокаливании его в проходных трубчатых печах, дроблении и измельчении на дробилках, разделении по крупности на грохотах, последующем измельчении в мельницах и отделении фракции тонкого помола при помощи классификаторов.

Выщелачивание боксита, состоящее в его химическом разложении при взаимодействии с водным раствором щёлочи. Для этого измельчённый боксит загружают в автоклав и смешивают с раствором щелочи при температуре 200 … 250 °С и давлении 3 МПа. Для этого через автоклав внизу пропускают струю пара, которая перемешивает и подогревает полученную пульпу.

В результате в пульпе происходят следующие реакции

Al 2 O 3 ×Н 2 О + 2NaOH = 2NaAlO 2 + H 2 O.

Достаточная концентрация алюмината натрия (NaAlO 2) получается в растворе примерно через 4 часа Другие компоненты боксита (SiO 2 , Fe 2 O 3 , TiO 2 и др.) образуют осадок (красный шлам). Пульпа вытесняется из автоклава и по трубе транспортируется для дальнейшей переработки.

Отделение алюминатного раствора от красного шлама. Пульпу разбавляют водным раствором, полученным от промывки красного шлама предыдущей партии, и подвергают обработке в сгустителях (температура пульпы 90 … 100 °С). В результате этой обработки красный шлам оседает, после чего алюминатный раствор сливают и отфильтровывают (осветляют).

Разложение алюминатного раствора происходит по реакции

NaAlO 3 + 2H 2 O = NaOH + Al(OH) 3 .

Процесс разложения называется выкручиванием или декомпозицией. Его производят путём медленного перемешивания (96 … 120 ч) алюминатного раствора в присутствии кристаллической гидроокиси алюминия Al(OH) 3 . Процесс протекает в камерах (декомпозёрах) при температуре 30 … 60 °С. В результате из алюминатного раствора выделяется кристаллическая гидроокись алюминия. Полученную пульпу подвергают сгущению. Часть сгущённой пульпы употребляют для выкручивания в следующем цикле, а основную часть пульпы фильтруют и промывают. В результате получают кристаллическую гидроокись алюминия с 3 … 4% влаги.

Обезвоживание гидроокиси алюминия (кальцинация) - завершающая стадия производства глинозема. Её проводят в трубчатых вращающихся печах длиной 50 … 70 м и диаметром около 4 м. Печь расположена с наклоном. С высокой стороны в печь поступает сырье и, проходя по всей её длине, обезвоживается топочными газами, идущими навстречу. При 40 … 200 °С материал высушивается. При 200 … 1250 °С из него удаляется гидратная вода и образуется безводная окись алюминия.

2Al(OH) 3 = Al 2 O 3 + 3H 2 O.

В конце печи (зоне охлаждения) температура полученного глинозёма снижается до 60 … 70 °С, и его выгружают из печи (через 1,5 часа после начала процесса кальцинации). Глинозём по трубопроводу передаётся для хранения в цех электролиза.

Вышеописанная технология позволяет получить чистый глинозём (примеси составляют не более 0,4 … 0,66%).

Следующий этап технологического процесса производства алюминия заключается в электролизе глинозема.

Электролиз глинозёма производят в жидком криолите (3NaF×AlF 3 или Na 3 AlF 6) в электролизере (рис. 1.17). Катодное устройство электролизёра 1 представляет собой ванну в стальном кожухе, футерованную изнутри угольными блоками. К угольной подине ванны подключены медные шины для подвода электрического тока.

Анодное устройство 2 представляет собой вертикально установленный угольный блок. Нижняя его часть погружена в электролит. К электролизеру подводится постоянный электрический ток силой 70 …75 кА и напряжением 4 … 4,5 В. Ток используется как в процессе электролиза, так и для разогрева электролита до температуры 1000 ºС.

Электролит состоит из расплава криолита, в котором содержится 8 … 10% глинозёма.

В процессе работы в результате разложения глинозема на подине ванны под электролитом собирается жидкий алюминий. Его называют сырцом из-за большого содержания примесей.

Завершающий этап процесса – рафинирование алюминия. Операция заключается в продувке расплава алюминия хлором. При этом образуется парообразный хлористый алюминий. Пузырьки образующихся газов адсорбируют на своей поверхности атомы примесей и выносят их на поверхность ванны металла.

После рафинирования жидкий алюминий отстаивают – выдерживают в ковше или электропечи в течении 30 … 45 мин. В результате чистота алюминия достигает 99,5 … 99,85%. Полученный алюминий разливают в изложницы и получают в итоге слитки.

Описанная выше технология требует большого количества электроэнергии. Расход энергии на 1 т металла составляет 10000 … 12000 квт-ч.

ПРОИЗВОДСТВО МАГНИЯ

Магний широко используется в металлургии при производстве чугуна, стали и цветных металлов. В технике магний применяется в виде сплавов в авиационной и автомобильной промышленности.

Магний как металл достаточно широко распространен в природе. Его содержание в земной коре составляет около 2,3%. Встречается магний в виде следующих минералов, которые и являются сырьем для его производства: магнезит – природный карбонат магния (МaСО 3), содержащий 28,8% Mg; доломит – двойной карбонат магния и кальция (MgCO 3 ×СаСО 3), содержащий 13,2% Mg; карналлит – двойной хлорид магния и калия (MgCl 2 ×KCl ×6H 2 O), содержащий 8,8% Mg, и бишофит – шестиводный хлорид магния (MgCl 2 × 6Н 2 О), растворенный в морской воде и воде соленых озер.

Независимо от вида исходного сырья процесс получения магния можно разбить на три периода: подготовка сырья, получение из него магния и рафинирование. В зависимости от типа сырья магний получают термическим и электролитическим способами. Последний применяется наиболее часто.

Основным сырьем для получения магния в нашей стране является карналлит. Последовательность процесса получения магния следующая (рис. 1.18).

Обогащение карналлита. Руду измельчают, после чего обрабатывают горячей водой (T = 110 … 120 °С). При этом MgCl 2 и KCl переходят в раствор, а нерастворимые примеси после выпадения в осадок удаляются. Далее раствор охлаждают в вакуум-кристаллизаторах до нормальной температуры, в результате чего из него выпадают кристаллы так называемого искусственного карналлита MgCl 2 ×KCl×6H 2 O, которые при фильтровании отделяют. Полученный карналлит имеет примерно следующий состав: 32% MgCl 2 ; 26% KCl, 5% NaCl и 37% H 2 O.

Обезвоживание карналлита осуществляют в две стадии. Первая стадия процесса – в кипящем слое печи. Процесс осуществляют в наклонной печи шахтного типа. Обезвоживание карналлита происходит горячим газом, поступающим в печь через большое количество отверстий в подине. Давлением газа порошкообразный карналлит интенсивно перемешивается и переносится вдоль пода вплоть до выходного окна. Такое движение создает впечатление кипения. Карналлит при этом нагревается до температуры 200 … 210 °С, обезвоживается до 3 … 4% остаточной влаги, а затем направляется на вторую стадию обезвоживания.

На этой стадии получение безводного карналлита осуществляют расплавлением его в камерной электрической плавильной печи, а затем и в подогреваемом миксере. Камерная электрическая печь и миксер представляют собой электрические печи сопротивления, в которых нагревательными элементами служит расплавленный карналлит. В плавильной печи температура карналлита достигает 520 … 550 °С. В миксере температуру расплава поднимают до 840 … 860 °С. В результате происходит полное обезвоживание карналлита, при этом часть примесей выпадает в осадок.

Электролитическое получение магния осуществляют в электролизере. Он представляет собой стальную ванну, футерованную огнеупорным кирпичом. Ванну электролизёра заполняют расплавленным электролитом (расплав обезвоженного карналлита и возвратный хлористый магний). Температуру электролита поддерживают в пределах 720 °С. Электролизёр оснащен графитовым анодом, установленным между двумя стальными катодами. Сверху ванна закрыта хлороулавливателем и полностью изолирована от сообщения с атмосферой. Так как электролит содержит соли MgCl 2 , KCl, NaCl и примеси других солей и окислов, то электролитическое разложение хлористого магния обеспечивается пропусканием через электролит электрического ток требуемого напряжения (2,7 … 2,8 В), ток 30 … 70 кА. Напряжение, при котором происходит разложение других соединений, содержащихся в электролите, выше, чем для хлористого магния.

В результате работы установки на аноде образуются пузырьки хлора, которые выделяются из электролита и тут же отсасываются из электролизёра. На рабочей поверхности катодов выделяются капельки металлического магния. Магний легче электролита, поэтому он всплывает на поверхность, откуда периодически удаляется вакуумными ковшами. На дно ванны осаждается шлам, содержащий окись магния и частично восстановленное железо. Шлам и отработанный электролит удаляют вакуумными насосами. В результате электролиза получают магний-сырец, содержащий до 2 … 3% примесей (окись магния, нитрид и силицид магния и т.п.)

Рафинирование магния-сырца, извлечённого из электролизёра, проводят с целью удаления примесей электролита. Рафинирование заключается в переплавке полученного магния с флюсом. Для этого магний заливают в стальной тигель и перемешивают с флюсом (борной кислотой и др.). Тигель устанавливают в электропечь и нагревают до 710 … 720 °С в течение 0,5 … 1 ч. В процессе отстаивания примеси растворяются во флюсе, всплывают и образуют шлак. После этого магний разливают в изложницы и получают слитки, чистотой 99,9%. Более глубокую очистку магния можно осуществить путем его сублимации (возгонки) в вакууме.

ПРОИЗВОДСТВО ТИТАНА

Титан считается широко распространенным в природе металлом, так как содержание его в земной коре составляет 0,6%. Уникальное сочетание свойств титана и его сплавов, таких как высокая прочность, коррозионная и химическая стойкость, малый удельный вес, высокая температура плавления используется в авиа- и судостроении, космической технике, химической промышленности и т.д.

Рудами, служащими сырьем для получения титана, в настоящее время являются ильменит FeO × TiO 2 и рутил TiO 2 .

Известно несколько способов получения титана из руд. Схема одного из наиболее распространенных технологических процессов, исходным продуктом в которой является ильменит, приведена на рис. 1.19. Технологическая схема процесса включает следующие этапы: выделение концентрата из руды, получение двуокиси титана, получение четыреххлористого титана, восстановление титана с получением губчатого металла, рафинирование его и переплавка титановой губки в слитки.

Перед выделением концентрата из руд их дробят, и в связи с низким содержанием нужного компонента, обогащают. Титановые руды легко обогащаются флотацией, гравитацией и т.д. В результате получают ильменитовый концентрат, с содержанием двуокиси титана до 40 … 45%.

Получение концентрированной двуокиси титана достигается отделением окислов железа и пустой породы, содержание которых в ильменитовом концентрате составляет более 40%. Для этого концентрат смешивают с углем, загружают в пламенные отражательные или электрические печи и нагревают до температуры плавления чугуна (~1200 °С). В результате железо из оксидов восстанавливается, а после его науглероживания углем на подине печи образуется чугун.

FeO×TiO 2 + С = Fe + TiO 2 + СО.

Оксиды титана переходят в шлак, всплывающий на поверхность ванны расплавленного чугуна. Чугун и шлак выпускают из печи и раздельно разливают в изложницы. Титановый шлак, имеющий характерный белый цвет, содержит до 90% двуокиси титана, а также примеси- окислы железа, кремния, алюминия и др. Побочным продуктом процесса является чугун.

Четыреххлористый титан получают хлорированием титанового шлака. Для этого его измельчают, смешивают с углем, каменноугольной смолой (связующее) и прессуют в брикеты. Брикеты прокаливают при температуре 800 °С без доступа воздуха, а затем подвергают хлорированию в специальных печах – шахтных хлораторах. Процесс осуществляют при высокой температуре (800 … 1250 °С). В присутствии углерода хлор вступает в реакцию с двуокисью титана по реакции:

TiO 2 + 2Cl 2 + C = TiCl 4 + CO 2 .

Четыреххлористый титан, представляет собой бурую жидкость с температурой кипения 1300 °С. Вместе с ним образуются хлористые соединения элементов, входящих в состав шлака в виде примесей (FeCl 4 , AlCl 3 и др.). Разделение хлоридов осуществляют по принципу ректификации. Для этого пары смеси хлоридов пропускают через систему конденсационных установок, в которых поддерживается температура более низкая, чем температура кипения соответствующего хлорида.

Восстановление титана из хлористого соединения осуществляется чаще всего магнийтермическим методом. Процесс осуществляют в реакторах при температуре 950 … 1000 °С в атмосфере аргона. Реактор представляет собой стальную реторту диаметром и высотой несколько метров. В реактор загружают магний и подают четыреххлористый титан. В результате их взаимодействия образуется металлический титан, твердые частицы которого спекаются в пористую массу- губку.

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Побочный продукт процесса – хлористый магний периодически сливается из реактора через летку и направляется на переработку (электролиз). Полученная губка титана в своих порах содержит в качестве примесей до 35 … 40% магния и хлористого магния.

Рафинирование титана с целью очистки его от примесей осуществляют методом вакуумной дистиляции – выдержкой при температуре 900 … 950 °С в вакууме (при остаточном давлении воздуха 0,1 Па). При этом примеси либо расплавляются, либо испаряются.

Переплавка титановой губки в слитки осуществляется методом вакуумно-дугового переплава. Для этого из губки прессованием изготавливают расходуемый электрод и осуществляют переплав его в вакууме на установке, аналогичной рассмотренной ранее в разделе рафинирования стали. Чистота полученных слитков титана составляет 99,6 … 99,7%.

Вопросы для текущего контроля знаний по разделу

1. Какие материалы, применяемые в машино- и приборостроении вы знаете?

2. Что представляют собой черные сплавы, какие черные сплавы вы знаете?

3. Что такое цветные сплавы, какие цветные сплавы вы знаете?

4. Какие неметаллические материалы вы знаете?

5. Что такое металлургическое производство, каковы его задачи?

6. Какие виды продукции выпускает черная металлургия?

7. Какие материалы являются исходными при производстве чугуна?

8. Что в металлургии называют шихтой?

9. Как устроена и работает доменная печь?

10. Какие недостатки способа получения железоуглеродистых сплавов в доменной печи вы знаете?

11. Что является сырьем при производстве стали?

12. Какова последовательность протекания физико-химических реакций в сталеплавильной печи?

13. Какие этапы технологического процесса выплавки стали в металлургической печи вы знаете?

14. Какова сущность способа производства стали в кислородном конвертере, как устроен и работает кислородный конвертер?

15. Перечислите достоинства и недостатки способа производства стали в кислородном конвертере?

16. Как осуществляют выплавку стали в мартеновской печи?

17. Расскажите, как устроена и работает мартеновская печь?

18. На какие периоды делится процесса плавки в мартеновской печи?

19. Каковы достоинства и недостатки мартеновской печи?

20. Какие электропечи, предназначенные для выплавки стали вы знаете?

21. Что является источником тепла в дуговой электрической печи?

22. Как устроена и работает дуговая электропечь для выплавки стали?

23. Каковы достоинства и недостатки дуговой электрической печи?

24. Что является источником тепла в индукционной электрической печи?

25. На каком принципе построена работа индукционных электрических печей для выплавки стали?

26. Как устроена и работает индукционная электрическая печь?

27. Назовите преимущества и недостатки индукционной печи?

28. Какие способы прямого восстановления железа из руд вы знаете?

29. Расскажите о методе внедоменного получения железа, реализованном на Оскольском металлургическом комбинате?

30. Каким образом в сталь попадают примеси?

31. Какие методы повышения качества стали вы знаете?

32. В чем заключается метод рафинирующей обработки стали синтетическими шлаками?

33. В чем заключается метод вакуумной дегазации стали при рафинирующей ее обработке?

34. Как осуществляется электрошлаковый переплав при рафинировании стали?

35. В чем состоит сущность способа вакуумно-дугового переплава и как он влияет на качество стали?

36. Какие методы разливки стали вы знаете?

37. Какая оснастка используется для разливки стали?

38. Как осуществляется разливка стали при заполнении изложниц сверху, какие преимущества и недостатки имеет этот метод?

39. Что представляет собой метод разливки стали сифоном, какие преимущества и недостатки он имеет?

40. Каким образом разливают сталь на машинах для непрерывной разливки, какие преимущества и недостатки он имеет?

41. Какие основные виды продукции цветной металлургии вы знаете?

42. Как в настоящее время осуществляют производство меди?

43. Расскажите о технологическом процессе производства алюминия?

44. В какой последовательности выполняют операции при производстве магния?

45. Как выглядит наиболее распространная в настоящее время схема технологического процесса производства титана?

Металлургическая промышленность представлена черной и цветной отраслью. Эти две части составляют единый функционирующий организм и вместе являются базовой отраслью хозяйства страны, которые отличаются высокими показателями капиталоемкости и материалоемкости.

Цветная металлургия является одной из отраслей промышленной хозяйства страны, занимающаяся добычей недр, их обогащением и дальнейшей обработкой руд металлов (цветных, редких или благородных).

Характерные черты отрасли

Функциональные характеристики цветной металлургии обусловлены следующими ее отличительными чертами:

  • Цветная металлургия имеет наибольшее потребление сырья и материалов среди прочих промышленных производств. Для обеспечения ее работы требуются значительные объемы сырья. В основном для переработки используется руда с низким содержанием ценных компонентов (от 0,3–0,5 до 2,1%). Исключение составляет обработка бокситов для создания алюминия.
  • Эта отрасль имеет самые значительные показатели электро- и топливопотребления. Самыми энергопотребляемыми отраслями является индустрия свинца, никеля и кобальта.
  • Для обеспечения бесперебойной работы предприятия цветной металлургии требуется большое число трудовых ресурсов, т. е. эта отрасль, в том числе, трудоемкая.

Добыча цветной металлургии это тяжелый трудозатратный процесс

  • Предприятия этой производственной сферы в основном занимаются переработкой полиметаллических руд.
  • Эта отрасль промышленности состоит из нескольких обязательных стадий. К ним относят этапы добычи рудного сырья, его обогащению, металлургический передел, дальнейшую переработку полученного металла. Только прохождение всех перечисленных этапов составляет полный производственный процесс (цикл).
  • Предприятия отрасли цветной металлургии располагаются по географическому принципу в зависимости от месторасположения полезных ископаемых. В этом случае природно-сырьевой фактор служит решающим.
  • Цветная металлургия считается одной из самых опасных в индустрии для окружающей среды. Ее деятельность связана с постоянными выбросами больших объемов отравляющих веществ.

Цветная металлургия

Отрасли цветной индустрии

Состав цветной металлургии, как сложноорганизованный производственный организм, включает 14 подотраслей.

Рассмотрим подробнее ее строение:

  • Алюминиевая. Нуждается в высококачественном сырье в сравнении с другими ветками промышленности. Основой, обеспечивающей ее деятельность, служат бокситы. Эти сырьевые ресурсы в промышленных объемах распространены на Урале и Северо-Западе страны. На этих территориях и располагаются основные производственные мощности по их добыче и дальнейшей переработке.
  • Медная. Заводы медной, как и алюминиевой, промышленности располагаются в непосредственной близости от месторождений полезных ископаемых. В нашей стране для производства меди добывают и используют сырье, называемое медным колчеданом. Основные залежи его находятся на территориях Урала. Вторым по величине месторождением принято считать Восточную Сибирь с ее медистыми песчаниками.
  • Свинцово-цинковая. Предприятия этой отрасли находятся в непосредственной близости от месторождений полиметаллических руд. К таким территориям относят Кузбасс, Северный Кавказ, Дальневосточное Приморье и Забайкалье.
  • Никель-кобальтовая. Эта подотрасль цветной индустрии занимается добычей и обогащением руд для дальнейшего производства кобальта и , драгоценных металлов, меди, строительных материалов и сопутствующей химической продукции. Территориально предприятия никель-кобальтовой промышленности находятся в Норильском районе, на Урале и низовьях Енисея.
  • Золотодобывающая. Эта отрасль добычи и производства базируется на золотосодержащих рудах и песках. Основное ее назначение - создание драгоценных сплавов и металлов. А также в ведении золотодобывающей промышленности находится переработка драгметаллов.
  • Титано-магниевая. Основное назначение этой подотрасли - добыча полезных ископаемых, их переработка и обогащение для создания титана, магния и прочих производных.
  • Оловянная. Занимается добычей полезных ископаемых, дальнейшим обогащением руд с целью производства олова.
  • Вольфрамо-молибденовая. Эта отрасль базируется на добыче и дальнейшем обогащении вольфрамо-молибденовых руд, их концентратов и производной продукции.
  • Промышленность по добыче и производству редких металлов, материалов с полупроводниковыми свойствами.
  • Сурьмяно-ртутная. Основное назначение этой отрасли - добыча руд (ртутных и сурьмяных) и их дальнейшее обогащение с целью создания ртути, сурьмы и производной продукции.
  • Промышленность по обработке цветных металлов. Основное назначение этой составляющей - создание проката всех типов, труб из цветного металла и сплава.
  • Промышленность по переработке вторичных цветных металлов. Основной вид деятельности этой индустрии заключается в сборе, переработке и изготовлению цветного металла из лома и различных отходов.
  • Электродная. Основной род занятий электродной промышленности состоит в производстве электродной продукции из угля или графита.
  • Промышленность жаропрочных, а также твердых и тугоплавких металлов.













Технологические этапы производства цветной металлургии

Цветная металлургия в процессе производства проходит несколько этапов, включаемых в единый цикл.

К технологии относят:

  • Добыча производственного сырья.
  • Подготовка сырья к его дальнейшей промышленной переработке, в том числе обогащение. Обогащение руд - необходимый процесс для изготовления концентрата. Обогащение предполагает дробление породы и дальнейшее ее разделение на пустую породу и ценные элементы. Полученный концентрированный продукт необходим для дальнейшего производства металла.
  • Металлургический передел.Передел представляет собой такую обработку сырья, при которой на выходе получается полуфабрикат, используемый для дальнейшего использования. В процессе металлургического передела возможно изменить химический состав сырья, его физико-химические свойства, а также допустить переход из одного агрегатного состояния в необходимое другое. В цветной промышленности металлургический передел в основном связан с . Это плавка, его разливка, дальнейшее обжатие с целью создания проката.
  • Обработка полученных сопутствующих отходов. Она подразумевает утилизацию или дальнейшую переработку. Из полученного шлака в дальнейшем можно получить продукцию или сырье для других видов промышленности.

Цветная металлургия находится в стадии своего развития. Основные направления, в которых ведется работа:

  • улучшение качества выпускаемых изделий и сопутствующей продукции;
  • снижение затрат, связанных с производством металлопродукции;
  • соблюдение принципов экологической безопасности производства, совершенствование систем защиты окружающей среды;
  • совершенствование ресурсосберегающей политики;
  • повышение конкурентоспособности выпускаемой металлопродукции.