Стратегические виды топлива. Общие сведения о топливе, основные характеристики топлива, определяющие его качество. Нужна помощь по изучению какой-либы темы

ТОПЛИВО
в широком смысле - любой горючий материал, который, вступая в реакцию с кислородом, выделяет теплоту. На практике топливом считают только те вещества, которые воспламеняются при умеренной температуре, имеют высокую теплотворную способность и могут быть получены в достаточном количестве доступными средствами. Химическая реакция между горючими элементами (чаще всего это углерод и водород) и кислородом называется горением. В результате этого процесса из реагирующих компонентов образуются продукты реакции (обычно двуокись углерода и пары воды) и выделяется теплота. Участвующие в химической реакции атомы не изменяются, а только перестраиваются в результате распада одних молекул и образования других. Например, атом углерода в молекуле двуокиси углерода, являющейся продуктом химической реакции, точно такой же, каким он был до реакции в молекуле топлива. С другой стороны, в случае ядерного топлива, такого, как уран-235, в результате ядерной реакции деления образуются нейтроны, излучения элементарных частиц и выделяется теплота, а горение отсутствует. При этом исходный химический элемент превращается (распадается) в другие, более легкие элементы, такие, как криптон и барий. В случае ядерной реакции синтеза (слияния ядер) образуются более тяжелые элементы. Например, из водорода образуется гелий. См. также ЯДЕР ДЕЛЕНИЕ ; ЯДЕРНЫЙ СИНТЕЗ . Наиболее важными горючими материалами являются соединения углерода, водорода и кислорода, к которым относятся природные топлива, такие, как торф, лигниты, каменный уголь, природный газ и нефть, а также их твердые, жидкие и газообразные продукты. В лесной и сельской местности в качестве топлива нередко используют древесину и углеродсодержащие отходы сельскохозяйственной продукции. Некоторые из природных топлив органического происхождения содержат другие химические элементы, такие, как азот, железо, алюминий, кальций, магний, хлор, сера, натрий и калий, однако эти добавки не оказывают полезного влияния на ценность топлива. Любое топливо является таковым только благодаря тому, что содержит водород и углерод.
ПРИРОДНЫЕ ТОПЛИВА ОРГАНИЧЕСКОГО ПРОИСХОЖДЕНИЯ
К природным топливам органического происхождения относятся торф, лигниты, каменные и антрацитные угли, нефть и природный газ. Эти материалы часто называют ископаемыми топливами, так как они являются конечными продуктами физико-химических превращений окаменевших остатков растений. Сравнение составов различных топлив показывает, что относительное содержание углерода по сравнению с содержанием водорода уменьшается при переходе от твердых топлив к жидким и далее к газообразным. Все эти топлива можно получать друг из друга, изменяя соотношение между содержанием углерода и водорода. Все они являются ценным сырьем для производства различных химических продуктов, горючего для двигателей и масел для смазки, а также служат источниками тепла и электрической энергии.
Природный газ. Природный газ является смесью углеводородов, состоящей главным образом из представителей метанового ряда и содержащей небольшие добавки других газов, таких, как азот, двуокись углерода, сероводород и иногда гелий. Обычно основным в природном газе является метан, однако иногда имеются значительные примеси этана и, в меньшей степени, более тяжелых углеводородов. В природе встречаются газы, почти целиком состоящие из двуокиси углерода, однако такие газы не обладают свойством горючести. Различают два типа природных горючих газов - сухие и влажные. Сухие газы состоят в основном из метана и иногда содержат также этан и пропан, однако они не содержат более тяжелых углеводородов, которые могут конденсироваться при сжатии. Влажные горючие газы содержат различные количества природного газолина, пропана и бутана, которые можно извлечь посредством сжатия или экстрагирования.
Продукты нефти. Нефть является природной смесью углеводородов, которая при обычном давлении находится в жидком состоянии, однако она содержит растворенные летучие углеводороды, которые высвобождаются и образуют скопления (шапки) в верхней (ближней к поверхности земли) части залежи. При переработке нефти получают лигроин, смазочные масла, мазут и нефтяной кокс.


Мазут. Мазут представляет собой смесь тяжелых жидких углеводородов, остающихся после перегонки нефти. Его состав зависит от состава сырой нефти и технологии ее перегонки. Наряду с каменным углем и природным газом мазут используется в качестве топлива как в коммунальном хозяйстве, так и в промышленности, и вытеснил каменный уголь как топливо для морских и речных судов.
Нефтяной кокс. Твердая компонента, остающаяся после перегонки нефти, называется нефтяным коксом. Эта твердая масса обычно содержит от 5 до 20% летучих веществ, от 80 до 90% связанного углерода, около 1% золы и немного серы. Хотя нефтяной кокс находит применение в ряде отраслей промышленного производства (например, как сырье для изготовления угольных электродов и пигментов для красителей), он представляет большую ценность как источник тепла (имеет высокую теплотворную способность) и используется в больших количествах как асфальтовый гудрон.
Газоконденсаты. Эти продукты состоят в основном из пропана и бутана, которые извлекаются из природного газа в отстойниках. Их получают также на нефтеперерабатывающих заводах, где они называются сжиженными очистными газами. Газы любого происхождения, обладающие высокой летучей способностью, легко преобразовать в жидкое состояние, повышая давление. Затем эти конденсаты можно транспортировать через трубопроводы и в железнодорожных и автоцистернах. Их можно хранить под землей в искусственных или естественных резервуарах или на поверхности земли в специальных резервуарах. См. также НЕФТЬ И ГАЗ.
Торф. Торф является продуктом отмирания и неполного распада остатков болотных растений под воздействием грибков и бактерий в условиях избыточного увлажнения и недостаточного доступа воздуха. Залежи торфа распространены по всему миру, и торф используют в качестве топлива там, где отсутствуют другие, более эффективные виды топлива (с более высокой теплотворной способностью).
Каменный уголь. Каменный уголь представляет собой смесь углеродсодержащей массы, воды и некоторых минералов. Он образуется из торфа в результате длительного воздействия бактериологических и биохимических процессов. В превращении торфа в различные виды каменного угля большую роль играют температура и давление. Действие проточных вод приводит к появлению в пластах каменного угля большего или меньшего количества инородных минералов, которые перемешиваются с углеродсодержащей массой. Эта масса защищена от воздействия воздуха накрывающим ее пластом породы.


Существуют два способа разработки месторождений каменного угля. При разработке открытым способом пласт каменного угля очищается от слоя настилающей породы с помощью экскаваторов, которые используются затем для погрузки угля на транспортные средства. При разработке каменного угля подземным способом сооружается вертикальная шахта или горизонтальная выработка (штольня) в склоне горы, ведущие к пласту каменного угля. При этом каменный уголь извлекается из пласта посредством взрывной отбойки или с помощью механических рыхлителей и затем перегружается в вагонетки или на транспортеры. См. также УГОЛЬ ИСКОПАЕМЫЙ.
СИНТЕТИЧЕСКИЕ ЖИДКИЕ ТОПЛИВА
Каждый вид ископаемого топлива органического происхождения, а именно каменный уголь, нефть или природный газ, может быть преобразован в другой посредством изменения относительного содержания углерода и водорода. Существуют два классических способа превращения каменного угля в жидкое топливо, разработанные в Германии. В процессе Бергиуса к каменному углю подводится газообразный водород, и при высоком давлении в присутствии катализатора происходит процесс гидрогенизации. В процессе Фишера - Тропша жидкое топливо получают с помощью каталитической реакции, в которой участвуют моноксид углерода и водород (синтезирующий газ), получаемые при первичной газификации нагретого до высокой температуры каменного угля под воздействием кислорода и водяного пара.

ПРОМЫШЛЕННАЯ ГАЗИФИКАЦИЯ
Первоначально газификация каменного угля использовалась для получения светильного газа. В настоящее время газификация всех видов природных топлив применяется не только для удовлетворения нужд коммунальной и промышленной теплоэнергетики, но и для получения ценного сырья, используемого при синтезе ряда химических продуктов. Факторами, определяющими выбор сырья, подлежащего газификации, являются его доступность и стоимость процесса газификации. Используя в качестве источника углерода кокс, производимый из каменного угля, получают синтетический газ в виде смеси моноксида углерода с водородом, образующейся при реакции двуокиси углерода и водяного пара с углеродом раскаленного добела кокса. Можно производить генераторный газ из каменного угля в непрерывном процессе газификации, используя кислород и водяной пар. Синтетический газ можно производить также из природного газа, используя химическую реакцию между метаном и водяным паром или метаном и строго дозированным количеством кислорода. Обе эти реакции требуют присутствия соответствующих катализаторов.
ВЫСОКОЭНЕРГЕТИЧЕСКИЕ ХИМИЧЕСКИЕ ТОПЛИВА
Для самолетов, ракет и космических летательных аппаратов требуются специальные высокоэнергетические топлива. Существуют два основных типа двигателей для летательных аппаратов, используемых в авиации и космонавтике. Топливо для воздушно-реактивных двигателей, в которых в качестве окислителя используется кислород атмосферного воздуха, должно иметь высокую теплотворную способность (высокую удельную теплоту сгорания). Кроме того, такое топливо должно быть термически устойчивым. Для достижения наивысших технических показателей летательного аппарата такое топливо должно иметь также высокую плотность (чтобы в заданном ограниченном объеме можно было разместить большой запас топлива). Таким образом, в авиационной технике проблема состоит в нахождении топлива, которое характеризуется большой плотностью и высокой удельной теплотой сгорания. Для большей части топлив удельная теплота сгорания тем меньше, чем выше плотность. В настоящее время большинство реактивных двигателей работает на керосине или на бензине в качестве топлива. Однако ведутся исследования смесей специальных углеводородных соединений, которые обладали бы более высокой плотностью. Значительное внимание уделяется также поиску других видов топлив. Второй класс двигателей, а именно ракетные двигатели, применяется на летательных аппаратах, движущихся большей частью в космосе, где нет кислорода. Следовательно, такой летательный аппарат должен нести не только горючее, но и окислитель. Эффективность ракетного топлива зависит не только от его удельной теплоты сгорания, и для оценки эффективности такого топлива используют параметр, называемый удельным импульсом (или удельной тягой), который определяется как отношение тяги двигателя к расходу топлива. С точки зрения теории, наибольший удельный импульс (около 400 с) должны обеспечивать жидкий водород в качестве горючего и жидкий фтор в качестве окислителя. Ракетные двигатели бывают жидкостные (ЖРД) и твердотопливные (РДТТ). Для ЖРД типичными комбинациями горючее/окислитель являются: керосин/жидкий кислород, гидразин/четырехокись азота, аммиак/азотная кислота и жидкий водород/жидкий кислород. Жидкостные ракетные двигатели использовались на большинстве крупных ракетно-космических систем. Например, в первой ступени ракеты-носителя "Сатурн-5", которая служила для доставки американского космического корабля "Аполлон" на Луну, в качестве топлива использовались керосин и жидкий кислород, а на второй и третьей ступенях - жидкие водород и кислород. Твердое ракетное топливо содержит и горючее, и окислитель, соединенные вместе посредством связующего вещества, которое также может быть горючим. Твердые топлива уступают жидким по величине удельного импульса, однако находят широкое применение в боевых ракетах и неуправляемых реактивных снарядах вследствие низкой стоимости и удобства хранения таких топлив. Ракеты на твердом топливе имеют простую конструкцию, высокое начальное ускорение и отличаются высокой боеготовностью. Стратегические ракеты "Трайдент" и "Минитмен", а также множество более мелких ракет, используемых в системах вооружения летательных аппаратов, оборудованы двигателями на твердом топливе.
См. также
РАКЕТА ;
РАКЕТНОЕ ОРУЖИЕ ;
КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
ЯДЕРНЫЕ ТОПЛИВА
В современных энергетических установках, основанных на принципе ядерного деления, в качестве топлива используется уран. Уран добывается из земных недр, где его доля составляет приблизительно 4Ч10-6. Урановая руда перерабатывается и обогащается; в топливе для атомного реактора концентрация изотопа урана с массовым числом 235 должна составлять 2-4%. Отработанное ядерное топливо можно переработать и снова получить некоторые расщепляемые материалы. Кроме того, на основе концепции реактора-размножителя (бридера) можно намного более эффективно использовать природный уран, преобразуя нерасщепляемый изотоп урана с массовым числом 238 в расщепляемый плутоний-239. В этом процессе и торий, присутствующий в природном ядерном топливе, также можно преобразовать в расщепляемый изотоп урана. В природе уран-235 встречается в незначительных количествах, так что нужды в ядерном топливе будут, по-видимому, удовлетворяться с помощью бридерных реакторов. В противоположность урану, мировые запасы дейтерия (изотопа водорода с массовым числом, равным двум), который можно было бы использовать для получения энергии с помощью ядерного синтеза, фактически неограниченны. В одном кубическом метре морской воды содержится количество дейтерия, которого хватило бы для производства в управляемой термоядерной реакции такого количества энергии, которое выделяется при сжигании 200 т нефти. Другое топливо для реакции ядерного синтеза - тритий - менее распространено в природе, но и оно могло бы заменить в энергетическом эквиваленте все мировые запасы топлив органического происхождения.
БУДУЩИЕ ПОТРЕБНОСТИ И ИСТОЧНИКИ ЭНЕРГИИ
В середине 20 в. люди начали понимать, что быстрое развитие промышленного производства и сопровождающий его быстрый рост спроса на энергию приведут в обозримом будущем к исчерпанию мировых запасов природных органических топлив. Во многих странах мира вследствие этого начали ускоренно осуществлять программы развития атомной энергетики для получения электрической энергии с помощью атомных реакторов. Истощение запасов органических топлив, рост спроса на электроэнергию и загрязнение окружающей среды, сопровождающее сжигание таких топлив, позволяют ожидать, что с течением времени вклад атомной энергетики будет возрастать. Однако и атомные электростанции могут оказывать вредное воздействие на окружающую среду. Мировая общественность встревожена авариями на атомных электростанциях и проблемой захоронения радиоактивных отходов. Следовательно, основным источником энергии, призванным заменить современные атомные электростанции, использующие цепную ядерную реакцию (реакцию ядерного деления), должны стать электростанции, использующие управляемую реакцию термоядерного синтеза. В настоящее время ведутся исследования возможностей более широкого использования других природных источников энергии, которые в той или иной степени зависят от энергии солнечного света. Например, в некоторых районах мира для обогрева жилых и промышленных зданий используют солнечные батареи. Разрабатываются топливо- и энергосберегающие технологии. В различной степени продвинуты исследования возможностей практического использования энергии ветра, морских волн и приливов, геотермальных энергетических источников и энергии биомассы.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ .
ЛИТЕРАТУРА
Энергетическое топливо СССР. М., 1968 Равич М.Б. Топливо. М., 1972 Антропов П.Я. Топливно-энергетический потенциал Земли. М., 1974 Моторные, реактивные и котельные топлива. М., 1983 Немчиков В.П. Качество, эффективность, цена топлива. М., 1983

Энциклопедия Кольера. - Открытое общество . 2000 .

Топливо — горючие вещества, используемые для получения тепла. В широком смысле, под топливом понимают, один из видов потенциальной энергии (энергоноситель).

Различают : естественное топливо (непосредственно существующее в природе) — древесина, уголь, торф , природный газ , и искусственное (являющееся продуктом переработки естественного топлива) — древесный уголь , мазут, искусственные газы . В зависимости от величины теплоты сгорания различают: высокосортное топливо высокой теплотой сгорания) и низкосортное топливо .

Основной показатель топлива — его теплотворная способность. Для сравнения различных видов топлива существует понятие условного топлива. Теплота сгорания одного килограмма условного топлива (у.т.) равна 29,3 МДж или 7000 ккал, что приблизительно соответствует каменному углю.

Основные виды топлива: твердое, жидкое и газообразное топливо. В зависимости от вида используемого топлива различают: газовые котлы, жидкотопливные котлы, твердотопливные котлы, электрические котлы и комбинированные котлы.

Твердое топливо — древесина, древесная щепа, древесные пеллеты, торф, бурый и каменный уголь, горючие сланцы, сапропель, битуминозные пески. Из твердых видов топлив в отопительных котельных в основном сжигают ископаемые угли — бурые, каменные и антрациты.

Бурый уголь — твердый ископаемый уголь, образовавшийся из торфа; содержит 65-70% углерода, имеет бурый цвет. Относится к группе углей с большим содержанием золы и влаги, поэтому имеет низкую теплоту сгорания — 1800-3250 ккал/кг. К недостаткам данного топлива относится также большое содержание серы, что приводит к усиленной коррозии стальных частей в котельных установках, а также способность к самовозгоранию при длительном хранении в штабелях. Бурый уголь целесообразно сжигать в топках крупных котлов.

Каменный уголь — твердое горючее полезное ископаемое растительного происхождения, черного цвета с блестящей, матовой или полуматовой поверхностью; при сгорании пламя тем больше, чем выше содержание водорода . Ряд органических соединений, входящих в состав каменного угля, обладают канцерогенными свойствами.

Антрацит — старейший из всех групп ископаемых углей. Он сгорает без пламени с выделением небольшого количества дыма, удобен для сжигания в топках любых котлов.

Жидкое топливо — нефть и продукты ее переработки (мазут, керосин, дизельное топливо); масла (сланцевое масло, отработавшее машинное масло, растительные или животные масла). Из жидких топливв отопительных котельных самым распространенным является мазут (остаточный продукт переработки нефти с плотностью 0,96-0,98 т/м³). Его хранят в подземных стальных или железобетонных резервуарах, установленных вне котельных. Емкость резервуаров рассчитывают на потребность не менее 15 сут. работы котельной.


Газообразное топливо — природные и искусственные газы. Газообразное топливо — смесь горючих и негорючих газов. В естественном газе в основном содержатся метан, этан и тяжелые углеводороды, а также негорючие газы — углекислый газ и азот . В среднем природные газы состоят из 96% метана, 2% этана, 0,5% тяжелых углеводородов и 1,5% углекислого газа и азота.

По сравнению с твердым топливом газообразное имеет ряд преимуществ: простота и меньшая трудоемкость обслуживания котлов; лучшее перемешивание горючего с воздухом, в результате чего возможно горение с наименьшим избытком воздуха и, следовательно, меньшими потерями тепла с отходящими газами.

Однако при сжигании газа следует учитывать особенности этого процесса, а также взрывоопасность и ядовитость газа. Природный газ при содержании его в воздухе от 3,8 до 17,8% (по объему) образует смесь, которая при наличии огня или искры взрывается. Утечки газа опасны, так он ядовит.

Происхождение топлива. Все виды твердого топлива нашей планеты своим происхождением обязаны солнечной энергии и хлорофиллу - особому веществу, содержащемуся в листьях и других зеленых частях растений, которые создают сложные органические вещества, а в дальнейшем превращаются в топливо. В своих превращениях вещество топлива последовательно проходит стадии образования торфа, бурого угля, каменного угля, антрацита.

В природе существуют различные виды твердого топлива, отличающиеся разнообразными составом и свойствами. Твердое топливо в основном образуется из высокоорганизованных растений - древесины, листьев, хвои и т. п. Отмершие части высокоорганизованных растений разрушаются грибками при свободном доступе воздуха и превращаются в торф - рыхлую, расплывчатую массу перегноя, так называемых гуминовых кислот. Скопление торфа переходит в бурую массу, а затем в бурый уголь. В дальнейшем под воздействием высокого давления и повышенной температуры бурые угли подвергаются последующим превращениям, переходя в каменные угли, а затем в антрацит.

Состав топлива. Топливо в том виде, в котором оно добыто, включает в себя органическую массу и балласт. Органической массой топлива считают ту часть, которая произошла из органических веществ: углерода, водорода, кислорода и азота; в балласт включают серу, минеральные примеси - золу и влагу топлива:

С° + Н° + О° + N° + S° ° = 100%, (12)

Твердое топливо и жидкое топливо состоит из углерода С, водорода Н, органической серы SО и горючей колчеданной серы S к, кислорода О и азота N, находящихся в виде сложных соединений.

Кроме указанных элементов, составляющих горючую массу топлива, в состав топлива входит еще балласт - зола А и влага W:

Б=А р +W р, (13)

Летучей, или горючей, серой называется

S л = S ° + S к, (14)

Состав топлива выражают в процентах по массе.

В топочной технике различают рабочую, сухую и горючую массы топлива. В связи с этим при буквенном обозначении вещества, входящего в состав топлива, вверху ставят буквы р, с, или г. Под рабочей массой топлива понимают топливо в том виде, в каком оно поступает к потребителю. Состав рабочей массы топлива выражают так:

С р + Н р + О р + N p + S ° p + S p к + А р + W p = 100%, (15)

Если из топлива исключить балласт, то получаем горючую массу топлива

С г + Н г + O г + N г + S г ° + S г к = 100%, (16)

Сухая масса топлива соответствует обезвоженному топливу и состав ее следующий:

С с + Н с + О с + N c + S о с + S с к + А с = 100%, (17)

Пересчет состава топлива с одной массы на другую производят с помощью коэффициентов (табл. 7).

Таблица 7. Коэффициенты пересчета состава топлива с одной массы на другую

Пример 1. Определить состав рабочей массы топлива, содержание горючей массы которого равно: С г = 75,5%; Н г = 5,5%; S г отк = 4,2%; О г = 13,2%; N г = 1,6%; А р = 18%; W р = 13%.

Находим коэффициент для перерасчета по табл. 7

100 - (18+ 13) / 100 = 0,69

Умножая на этот коэффициент элементы горючей массы топлива, получим состав его рабочей массы: С р = 75,5 . 0,69 = 52,1%; Н р = 5,5 . 0,69 = 3,8%; S р о+к = 4,2 . 0,69 = 2,9%; О р = 13,2 .

0,69 = 9,1%; N p = 1,6 . 0,69 = 1,1%.

Углерод и водород - самые ценные части топлива.

Углерод содержится в значительном количестве в топливе всех видов: древесине и торфе 50-58%, в бурых и каменных углях 65-80%, в тощих углях и антрацитах 90-95%, в сланцах 61-73%, в мазуте 84-87% (цифры даны в процентах на горючую массу топлива). Чем больше углерода в топливе, тем больше оно выделяет тепла при сгорании.

Состав рабочей массы топлива значительно зависит от величины балласта, поэтому чаще всего приводятся данные по составу горючей массы топлива, которая более стабильна для топлива каждого вида и месторождения.

Водород является второй важнейшей частью каждого топлива. В топливе водород частично находится в связанном с кислородом виде, составляя внутреннюю влагу топлива, вследствие чего понижается тепловая ценность топлива. Водород играет большую роль в образовании летучих веществ, выделяющихся при нагревании топлива без доступа воздуха. В состав летучих водород входит в чистом виде и в виде углеводородных и других органических соединений.

Азот также является балластной инертной составляющей топлива, снижающей процентное содержание в нем горючих элементов. При сгорании топлива азот в продуктах сгорания содержится как в свободном виде, так и в виде окислов NO x . Последние относятся к вредным составляющим продуктов сгорания, количество которых должно быть лимитировано.

Сера содержится в топливе в виде органических соединений S° и колчедана S к, объединяемых в летучую серу S т. Кроме того, сера входит в состав топлива в виде сернистых солей - сульфатов (например, гипса CaSО 2), не способных гореть. Сульфатную серу S a принято относить к золе топлива.

Присутствие серы значительно снижает качество топлива, так как сернистые газы SО 2 и SО 3 (соединяясь с Н 2 О, образуют H 2 SО 4) разрушают металл котельного оборудования, попадая в атмосферу, вредно действуют на живые организмы и растительность. Поэтому сера - крайне нежелательный элемент для топлива. Сернистые газы, проникая в рабочие помещения, могут вызвать отравление обслуживающего персонала.

Зола топлива представляет собой балластную смесь различных минеральных веществ, остающихся после полного сгорания всей горючей части топлива. Зола влияет на качество сгорания топлива отрицательно.

Различают три разновидности золы но ее происхождению: первичная - внутренняя, вторичная и третичная. Первичная зола образуется из минеральных веществ, содержащихся в растениях. Содержание ее в топливе незначительно и распределение равномерно. Вторичная зола получается вследствие заноса растительных остатков землей и песком в период пластообразования. Третичная зола попадает в топливо во время его добычи, хранения или транспортировки.

Зола является нежелательным балластом топлива, снижающим содержание в нем других горючих элементов. Кроме того, зола, образуя отложения на поверхностях нагрева котлоагрегата, уменьшает теплопередачу от газов к воде, пару и воздуху в его элементах. Наличие большого количества золы затрудняет эксплуатацию котлоагрегата. Если зола легкоплавкая, она налипает на поверхности нагрева котла, нарушая нормальный режим его работы (шлакование).

Твердое топливо при сжигании важное значение имеют характеристика золы, степень ее легкоплавкости. Плавкость золы определяют в лаборатории. В особую электропечь помещают несколько выполненных из золы пирамид "конусов" высотой 20 мм со стороной основания 7 мм. Одна из граней пирамиды должна быть перпендикулярна основанию.

В процессе постепенного нагревания пирамид в электрической печи отмечают три точки (рис. 8): температуру начала деформации t 1 , определяемую в начале плавления верхушки пирамиды; темпера туру размягчения t 2 , которая фиксируется в момент, когда верхушка пирамиды наклонится до основания или же пирамида превратится в шар, и температуру t 3 , когда содержимое пирамиды растечется по основанию.

Зола бывает легкоплавкой с температурой размягчения ниже 1050°С, вызывающая шлакование топки при сжигании топлива, и тугоплавкой с температурой размягчения выше 1050°С.

Учитывая большое влияние зольности на качественные характеристики топлива, для сравнительных подсчетов используют понятие приведенной зольности

АрП=А р /Q р н, (18)

где Q р н - рабочая низшая теплота сгорания топлива, МДж/кг.

Влага топлива складывается из внешней, или механической, вызванной поверхностным увлажнением кусков топлива и заполнением влагой пор и капилляров, и равновесной, называемой гигроскопической, которая устанавливается в материале при длительном соприкосновении с окружающим воздухом. Содержание внешней влаги определяют высушиванием пробы топлива на воздухе до постоянной массы, а гигроскопической W г твердого топлива - высушиванием в сушильном шкафу измельченной пробы воздушно-сухого топлива до постоянной массы при 102-105°С.

Для определения влажности жидкого топлива отстаивают воду в течение суток при 40°С в специальных сосудах и взвешивают всю Пробу и воду. При нахождении влажности газообразного топлива пропускают пробу газа через слой хлористого кальция, поглощающего влагу.

Рис. 8. Характер деформации лабораторного образца золы твердого топлива при определении ее плавкости

В топочной технике используют понятие приведенной влажности, которая показывает, сколько влаги в процентах от рабочей массы топлива приходится на 1 МДж низшей теплоты сгорания

W р н = W p /Q р н, (19)

Лету чие вещества и кокс. Для оценки качества топлива и условий горения большое значение имеет выход летучих веществ. Если нагревать топливо без доступа воздуха, то под воздействием высокой температуры (от 200 до 800°С) происходит разложение его на газообразную часть - летучие вещества (водород, метан, тяжелые углеводороды, окись углерода, немного двуокиси углерода и некоторые другие газы, т. е. в основном газообразные горючие вещества) и твердый остаток - кокс. Выход летучих относят к горючей массе топлива и обозначают Y г %.

Выход летучих веществ, их состав, а также температура, при которой они начинают выделяться, определяются химическим возрастом топлива: чем топливо старше по возрасту, тем меньше выход летучих и выше температура начала их выделения. Например, выход летучих торфа составляет приблизительно 70% общей массы горючей части топлива, они начинают выделяться при 120-150°С; выход летучих бурых и молодых каменных углей уменьшается приблизительно от 13 до 58,5%, они начинают выделяться при 170-250°С, а антрацита - до 4% при температуре начала выделения газов около 400°С.

Летучие вещества оказывают большое влияние на процесс горения топлива: чем больше выход летучих, тем ниже температура воспламенения и легче зажигание топлива и тем больше поверхность фронта пламени. Твердое топливо с большим выходом летучих (торф, бурый уголь, молодой каменный уголь) легко загорается и сгорает быстро с малой потерей тепла. Топливо с малым выходом летучих, например антрацит, загорается значительно труднее, горит медленнее и сгорает не полностью.

Кокс, оставшийся после полного выделения летучих, состоит из углерода и минеральных топливных примесей. В зависимости от вида термически разложенного топлива кокс может быть порошкообразным, слипшимся, спекшимся, сплавленным.

Теплота сгорания топлива. Наиболее важной характеристикой топлива является теплота сгорания, которой называют количество тепла, получаемого при сжигании 1 кг твердого или жидкого топлива или 1 нм3 газообразного топлива в кДж/кг (ккал/кг): 1 ккал - 4,1868, или 4,19, кДж.

Как указывалось ранее, к горючим элементам в топливе относят углерод С, водород Н и летучую горючую серу Sл. Элементарно их горение может быть представлено следующими уравнениями:

С + О 2 = СО 2 ; 2Н 2 + О 2 = 2Н 2 О; S + О 2 = SО 2 , (20)

В процессе горения горючих элементов выделяется следующее количество тепла при сжигании 1 кг: углерода - 33,65 МДж (8031 ккал/кг), серы - 9 МДж (2172 ккал/кг), водорода - 141,5 МДж (33770 ккал/кг).

Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания (Q р в) топлива называют все количество тепла, выделенное при сгорании 1 кг твердого или жидкого топлива, или 1 нм3 газообразного (при нормальных условиях) и превращении водяных паров, содержащихся в продуктах сгорания, в жидкость. На практике, однако, не удается охладить продукты сгорания до полной конденсации и потому введено понятие низшей теплоты сгорания (Qрн), которую получают, вычитая из высшей теплоты сгорания теплоту парообразования водяных паров как содержащихся в топливе, так и образовавшихся при его сжигании. На парообразование 1 кг водяных паров расходуется 2514 кДж/кг (600 ккал/кг). Для твердого и жидкого топлива низшая теплота сгорания (кДж/кг или ккал/кг)

Q p н = Q р в -2514 (9Н р +W р /100), (21)

Q p н = Q р в - 600 (9Н р +W р /100)

где 2514 - теплота парообразования при температуре 0°С и атмосферном давлении, кДж/кг; Н р и W p - содержание водорода и водяных паров в рабочем топливе, %; 9 - коэффициент, показывающий, что при сгорании 1 кг водорода в соединении с кислородом образуется 9 кг воды.

Если известен элементарный состав топлива, то низшая теплота сгорания твердого и жидкого топлива, кДж/кг или ккал/кг, может быть определена по эмпирической формуле, предложенной Д. И. Менделеевым:

Q p н = 339,5С р + 1256Н р - 109 (О р - S p л) - 25,14 (9Н р + W p)

Q p н = 81С р + 246Н р - 26 (О р - S р л) - 6W р, (22)

Пример 2. Определить низшую теплоту сгорания топлива, рабочая масса которого имеет следующий состав (из примера 1): С р = 52,1%; Н р = 3,8; S р л = 2,9%; N p = 1,1%; О р = 9,1%; А р = 18%; W p = 13%.

Подставляя данные в формулу (22), получим Q p н = 339,5 . 52,1 + 1256 . 3,8 - 109 . (9,1 - 2,9) - 25,14 . (9 . 3,8 + 13) = 20,647 МДж/кг или Q p н = 81 . 52,1 4- 246 . 3,8 - 26 . (9,1 - 2,9) - 6 . 13

4916 ккал/кг.

Числовые коэффициенты в этой формуле подобраны экспериментально. Теплота сгорания твердого и жидкого топлива может быть определена и экспериментально, калориметрическим способом. Теплоту сгорания рабочего топлива определяют в калориметре (рис. 9), который состоит из калориметрического сосуда 5, заполненного водой, калориметрической бомбы 2 с чашечкой для навески топлива, оболочки 6, термометра 4, двойной луппы 3, вибратора электродвигателя, пропеллерной мешалки 1 для перемешивания воды в оболочке и подставки 7. Для нахождения теплоты сгорания топлива в чашечку помещают навеску топлива и сжигают ее, а результаты испытания определяют по показаниям термометра.

Для удобства сравнительных расчетов при сжигании в котельных разных сортов топлива введено понятие "условное топливо". Условным принято считать топливо, теплота сгорания которого равна 29,35 МДж/кг (7000 ккал/кг). Пересчет расхода натурального топлива в условное, кг, производят по формуле

В усл =В н Q p н /29,35 (В усл =В н Q p н /7000, (23)

Рис. 9. Схема калориметра для определения удельной теплоты сгорания углей

Производственные плановые задания и отчетные данные по топливу всегда удобно выражать в условном топливе.

Пример 3. В котельной в течение месяца сжигается Вн. мес = 200 т топлива с теплотой сгорания Qрн =20,647 МДж/кг (Qрн = 4916 ккал/кг).

Определить годовой расход условного топлива.

Расход условного топлива

В усл.мес =200.Q p н /29,35=200.20,647/29,35=140

(В усл.мес =200.Q p н /7000=200.4916/7000=140)

В усл.год = 140.12=1680

Твердое топливо и его классификация. По химическому возрасту различают три стадии образования твердого топлива: торфяную, буроугольную и каменноугольную.
Древесина - это топливо, используемое преимущественно в мелких котельных установках. Широкое применение имеют отходы деревообделочного производства: горбыли, щепа, стружки, опилки, кора и др. Дрова применяют реже.

Влажность воздушно-сухих дров не превышает 25%, полусухих - 35%, свежесрубленных - 50%. Опилки обычно имеют влажность 45-60%. К полусухим относят дрова весенней заготовки, пролежавшие не менее 6 мес после рубки, в том числе не менее двух летних месяцев. К сухим относят дрова, пролежавшие после рубки около года в лесу и влажность которых не превышает 30%.

Дрова как твердое топливо характеризуются высоким выходом летучих горючих веществ - до 85% и незначительным содержанием золы - в среднем до 1%, лишь в сплавных дровах зольность повышается До 5%. Следовательно, балласт дров определяется в основном их влажностью, от которой и зависит теплота сгорания. Теплота сгорания мало зависит от породы дров, что видно из табл. 8.

Таблица 8. Органический состав древесины

Рабочий состав и теплота сгорания древесных отходов (щепы, опилок и др.) не отличаются от состава древесины, из которой они получены.

При пониженной теплоте сгорания дрова имеют преимущества: легкую воспламеняемость, отсутствие серы и малую зольность, что позволяет ограничиваться простыми топочными устройствами, работающими эффективно.

Торф по способу добычи подразделяют на три основных вида: машинно-формовочный (багерный), гидравлический и фрезерный.

При машинно-формовочном способе торфяная масса забирается из торфяного карьера экскаваторами (багерами) и подается на специальные прессы, где получает форму ленты, которая разрезается на отдельные кирпичи, а затем их механически транспортерами распределяют по полю сушки, после чего складывают в штабеля.

Гидравлический способ добычи торфа основан на размывке торфяного массива струей воды, идущей под сильным напором. Получающаяся жижа - пульпа пропускается через специальные растиратели, перекачивается насосами на площадку, где и высушивается. Высушенная торфяная масса особыми машинами нарезается на кирпичи.

Фрезерный способ заключается в том, что торфяное болото последовательно разрабатывается - вспахивается специальными машинами на глубину от 5 до 35 мм. Получаемая торфяная крошка подсушивается, а затем складывается в штабеля.

Торф как топливо по своим свойствам близок к дровам. Влажность торфа колеблется в зависимости от способа добычи, условий сушки и хранения от 30-40 до 50-55%. Влажность же фрезерного торфа выше кускового примерно на 5-10%. Зольность торфа (Ар), добываемого в центральных областях России, колеблется от 7 до 15%. Теплота сгорания Q p н =8,38 - 10,72 МДж/кг (Q p н = 3511 - 4492 ккал/кг).

Ископаемые угли разделяют на бурые, каменные и антрациты.

При классификации угли различают по маркам, классам и группам, а также по составу, крупности, зольности. Марки отличаются одна от другой выходом летучих и степенью спекаемости. Группы углей определяют по величине их зольности. По крупности кусков ископаемые угли делят на классы.

Бурый уголь содержит много влаги, соединяется легко с кислородом воздуха и при длительном хранении на воздухе сильно выветривается и рассыпается в порошок. Кроме того, он обладает большой склонностью к самовозгоранию. По своей структуре отличается повышенным содержанием балласта и необычно высокой гигроскопичностью, вследствие чего влажность бурых углей Wp = 17-55%. Бурые угли не спекаются, отличаются большим выходом летучих (Vг=33,5 - 58,5%) на горючую массу и зольностью на сухую массу (Ас=10,5 - 34%), высоким содержанием серы (Sп=0,6 - 5,9%). Рабочая теплота сгорания Q p н = 10,7 - 17,5 МДж/кг (4177 кдал/кг).

Каменный уголь на территории России имеется в огромных количествах и подразделяется: на длиннопламенный, газовый, паровичный жирный, коксовый паровичный спекающийся и тощий. Каменные угли отличаются высокой теплотой сгорания Q p н = 21,20 - 28,07 МДж/кг (5097 - 6700 ккал/кг). Выход летучих V г = 3,5 - 45%.
Каменный уголь применяют непосредственно как топливо или перерабатывают на кокс. По виду кокса различают угли неспекающиеся (порошкообразный кокс) и спекающиеся (сплавленный кокс, иногда вспученный). Каменные угли довольно плотны и малопористы и содержание внешней влаги в них значительно ниже, чем в бурых углях. Многие каменные угли обладают повышенной механической прочностью. В хранении они более устойчивы, меньше подвержены самовозгоранию, а некоторые их виды совсем не самовозгораются.

Антрацит относится к старейшим по происхождению каменным углям, отличается большой твердостью, трудно загорается, горит коротким пламенем, хорошо выдерживает перегрузки и перевозки.

К ним относят угли с выходом летучих на горючую массу V r = 2 - 9% и теплотой сгорания горючей массы Q p н = 24,35 - 27,24 МДж/кг (5800-6500 ккал/кг). Переходным между каменными углями и антрацитом является полу антрацит. Антрацит и полуантрацит не самовозгораются. Характеристика твердого топлива энергетического назначения приведена в табл. 9.
Марки углей отличаются одна от другой выходом летучих и степенью спекаем ости. Различают следующие марки углей: Д (длиннопламенные), Г (газовые), Ж (жирные), КЖ (коксовые жирные), К (коксовые), С (отощенные спекающиеся), Т (тощие), СС (слабоспекающиеся). Все виды углей по размеру кусков делят на классы (табл. 10).
Горючие сланцы являются продуктами разложения растительных остатков, оседавших на дне больших водоемов; смешиваясь с минеральными осадками, образовывалось илистое вещество - сапропель, которое обогащалось водородом, уплотнялось и превращалось в горючие сланцы.

Сланцы имеют теплоту сгорания Q p н = 10,38 МДж/кг (2477 ккал/кг), при их сжигании образуется очень большое количество золы А с = 64,5%. Выход летучих у сланцев очень высок: V r = 90%, влажность W p = 13%. Сланцы являются местным топливом.

Таблица 9. Характеристика твердых и жидких топлив

Первое слагаемое - зола, второе - двуокись углерода карбонатов (минеральная).

На рис. 10 приведена диаграмма состава рабочей массы различных видов топлива.

Рис. 10. Диаграмма состава рабочей массы различных видов топлива

Продолжение таблицы 9

Таблица 10. Классификация углей по размеру кусков

Различные виды топлива и их характеристики

Логистика и транспорт

Все существующие виды топлива разделяются на твердые, жидкие и газообразные. Некоторые группы топлива, в свою очередь, делятся на две подгруппы, из которых одна представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; другая подгруппа - топливо, которое получается путем переработки естественного топлива...

КГБОУ СПО Барнаульский Торгово Экономический Колледж

РЕФЕРАТ

По дисциплине:

Естествознание

По теме:

Различные виды топлива и их характеристики

Выполнил:

Студент первого курса

Группы ТР-1211

Петухов А.Е.

Проверила:

Ерохина Т.Н.

Барнаул 2012

1.Виды топлива.

1.1.Твердое топливо.

1.2.Жидкое топливо

1.3.Газообразное топливо.

3.Заключение.

4.Источники.

1.Виды топлива.

Все существующие виды топлива разделяются на твердые, жидкие и газообразные. Некоторые группы топлива, в свою очередь, делятся на две подгруппы, из которых одна представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; другая подгруппа — топливо, которое получается путем переработки естественного топлива; это топливо называется искусственным.

Твердое топливо: а) естественное — дрова, каменный уголь, антрацит, торф; б) искусственное — древесный уголь, кокс и пылевидное, которое получается из измельченных углей.

Жидкое топливо: а) естественное — нефть; б) искусственное — бензин, керосин, мазут, смола.

Газообразное топливо: а) естественное — природный газ; б) искусственное — генераторный газ, получаемый при газификации различных видов твердого топлива (торфа, дров, каменного угля и др.), коксовальный, доменный, светильный и другие газы.

1.1.Твёрдое топливо.

Твёрдое топливо — горючие вещества, основной составной частью которых является углерод. К твердому топливу относят каменный уголь и бурые угли, горючие сланцы, торф и древесину. Свойства топлива в значительной степени определяются его химическим составом — содержанием углерода, водорода, кислорода, азота и серы. Твердое ракетное топливо — твёрдое вещество или смесь отдельных веществ, способных гореть без доступа воздуха, создавая при этом, реактивную тягу двигателя. В зависимости от способа обработки твердое топливо можно разделить на две группы: природное и очищенное. К природному твердому топливу относятся уголь, бурый уголь, торф, древесина и солома. Уголь и торф являются осадком, образующимся в результате распада и разложения растений в древние времена под воздействием высокого давления и недостатка кислорода.

1.2.Жидкое топливо.

Жидкое топливо представляет собой сложные химические соединения горючих и негорючих веществ. Основными химическими элементами, входящими в состав любого жидкого топлива, являются углерод С, водород Н, кислород О, азот N, сера S. Помимо указанных элементов в составе жидкого топлива имеются влага и негорючие минеральные вещества, образующие при сжигании золу. К жидкому топливу относятся: нефтепродукты, производящиеся путем перегонки сырой нефти; креозот, являющийся продуктом низкотемпературного коксования и возгонки угля; синтетические масла, образующиеся в результате сжижения угля; прочие виды жидкого топлива, например, производящиеся из растений.

1.3.Газообразное топливо.

Газообразное топливо делится на природное и искусственное и представляет собой смесь горючих и негорючих газов, содержащую некоторое количество водяных паров, а иногда пыли и смолы. Количество газообразного топлива выражают в кубических метрах при нормальных условиях, а состав — в процентах по объему. Под составом топлива понимают состав его сухой газообразной части. Наиболее распространенное газообразное топливо — это природный газ, обладающий высокой теплотой сгорания. Основой природных газов является метан, содержание которого в газе 76,7-98%. Другие газообразные соединения углеводородов входят в состав газа от 0,1 до 4,5%.В состав горючих газов входят: водород Н2, метан СН4, другие углеводородные соединения CmHn, сероводород H2S и негорючие газы, двуокись углерода СО2, кислород О2, азот N2 и незначительное количество водяных паров Н2О. Индексы m и n при С и H характеризуют соединения различных углеводородов, например для метана СН4 m = 1 и n = 4, для этана С2Н6 m = 2 и n = 6 и т. д.

2.Общие характеристики топлива.

Топливо в том виде, в каком оно поступает потребителю, называют рабочим топливом. Твердое и жидкое рабочее топливо состоит из углерода С, водорода Н2, кислорода О2, азота N2, серы S, негорючих примесей А и влаги W.

Твердые негорючие примеси характеризуют зольность топлива. Поэтому величина А обычно означает содержание золы в топливе. Состав твердого и жидкого топлива принято выражать в весовых процентах: Топливо, из которого в результате сушки полностью удалена влага, называется абсолютно сухим топливом: где составляющие - процент в абсолютно сухом топливе.

Если предположить, что из абсолютно сухого топлива удалены негорючие примеси А, то остаются пять компонентов, которые называют горючей массой топлива: Сера в топливе содержится в различных соединениях:

Сульфатная Sc – входит в состав СaSO4, NaSO4, K2SO4;

Колчеданная Sk – в соединении с металлами и FeS2;

Органическая – в составе органических соединений, Sop и Sk участвуют в горении топлива и их сумма составляет серу топлива Sл=Sop+Sk.

При исключении из горючей массы колчеданной серы останется топливо такого состава Со+Но+Оо+No+So=100%. Такой состав топлива называется органической массой. В большинстве случаев содержание серы в топливе невелико (десятые доли процента). Поэтому состав органической массы иногда записывают упрощенно: Основной горючий элемент топлива - углерод, составляющий большую часть рабочей массы (50-75% для твердых топлив и 83-85% для мазутов). Количество углерода в твердых топливах невелико. Сера же, несмотря на малое содержание ее в топливе (0,2-0,5%), при сгорании образует вредные соединения и вызывает коррозию оборудования.

Влажность топлива колеблется в широких пределах: для каменных углей Wp=5-14%, для бурых - до 40%. Влага в топливе нежелательна, потому что из-за нее уменьшается доля горючих компонентов в единице массы топлива, удорожается его транспорт, усложняется разгрузка, возникают трудности при сжигании, снижается тепловой эффект горения, т.к. часть теплоты затрачивается на испарение.

При проектировании и эксплуатации устройств для производства тепла часто приходится пересчитывать состав топлива. Состав рабочего топлива может изменяться, т.к. величины Ар и Wр могут колебаться в широких пределах. В то же время состав горючей массы топлива более стабилен. Это позволяет с приемлемой точностью находить состав рабочего топлива путем пересчета, не производя каждый раз полного элементарного анализа топлива.

Если известны состав горючей массы (СГ, НГ и т.д.) зольность Ар, влажность Wр рабочего топлива, то можно найти состав рабочего топлива: Пользуясь этим же коэффициентом, можно найти содержание в рабочем топливе остальных компонентов (Нр, Ор и т.д.).

3.Заключение.

Несмотря на огромное разнообразие видов топлива, основными источниками энергии остаются нефть, природный газ, и уголь. Положение дел 100 лет назад было освещено Менделеевым. Первые два ископаемых топлива закончатся в ближайшем будущем. Нефтяные топлива обладают особой ценностью для транспортных средств (основных потребителей энергии), в силу удобства перевозки, поэтому в настоящий момент ведутся исследования по использованию угля для выработки жидких топлив, в том числе и моторных. Также огромны запасы ядерного топлива, однако его использование накладывает высокие требования к безопасности, высокие затраты на подготовку, эксплуатацию и утилизацию топлива и попутных материалов.

Мировое потребление ископаемых топлив составляет около 12 млрд т. у.т. в год. По данным BP Statistical review of World Energy потребление ископаемого топлива составило:

В Европейском союзе (EU-15) — 1396 млн тонн нефтяного эквивалента (2,1 млрд т. у.т.)

45 % — нефть, 25 % — газ (природный), 16 % — уголь, 14 % — ядерное топливо

В США — 2235 млн тонн нефтяного эквивалента (3,4 млрд т. у.т.)

40 % — нефть, 27 % — газ (природный), 26 % — уголь, 8 % — ядерное топливо

Доля возобновимых источников энергии в энергобалансах

Европы — 5 %

США — 2 %

По приблизительным оценкам энергопотребление России составляет 1,3 млрд т. у.т. в год.

6 % — ядерное топливо

4 % — возобновимые источники

За последние 20 лет мировое энергопотребление возросло на 30 % (и этот рост, по-видимому, продолжится в связи ростом потребности бурно развивающихся стран азиатского региона). В развитых странах за тот же период сильно изменилась структура потребления — произошло замещение части угля более экологичным газом (Европа и прежде всего Россия, где доля газа в потреблении составила до 40 %), а также возросла с 4 % до 10 % доля атомной энергии.

После приведения цифр стоит указать пример Австралии, в балансе которой солнечная энергетика занимает около 30 %. Эту долю потребляет солевая промышленность, вырабатывающая продукцию естественным испарением на солнце.

4.Источники

Wikipedia.ru

Allfuel.ru


А также другие работы, которые могут Вас заинтересовать

85624. Неорганическая химия, курс лекций 1.96 MB
Учебно-методическое пособие включает лекции по отдельным темам курса «Неорганическая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета, для которых введен отдельный курс по химии элементов, а также может быть использовано студентами других факультетов.
85625. Внутрішній порядок у підрозділах 6.21 MB
Для розміщення кожної роти необхідно передбачити такі приміщення: спальне приміщення для особового складу. народознавчу світлицю; кімнату для командира роти кімнату для підготовки офіцерів до занять; кімнату для підготовки сержантів до занять; кімнату для зберігання зброї; кімнату місце для чищення зброї...
85626. ВЕДЕНИЕ ДЕЛ НОРМАТИВНЫХ ДОКУМЕНТОВ 27.78 KB
На каждый нормативный документ формируется дело для долгосрочного хранения (далее - дело НД). В деле НД находятся документы, подготовленные во время разработки, согласования, утверждения, регистрации, издания и применения разработанных и пересмотренных НД, а также документы об изменениях в них.
85627. ПРАВИЛА И МЕТОДЫ ПРИНЯТИЯ И ПРИМЕНЕНИЯ МЕЖДУНАРОДНЫХ И РЕГИОНАЛЬНЫХ СТАНДАРТОВ 41.13 KB
Важно помнить что даже если два органа стандартизации в своих национальных стандартах ввели отклонения по МС или новую редакцию и их считают несущественными проблемы могут возникнуть из-за того что эти изменения накладываются и приводят к неприемлемости между национальными стандартами.
85628. ЭКСПЕРТИЗА ПРОЕКТОВ НАЦИОНАЛЬНЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ 19.6 KB
Экспертирование проекта НД выполняют чтобы комплексно проверить и исследовать его соответствие интересам государства потребностям потребителей уровню развития науки и техники действующим техническим регламентам и законодательству международным региональным и национальным стандартам и подготовить...
85629. РЕГИСТРАЦИЯ НОРМАТИВНЫХ ДОКУМЕНТОВ 25.87 KB
Регистрируют национальные стандарты, межгосударственные стандарты, которые принимают по ГОСТ 1.9 как национальные, кодексы установившейся практики (установки, кодексы, правила), государственные классификаторы, изменения в эти документы, принятые Минэкономики Украины и Госстроем Украины...
85630. СТАНДАРТИЗАЦИЯ В ОРГАНИЗАЦИИ 48.28 KB
Основными задачами этих служб по стандартизации являются: организация разработки стандартов и других документов по стандартизации на производимую проектируемую продукцию попутных и побочных продуктов и вторичных материалов и подготовка предложений по ее своевременному пересмотру...
85631. Расчет и выбор посадок типовых соединений 454.5 KB
В соответствии с выбранными посадками подшипника на вал и в корпус по ГОСТ 25347 - 82 на поля допусков цилиндрических соединений устанавливаются предельные отклонения на размер вала по системе отверстия и на размер отверстия в корпус по системе вала.
85632. Субъекты российского предпринимательского права 36.74 KB
Индивидуальные предприниматели и организации легитимируются в качестве хозяйствующих субъектов с помощью государственной регистрации. Российская Федерация и субъекты РФ не нуждаются в государственной регистрации в качестве субъекта предпринимательского права так как в соответствии...

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.


ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.

В настоящее время водород в основном получают из природного газа, в ближайшем будущем его можно будет получать в процессе газификации угля. Для получения химической энергии водорода используется также процесс электролиза. Последний способ имеет значительное преимущество, так как приводит к обогащению кислородом окружающей среды. Широкое применение водородного топлива может решить три актуальные проблемы:

Уменьшить потребление органического и ядерного топлива;

Удовлетворить возрастающие потребности в энергии;

Снизить загрязнение окружающей среды.

ЯДЕРНОЕ ТОПЛИВО. КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ

Ядерное топливо. Единственный природный вид ядерного топлива – тяжёлые ядра урана и тория. Энергия в виде теплоты высвобождается под действием медленных нейтронов при делении изотопа 235 U, который составляет в природном уране 1/140 часть. В качестве сырья могут использоваться 238 U и 239 Th, которые при облучении нейтронами превращаются в новое ядерное топливо – соответственно 239 Pu и 239 U. При делении всех ядер, содержащихся в 1 кг урана, выделяется энергия 2·10 7 кВт·ч, что эквивалентно 2,5 тыс.т высококачественного каменного угля с теплотой сгорания 35 МДж/кг (8373 ккал/кг).

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать плутоний 239 Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами тория 232 Th.

По химическому составу, ядерное топливо может быть:

  • Металлическим, включая сплавы;
  • Оксидным (например, UO 2);
  • Карбидным (например, PuC 1-x)
  • Нитридным
  • Смешанным (PuO 2 + UO 2)

Применение. Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах) в виде таблеток размером в несколько сантиметров.

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200-500°С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика - двуокись урана UO 2 . Её температура плавления равна 2800 °C, плотность - 10,2 т/м 3 . У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики - низкая теплопроводность - 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·10 3 кВт/м 2 , при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется ещё токсичностью плутония. Для приготовления ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO 2 , UC, PuO 2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

УСЛОВНОЕ ТОПЛИВО

Условное топливо. Различные виды энергетических ресурсов обладают разным качеством, которое характеризуется энергоёмкостью топлива. Удельной энергоёмкостью называется количество энергии, приходящееся на единицу массы физического тела энергоресурса.

Для сопоставления различных видов топлива, суммарного учёта его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств, принята единица измерения – условное топливо. Условное топливо – это такое топливо, при сгорании 1 кг которого выделяется 29309 кДж, или 700 ккал энергии. Для сравнительного анализа используется 1 тонна условного топлива.

1 ту.т = 29309 кДж = 7000 ккал = 8120 кВт·ч.

Этот показатель соответствует хорошему малозольному углю, который иногда называют угольным эквивалентом.

За рубежом для анализа используется условное топливо с теплотой сгорания 41900 кДж/кг (10000 ккал/кг). Этот показатель называется нефтяным эквивалентом. В нижеследующей таблице приведены значения удельной энергоёмкости для ряда энергетических ресурсов в сравнении с условным топливом.

ЗАКЛЮЧЕНИЕ

Таким образом, на основе вышеизложенного материала можно сделать следующие выводы:

Топливо – это горючее вещество, применяемое для получения теплоты.

По происхождению топливо бывает природное и искусственное.

По агрегатному состоянию выделяют твёрдое, жидкое и газообразное топливо.

По назначению при использовании топливо может быть энергетическим, технологическим и бытовым.

Как самостоятельный вид выделяют ещё ядерное топливо.

Для сравнения различных видов топлива по их теплотворной способности используют единицу измерения «условное топливо».

Условное топливо – условно принятое топливо с теплотворной способностью 7000 ккал/кг (для жидких и твёрдых видов топлива) и 7000 ккал/нм 3 (для газообразных видов топлива).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Охрана труда и основы энергосбережения: Учеб. пособие /

Э.М. Краченя, Р.Н. Козел, И.П.Свирид. – 2-е изд. – Мн.: ТетраСистемс, 2005. – 156-161,166-167 с.

2. Википедия – свободная энциклопедия [Электронный ресурс] / Ядерное топливо. Режим доступа: http://ru.wikipedia.org/ Дата доступа: 04.10.2009.

3. Департамент по энергоэффективности Государственного комитета по стандартизации Республики Беларусь [Электронный ресурс] / Нормативные документы. Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий. Режим доступа: http://energoeffekt.gov.by/doc/metodika_1.asp. Дата доступа: 03.10.2009

ПРИЛОЖЕНИЕ А

Таблица 1: Удельная энергоёмкость энергетических ресурсов