3 в и аддитивные технологии. Аддитивное производство (АП)Additive Manufacturing (AM). В какой из сфер машиностроения аддитивные технологии нужны больше

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

Все чаще в современной прессе и в глобальной сети можно встретить многочисленные публикации на тему аддитивных технологий, таких как например трехмерная печать(стереопечать, 3d-печать). Что же это такое? Это ни много не мало настоящая революция в производстве и изготовлении различного рода продукции: начиная от простых бытовых вещей и заканчивая сложными технологическими деталями и даже жилыми помещениями! Звучит невероятно и фантастически? Возможно, но в настоящее время технологии трехмерной печати получают все большее распространение. Аддитивные технологии полностью перекраивают всю сущность производства.

Отличие аддитивных технологий от традиционных

Чтобы уяснить ключевое отличие аддитивных технологий от привычных нам способов производства различных изделий, нужно понимать, что изготовить например какую-либо металлическую деталь – тот же болт или саморез, можно двумя принципиально различными способами. Первый способ всем нам хорошо известен – это механическая обработка: отрезание, отбивание, сверление отверстий и т.д. Берется брусок стали, из неё вытачиваются металлические прутки, на что расходуется значительное количество энергии и материала, далее из прутков вытачиваются уже готовые болты. Огромный минусы такого ставшего уже привычным способа производства очевидны – при изготовлении конечного продукта(в данном случае болта) большая часть исходного материала(стальной брусок) перемалывается в металлическую стружку, образуя огромное количество производственных отходов, да и расход материала согласитесь не самый рациональный. Есть конечно и другие классические способы изготовления, к примеру штамповка и литьё, однако и они имеют массу недостатков — например для изготовления методом литья необходимо сначала изготовить саму форму для заполнения, что достаточно дорого и требует специалистов высокой квалификации. Все это негативно сказывается на производительности. Создание форм актуально, если например заводу-изготовителю нужно выпустить большую партию продукции, а если несколько небольших? В этом случае изготовление форм ведет к большим издержкам и экономически нецелесообразно.

Теперь рассмотрим второй способ производства конечного продукта – он основан не на удалении части материала в результате механической обработки, а напротив на добавлении материала и наслаивании, в результате и получается готовая продукция. Отсюда и название – аддативные технологии(от английского слова «add» — добавлять,Additive Fabrication(AF) ,Additive Manufacturing(AM) ). Трехмерная печать не подразумевает никакого отрезания, распиливания, сверления. Происходит в буквальном смысле построение объекта c помощью машины послойного синтеза, которая вполне укладывается в название «3D Принтер». Во всяком случае условно можно сказать, что машина «печатает» продукцию. Как это происходит? Что используется в качестве материала? Это уже зависит от конкретной технологии трехмерной печати. К примеру стереолитография(Stereolithography) подразумевает использование лазера, под воздействием которого затвердевает сырье – жидкий фотополимер. Селективное лазерное спекание(Selective Laser Sintering — SLS) использует специальные порошки, частички которых соединяются под воздействием лазера, так называемая «экструзионная печать» использует разного рода пластичный материал, подающийся через сопла на поверхность, где воспроизводится продукт. Технологию действительно можно сравнить с классической печатью, только вместо бумаги может выступать различная поверхность, а вместо тонера пластичный материал.

Процесс изготовления шестеренки с использованием традиционных технологий:

Процесс изготовления шестеренки аддативным способом(трехмерная печать):

Возможности аддитивных технологий

Трехмерные принтеры могут использовать для печати самые разнообразные исходные материалы – например такие как дерево, керамика и даже металл и бетон. Возможности и перспективы аддитивных технологий поистине огромны, а сфера применения – очень обширна. От создания домашней утвари и простых бытовых предметов до сложных деталей и технических изделий. Они могут использоваться в дизайне и моделировании, создании мебели и осветительных приборов, музыкальных инструментов, «печатания» одежды и обуви, создании скульптур, картин, орнаментов и т.д, в архитектуре могут активно применятся для создания домов, причем не только уменьшенных моделей, но и готовых зданий в натуральную величину. Найдет технология применение и в кинематографе, учитывая потребность режиссеров в реквизите. Широчайшие возможности открывает 3d –печать для медицины – печать точных копий моделей человеческих органов и тканей поможет квалифицированному обучению медиков, созданию протезов и т.д. В автомобилестроении эта технология ускорит создание сложных механизмов – например мостов, коробок передач, головок блока цилиндров.

медицинский протез для ноги, изготовленный с помощью трехмерной печати

Демонстрация работы 3D принтера и различные продукты, изготовленные с его помощью:

Вообще если брать именно сферу обучения, то возможности 3-d печать представляет просто неограниченные – создание макетов, наглядная демонстрация уменьшенных копий реальных деталей и механизмов. Пример – необходима демонстрация учащимся устройства двигателя внутреннего сгорания. Моментально можно загрузить файл модели и распечатать её уменьшенную копию. Таким образом, модели сложных технических систем будут на руках буквально у каждого учащегося. Возможна даже распечатка не просто макета, а реально работающей уменьшенной копии устройства.

Наглядная модель 8-циллиндрового двигателя, напечатанного на 3D принтере:

Применятся трехмерная печать может также в кулинарии(«печать» тортов и пирожных), робототехнике(производство роботов путем «печати» с нуля), машиностроении(изготовление сложных деталей) и авиакосмической промышленности(создание двигателей и корпусов космических кораблей например). Для живописи появится возможность рисования в пространстве. Уже сейчас существуют и продаются 3d-ручки, дающие такую возможность. Как видно из приведенных выше примеров, аддативные технологии затрагивают практически все сферы жизни, что говорит о подлинной революции и коренном преобразовании способа производства и изготовления вещей, деталей и механизмов. По сути вся основная сложность в изготовлении конечной детали аддативным способом заключается в проектировании и создании компьютерной модели, которая затем может быть легко воспроизведена с помощью трехмерной печати. Если ранее трехмерная печать применялась только лишь для быстрого создания прототипов изделий и продуктов, то уже сейчас речь идет о серийном производстве. Сложность изготавливаемого изделия по сути ограничивается только сложностью его компьютерной модели.

Обувь, напечатанная на 3D принтере, верхняя часть ботинка изготовлена из прочного хлопка

Пространственное рисование с помощью 3d-ручек – еще один пример реализации аддативных технологий:

Геометрия изделия практически не имеет значения, аддативный способ позволяет изготовить деталь или продукт любой сложности, конструктивные ограничения, в отличие от традиционного способа производства, отсутствуют, главное смоделировать образец в компьютерной программе. Это позволит изготовить невероятно красивые в плане дизайна и оформления товары, производство которых ранее было невозможным из-за естественных ограничений традиционной технологии. Аддативная технология производства позволяет получать легкие и в то же самое время, очень прочные детали конструкции, путем удаления из них избыточного материала, без которого нельзя обойтись при изготовлении обычными способами. При уменьшении веса в этом случае нисколько не будет страдать прочность и функциональность конечного изделия.

Существует не только возможность подготовить компьютерную модель и распечатать её, но и проделать обратный процесс – перенести уже готовое изделие в компьютерный CAD-файл, для последущего тиражирования или модификации. Для этого используется оптическое сканирование материального объекта

Замок Андрея Руденко — 3D принтер печатает бетоном замок в натуральную величину:


Результат:

Преимущества аддитивных технологий

Перечислим некоторые очевидные преимущества аддативных технологий.

1.Сокращение технологической цепочки и резкое уменьшение отходов от производства
Создание конечного продукта классическими способами как правило включает в себя несколько этапов. Вышеупомянутый простой пример с изготовлением болта(Стальной брусок -> Металлический пруток -> Готовый болт) включает в себя несколько этапов и подразумевает огромные усилия, расход энергии и материала. С помощью 3d-печати изготовление такого болта будет происходить существенно быстрее и с меньшими затратами.

2.Сильная индивидуализация производимого продукта
Поскольку внесение изменений в исходный файл для печати не требует длительных усилий, как переработка реальной модели, это позволит в сжатые сроки на основе имеющейся исходной модели создать индивидуальный уникальный продукт, изменив или дополнив оригинал. Таким образом можно создавать огромные множества различных вариаций одного и того же продукта.

3.Ускорение внедрения новых идей
Конструкторы смогут намного быстрее воплощать свои задумки в реальность. Разработав новый вариант двигателя и создав его модель в компьютерной программе например, можно будет в течении нескольких часов распечатать готовый пробный образец, внести изменения, оптимизировать, доработать и т.д.

4.Возможность изготовления деталей высокой сложности
Некоторые детали, которые затруднительно или вообще невозможно изготовить традиционной механической обработкой, могут быть легко «напечатаны», если предварительно создать готовую компьютерную модель.

5.Относительная легкость обучения персонала
Создание подробной трехмерной модели какого-либо изделия, конечно не самое простое занятие, но все же это существенно проще, чем воспроизвести подобную пробную деталь в реальности вручную. Обучить человека, имеющего пространственное воображение работе с компьютерной программой намного проще, чем осваивать несколько профессий для самостоятельного создания прототипа изделия в натуральную величину руками.

Пример 3D печати деревом:

Пример 3D печати металлом:

Заключение

Возможно, спустя какое-то время технологии трехмерной печати станут для нас чем то обыденным, точно так же как прочно в повседневную жизнь вошли компьютеры, интернет, планшеты, смартфоны и ноутбуки. Однако сейчас это все ещё выглядит как подлинный прорыв в науке. Глядя на возможности этих гигантских машин, воспроизводящих сложные детали и конструкции, невольно поражаешься. Иногда даже кажется, что все происходящее – это сюжет очередного футуристического фильма. Однако это не так, аддативные технологии существуют и развиваются. Мы наблюдаем настоящую революцию шестого экономического уклада на марше. По всей видимости, это очередной этап в научном развитии человечества и за подобными способами производства стоит большое будущее

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

8-11 июля в МВЦ «Екатеринбург-Экспо» состоится международная промышленная выставка металлообработки. Это крупнейшая в России площадка для презентации новых производственных технологий и оборудования отечественных и зарубежных производителей. Выставку посетят не только топ-менеджеры и инженеры крупнейших промышленных предприятий, но и представители высшего руководства страны и регионов.

В рамках выставки металлообработки откроется тематический раздел «Аддитивные технологии», который обещает стать одним из самых посещаемых разделов мероприятия. Технологии 3D-печати металлических изделий - это один из примеров, того, как промышленная революция происходит прямо на наших глазах, а технологии будущего из фантастических фильмов становятся реальностью.

Получить билет для посещения выставки

Если для большинства обывателей трехмерная печать объемных изделий все еще остается фантастикой, то дальновидные инвесторы и руководители промышленных производств уже оценили перспективы, которые открывает применение данных технологий. Быстрое проектирование и качественное производство становится ключевым фактором успеха на активно развивающихся и высококонкурентных промышленных рынках - нужно успеть выпустить на рынок новый продукт до того, как это сделают конкуренты. Поэтому все более востребованы технические решения, повышающие скорость и эффективность подготовки производственного цикла и выпуска готовой продукции.

Сферы применения аддитивных технологий:

  • Машиностроение и судостроение;
  • Авиационное производство и авиакосмическая промышленность;
  • Энергетика и атомная индустрия;
  • Электроника;
  • Военно-промышленный комплекс;
  • Медицина и стоматология;
  • Архитектура и дизайн;
  • Приборостроение и станкостроение;
  • Макетирование и прототипирование;
  • Ювелирное производство.

Стенды аддитивных технологий на ИННОПРОМ в Екатеринбурге - это место, в котором можно будет увидеть новейшие образцы 3D-оборудования и самые интересные разработки в данной отрасли. К примеру, в 2016 году в рамках выставки ИННОПРОМ корпорация «Росатом» представила первый российский промышленный 3D-принтер для метала с камерой 550×550, не уступающий западным аналогам по техническим характеристикам. Премьера отечественного образца, созданного в результате совместного проекта Научного Дивизиона Росатома с Государственным научным центром РФ АО «ЦНИИТМАШ» привлекла внимание СМИ, потенциальных покупателей и широкой общественности.

Что такое аддитивные технологии

Аддитивные технологии или Additive Manufacturing - это принципиально новый способ производства, который основан на принципе послойного синтеза. Если при традиционных способах производства деталь или объект нужной формы создается путем удаления лишнего материала из цельной заготовки, то новая технология трехмерной печати предполагает создание детали «с нуля» путем последовательного добавления слоев материала. Отсюда термин «аддитивный», происходящий от английского слова «add» (добавлять).

Виды технологий лазерной 3D печати:

  • SLS (selective laser sintering) - селективное лазерное спекание;
  • SLA (laser stereolithography) - лазерная стереолитография;
  • SLM (selective laser melting) - селективное лазерное плавление;
  • LOM (laminated object manufacturing) - послойное лазерное ламинирование;
  • LMD (laser metal deposition) - лазерная наплавка металлов;

Виды технологий струйной 3D печати:

  • FDM (fused deposition modeling) - моделирование наплавлением;
  • Polyjet - струйная печать путем отверждения жидких фотополимеров под ультрафиолетом.,/li>

Принцип работы 3Д принтеров по металлу

Работа промышленного 3D принтера не слишком отличается от привычной для нас печати на домашних или офисных устройствах для лазерной или струйной печати - разница в габаритах и в том, что печать идет в трех плоскостях. В остальном принцип похож - металлический порошковый материал подается на печатающую головку, нагревается лазерным лучом до высоких температур и послойно «спекается» в нужной последовательности до получения нужного размера и формы.

Процесс производства с помощью промышленных технологий 3D-печати:

  • Создание CAD-модели (моделирование объемной детали с помощью специального ПО;
  • Создание STL-файла и разделение на слои;
  • Подготовка принтера к работе и запуск нагревающего элемента;
  • Установка формы для детали на рабочую поверхность;
  • Заполнение питающей коробки металлическим порошком;
  • Печатающие головки с нагревающим элементом движутся по заданной программой траектории, спекая металлическую пудру и связывающее вещество, которое подается по трубкам;
  • Слой в форме высушивается специальными нагревателями;
  • Процедура повторяется для следующих слоев до полного заполнения формы;
  • Форма с деталью помещается в специальную печь, где под температурой 1800С происходит укладочный процесс;
  • Примерно через 24 часа связывающее вещество затвердевает, а жидкость испаряется, после чего с помощью обдува удаляются остатки металлической пудры на поверхности изделия.

При необходимости производятся другие процедуры финишной обработки, которые варьируются в зависимости от типа, состава и характеристик металла.

Что производят с помощью 3D принтеров по металлу:

Аддитивные технологии производства используются для создания изделий сложной формы и конфигурации, к примеру, деталей с полостями и скрытыми внутренними элементами, сетчатыми конструкциями и оригинальным рельефом. Все больше производств переходят на трехмерную печать для объектов, которые сложно или экономически невыгодно производить с помощью прессовки, штамповки, литья либо механической металлообработки.

Виды объектов, получаемых 3D-печатью:

  • Изделия штучного либо мелкосерийного производства;
  • Детали для автомобилей;
  • Инструменты из металла и металлических сплавов;
  • Комплектующие для приборов и станков;
  • Детали авиалайнеров, беспилотников и подводных лодок;
  • Детали и элементы ракет и спутников;
  • Эндопротезы и импланты.

Преимущества промышленных аддитивных технологий

Аддитивные технологии в машиностроении применяются более 20 лет, и уже прошли проверку временем и сложными условиями эксплуатации. Другие сферы, активно внедряющие трехмерную печать, также регулярно предоставляют статистические данные о выгодах и преимуществах этого направления производства. Поэтому эксперты отрасли имеют обширную базу для сравнения и могут делать выводы, основанные на длительном наблюдении и реальном опыте, а нижеуказанные преимущества носят отнюдь не теоретический характер.

1. Экономия сырья. Трехмерная печать подразумевает «выращивание» изделия с нуля, поэтому расход материала значительно уменьшается за счет отсутствия стружек и обрезков. Безотходное производство не только минимизирует затраты на сырье, но и исключает необходимость выделения дополнительных ресурсов на утилизацию отходов. При этом консервативные технологии металлообработки могут сопровождаться потерей до 80–85% материала заготовок.

2. Качество и надежность готовой продукции. Механические и технические характеристики, остаточное напряжение, плотность, прочность и прочие свойства изделий, синтезированных с помощью трехмерной печати или послойного 3D-наплавления, не только не уступают свойствам аналогов, созданных традиционным путем, но и превосходят их. Их прочность обычно на 20–30% выше, чем у кованых или литых изделий.

3. Ускорение производственного цикла. Моментальный обмен данными, быстрое проектирование и настройка производственного процесса - это то, что поможет выиграть гонку с конкурентами за счет ускорения цикла от проекта до выпуска новой линии продукции. Нет необходимости в многочисленных чертежах и расчетах - компьютерная модель изделия может присылаться из головного офиса или от сторонних подрядчиков и сразу отправляться в работу в считанные минуты.

4. Мобильность и гибкость производства. Для запуска новой серии изделий производителю не нужно закупать громоздкое оборудование для комплекса задач по резке, литью, штамповке и финишной обработке. Достаточно приобрести комплект из программного обеспечения для создания CAD-модели и сравнительно компактного 3D-принтера. Налицо экономия во всем - от аренды производственных площадей и необходимости в большом штате сотрудников до амортизации и обслуживания больших станков, конвейеров и агрегатов.

Узнайте больше о новых технологиях в России и в мире на выставке металлообработки в рамках ИННОПРОМ в июле 2019 года. Зарегистрируйтесь прямо сейчас и получите бесплатный электронный билет , действующий в течение 4-х дней мероприятия!


Аддитивные технологии с полным основанием относят к технологиям XXI века. Они имеют огромный потенциал в деле снижения энергетических затрат на создание самых разнообразных видов продукции. Степень их использования в промышленном производстве является верным индикатором индустриальной мощи государства и его инновационного развития. На данный момент российские предприятия используют импортные металлические порошки. Серийного производства порошковых материалов для аддитивных технологий в России нет.

Исследовательская группа «Инфомайн»
Основана в 1993 году. Специализируется на изучении рынков промышленной продукции в России и странах СНГ. Основными направлениями исследований являются: минеральное сырье, металлы и химические продукты. За прошедшие годы специалистами компании подготовлено свыше 1000 обзоров. Клиентами «Инфомайн» являются более 500 производственных, торговых, консалтинговых компаний, банков и научных организаций из 37 стран мира. Среди них: «Газпром», «Лукойл», ТНК-ВР, АФК «Система», ГМК «Норильский никель», «Евраз Груп С. А.», Объединенная компания «Русал» и др. Профессионализм компании подтверждается многочисленными публикациями в научных и научно-популярных журналах, а также выступлениями на конференциях различного уровня.

Металлические порошки обладают уникальными химико-металлургическими свойствами, что позволяет использовать их в различных областях. С появлением аддитивных технологий порошковая металлургия получила новые перспективы развития. Порошковая металлургия является наиболее экономичным методом изготовления изделий, она характеризуется низким уровнем отходов по сравнению с традиционными технологиями (литьем, механической обработкой, холодной и горячей обработкой давлением) и минимальным количеством операций для получения изделий с размерами, близкими к окончательным. Другая особенность порошковой металлургии - возможность производства материалов и изделий, которые невозможно получить традиционными металлургическими методами. С помощью аддитивных технологий упрощаются производственные процессы в авиационной промышленности, энергомашиностроении, приборостроении - везде, где есть потребность в изделиях сложной геометрии и «выращивании» металлических деталей. В настоящее время с точки зрения внедрения аддитивных технологий Россия отстает от ведущих стран мира. По-прежнему российские потребители зависят как от поставок импортных высококачественных металлических порошков, так и от импорта самих 3D-принтеров.

Состояние аддитивных технологий в мире
Технология трехмерной печати (3D) начала развиваться в конце 80-х годов прошлого века. Пионером в этой области является компания 3D Systems, которая в 1986 году разработала первый стереолитографический аппарат. Первые лазерные машины - стереолитографические (SLA) и затем порошковые (SLS-машины) - отличались очень высокой стоимостью, выбор материалов был достаточно узкий, и до середины 1990-х годов они использовались главным образом в научно-исследовательской и опытно-конструкторской деятельности, связанной с оборонной промышленностью. В дальнейшем, после широкого распространения цифровых технологий в области проектирования, моделирования и механообработки, 3D-технологии начали бурно развиваться. Для 3D-технологий в настоящее время рекомендован термин Additive Manufacturing (AM). По данным Wohlers Associates, мировой рынок АМ-технологий в 2014 году составил около 3 млрд долларов при средних темпах роста на уровне 20–30%. Прогнозируется, что к 2020 году объем рынка может достичь 16 млрд долларов. Рынок аддитивных технологий стремительно меняется, происходит слияние и поглощение компаний-производителей машин, возникают новые центры оказания услуг в области AM-технологий, эти центры объединяются в европейскую, а теперь уже и в глобальную сеть. 63% всех аддитивных машин в мире производится в США. Наиболее заметно внедрение АМ-технологий в таких отраслях, как авиационная промышленность, судостроение, энергетическое машиностроение, а также стоматология и восстановительная хирургия. Главными заказчиками и потребителями AM-продукции являются авиационная и автомобильная отрасли США и Европы. Эти технологии привлекают крупные промышленные компании: Boeing, Mersedes, General Electric, Lockheed Martin, Mitsubishi, General Motors. Например, компания Boeing в последние годы значительно увеличила номенклатуру деталей, изготавливаемых по AM-технологиям. Сейчас таким образом изготавливается более 22 тысяч деталей 300 наименований для 10 типов военных и коммерческих самолетов, включая Dreamliner. Отказ от производства цельнометаллического листа в пользу спекания порошков при формировании каркасов ряда моделей Boeing позволил компании перейти на принципиально новый уровень производства. По мнению специалистов General Electric, через 10 лет примерно половина деталей энергетических турбин и авиационных двигателей будет изготавливаться с помощью AM-технологий. Активно применяются аддитивные технологии в бытовой электронике и медицине, в том числе в стоматологии. По словам представителей компании Arcam, произведенные ими устройства были использованы для создания более 30 000 титановых имплантатов для реконструкции тазобедренных суставов. Основным отличием АМ-технологий является то, что они применяются для формирования детали при помощи наращивания материала, в отличие от удаления в случае механической обработки. Использование аддитивных технологий позволяет изготавливать детали с характеристиками, недоступными для других методов обработки (например, с криволинейными отверстиями или внутренними пустотами). Послойный метод построения детали дает абсолютно новые возможности, например изготовление «деталь в детали», деталей с переменными по толщине свойствами материала (так называемые градиентные материалы), выпуск сетчатых конструкций, которые невозможно получить ни литьем, ни механообработкой. Значительные перспективы для 3D-технологий открываются в аэрокосмической отрасли. Это связано с тем, что с их помощью стало возможным кардинально уменьшить отношение массы материала, необходимого для выпуска детали, к массе конечной детали. Для большинства деталей, изготавливаемых традиционным способом, это соотношение может достигать 20:1, при использовании аддитивных технологий этот показатель составляет в худшем случае 2:1.


Рис. 1. Аппарат селективного лазерного сплавления SLM 280 компании SLM Solutions (Германия)

Почти все компании, использующие лазер, по-разному называют свои технологии. Это сделано для того, чтобы отличить себя от конкурентов, но по технической сути все они являются технологиями селективного лазерного сплавления - SLM-технологиями. Однако это название негласно закреплено за компанией SLM Solutions. Компания SLM Solutions (Германия) является одним из мировых лидеров в области технологий лазерного синтеза. SLM Solutions активно сотрудничает с компанией FILT. В результате этого сотрудничества появилась наиболее «продвинутая» на сегодняшний день машина SLM 280 (рис. 1). Этот аппарат отличается наличием двух лазеров: внешний контур детали и тонкие стенки обрабатывает первый лазер мощностью 400 Вт, основное тело детали - второй, более мощный лазер (1000 Вт). Сочетание двух лазеров разной мощности позволяет выпускать детали с толщиной отдельных фрагментов до 0,3 мм. Это также придает аппарату существенные преимущества: увеличивается скорость построения детали (до 5 раз), улучшается внутренняя структура материала и чистота внешней поверхности.

Виды аддитивных технологий
По методам формирования слоя принципиально отличаются два вида аддитивных технологий. Технология Bed Deposition предполагает на первом этапе формирование слоя порошка с последующей выборочной (селективной) обработкой сформированного слоя лазером или иным способом. Этой технологии достаточно точно соответствует термин «селективный синтез» или «селективное лазерное спекание» (SLS - Selective Laser Sintering), если «отверждающим» инструментом является лазер, который в данном случае, в отличие от лазерной стереолитографии (SLA-технологии), является источником тепла, а не ультрафиолетового излучения. Второй вид Direct Deposition - прямое, или непосредственное, осаждение материала, т. е. непосредственно в точку, куда подводится энергия и где в данный момент происходит построение фрагмента детали. Наиболее широко на рынке представлены модели группы Bed Deposition. Большая часть компаний - производителей таких аппаратов использует в своих машинах лазер в качестве источника энергии для соединения частиц металлопорошковых композиций. К ним относятся: Arcam (Швеция), Concept Laser (Германия), EOS (Германия), Phenix Systems (Франция), Realizes (Германия), Renishaw (Великобритания), SLM Solutions (Германия), Systems (США). В 2012 году в эту группу вошли китайские компании Beijing Long Yuan Automated Fabrication Systems и Trump Precision Machinery. Ко второй группе машин (Direct Deposition) относятся аппараты компаний POM Group, Optomec, Sciaky (США), Irepa Laser (Франция), InssTek (Ю. Корея). В России отсутствует серийное производство АМ-машин, которые используют в качестве материала металлические порошки. Вместе с тем целый ряд организаций занимается разработкой и созданием опытных образцов подобного типа аппаратов. Например, ОАО «Электромеханика» (Тверская область) в рамках совместной работы с ФГБОУ ВПО «МГТУ «СТАНКИН» изготовило автоматизированную 3D-установку для выращивания в вакууме точных титановых заготовок сложных деталей методом послойного синтеза электронным лучом из металлического мелкодисперсного порошка. ОАО «ТВЭЛ» совместно с научными организациями Уральского отделения РАН ведет разработку и организацию производства установок УрАМ-550 для селективного лазерного сплавления металлических порошков с размером рабочей камеры 500×500×500 мм. «Росатом» в кооперации с Минобрнауки планирует создать опытный образец 3D-принтера для изготовления металлических изделий на базе НПО «ЦНИИТМАШ». Специалистами ОАО «Национальный институт авиационных технологий» разработаны несколько типов экспериментальных лазерных установок послойного синтеза. Разработки аппаратов для лазерного послойного синтеза ведутся также Институтом проблем лазерных и информационных технологий (ИПЛИТ).



Рис. 2. АM-машина X line 1000R компании Concept Laser

До недавнего времени самой большой AM-машиной компании считалась X line 1000R (рис. 2) с размерами зоны построения 630×400×500 мм. Она была разработана совместно с Фраунхоферским институтом лазерных технологий (FILT) при участии Daimler AG и вышла на рынок в 2013 году. Первая такая машина установлена на Daimler AG для выращивания автомобильных компонентов из алюминия. К этой модели недавно была добавлена модификация X line 2000R, оснащенная двумя лазерами мощностью по 1000 Вт. Область построения увеличена до 800×400×500 мм. Компания пошла навстречу требованиям клиентов из аэрокосмической и автомобильной отраслей, повысив скорость построения изделий.



Рис. 3. Аппарат DMD IC106 компании POM

Компания POM (Precision Optical Manufacturing) является разработчиком DMD-технологии и держателем патентов на оригинальные технические решения по лазерным системам и системам управления с обратной связью с одновременным регулированием в режиме реального времени основных параметров построения детали: объема подачи материала, скорости перемещения головки и мощности лазера, которые обеспечивают стабильность и качество рабочего процесса (рис. 3). Эта технология позволяет производить параллельную или последовательную подачу двух видов материала с различными физико-химическими свойствами и таким образом создавать биметаллические компоненты, например формы для литья пластмасс (тело формы из меди, рабочая часть - из инструментальной стали), или наносить специальные покрытия, например на гильзы цилиндров, поршневые кольца, кулачковые валы, седла клапанов.

Технологии производства металлических порошков

В настоящее время не существует общих требований к металлопорошковым композициям, применяемым в AM-технологиях. Разные компании - производители AM-машин предписывают работу с определенным перечнем материалов, обычно поставляемых самой этой компанией. Общим требованием к порошкам для AM-машин является сферическая форма частиц. Это связано с необходимостью компактного укладывания в определенный объем и обеспечения «текучести» порошковой композиции в системах подачи материала с минимальным сопротивлением. На рынке представлены десятки видов разнообразных композиций: от обычных конструкционных сталей до жаропрочных сплавов и драгметаллов. Сфера их применения уже в настоящее время крайне разнообразна - от стоматологии до ювелирной промышленности. Основными технологиями получения порошков для AM-машин являются газовая атомизация, вакуумная атомизация и центробежная атомизация. Согласно технологии газовой атомизации металл расплавляют в плавильной камере (обычно в вакууме или инертной среде) и затем сливают в управляемом режиме через специальное устройство-распылитель, где производится разрушение потока жидкого металла струей инертного газа под давлением. В Европе три компании - ALD (Голландия), PSI - Phoenix Scientific Industries Ltd. (Великобритания) и Atomising Systems (Великобритания) - производят атомайзеры в качестве товарной продукции. При вакуумной атомизации процесс происходит за счет растворенного в расплаве газа. Атомайзер состоит из двух камер - плавильной и распылительной. В плавильной камере создают избыточное давление газа (водород, гелий, азот), который растворяется в расплаве. Во время атомизации металл под действием давления в плавильной камере поступает вверх к сопловому аппарату, выходящему в распылительную камеру, где создают вакуум. Возникающий перепад давлений побуждает растворенный газ к выходу на поверхность капель расплава и «взрывает» капли изнутри, обеспечивая при этом сферическую форму и мелкодисперсную структуру порошка. Технологии центробежной атомизации весьма разнообразны, но наибольший интерес представляют те, которые позволяют получать порошки наиболее ценных для аддитивных технологий сплавов - реактивных и тугоплавких металлов. Единственным сдерживающим фактором развития аддитивных технологий является высокая стоимость расходных материалов (металлических порошков). В настоящее время рядом компаний ведутся работы по внедрению менее затратных технологий производства порошков (в том числе титановых). Прорыв в этом направлении приведет к значительному росту спроса на 3D-устройства, способные воспроизводить металлические модели.




Рис. 4. Атомайзер EIGA 50 компании ALD (Голландия)

Мировым лидером в производстве оборудования для газовой атомизации является компания ALD (в настоящее время входит в группу AMG Advanced Metallurgical Group). Она имеет в своей производственной линейке атомайзеры как лабораторного (объем тигля 1,0–2,0 л), так и индустриального назначения с производительностью до 500 кг за одну плавку и более. Компания ALD является также изготовителем атомайзеров для получения порошковых композиций по технологии EIGA - индукционная плавка с распылением инертным газом. Базовые модели EIGA 50 и EIGA 100 отличаются размерами применяемого фидстока - прутка соответственно 50 и 100 мм. Машины EIGA (рис. 4) имеют невысокую скорость распыления - около 0,5 кг/с, однако позволяют распылять достаточно большой объем материала в течение одной плавки - от единиц до десятков килограммов.

Рис. 5. Установка центробежного распыления расплава ООО «Сферамет»

В России имеется опыт получения порошковых материалов методом центробежного распыления с торца прутковой заготовки, оплавляемой плазменной дугой. Метод был разработан в 1970-х годах в ВИЛСе. В последние годы этот метод получил дальнейшее развитие в работах OOO «Сферамет» (Московская область). ООО «Сферамет» является разработчиком оборудования и технологий нового поколения для получения сферических гранул металлов и сплавов методом центробежного распыления расплава. Исходным материалом для получения гранул на разработанной установке УЦР-6 (рис. 5) служат литые цилиндрические заготовки диаметром 76-80 мм и длиной 700 мм. На этой установке были получены гранулы дисперсностью 50 мкм.

Выпуск металлических порошков для аддитивных технологий в России
Интенсивное использование аддитивных технологий в России сдерживается как отсутствием АМ-машин, так и отсутствием мелкодисперсных металлических порошков. В настоящее время российские предприятия используют импортные порошки, поставляемые в основном компаниями - производителями установок. Серийное производство металлических порошков для аддитивных технологий в России отсутствует. ФГУП «Всероссийский институт авиационных материалов» (ВИАМ, Москва) производит в относительно небольших количествах металлопорошковые композиции для аддитивных технологий. В ближайшее время здесь планируются запуск современного промышленного оборудования и коммерческий выпуск порошков. По мнению генерального директора ВИАМ академика Е.Н. Каблова, для имеющегося российского парка установок аддитивного производства необходимо около 20 тонн порошков в год. По оценкам компании «Инфомайн», этот объем завышен, и общая емкость рынка порошков для работающих установок аддитивных технологий в России составляет на начало 2016 года не более 6–7 тонн. Целый ряд российских компаний занимаются в настоящее время вопросами производства металлических порошков для аддитивных технологий. По оценкам экспертов, уже в 2016 году на отечественном рынке могут появиться прошедшие сертификацию коммерческие металлопорошковые композиции различных марок. В настоящее время ВИАМ самостоятельно обеспечивает себя порошками, однако мощности небольшие (до 2 тонн в год). Движение ВИАМ к производству порошков для аддитивных технологий началось с организации производства припоев для высокотемпературной вакуумной пайки. Требования к порошковым припоям близки к аналогичным требованиям, предъявляемым к металлопорошковым композициям, используемым при аддитивных технологиях, в том числе по сочетанию фракций разного размера. С 2010 года ВИАМ активно ведет работы по созданию производства мелкодисперсных металлических порошков распылением расплава инертным газом на установке ERMIGA10/100VI. Разработаны и освоены технологии получения порошков более 10 марок никелевых и титановых припоев (10–200 мкм). Были начаты серийные поставки припоев моторным заводам. Ведутся работы по получению мелкодисперсных порошков для аддитивных технологий. Порошки для лазерной LMD-наплавки (40–80 мкм) поставляются в ОАО «Авиадвигатель», на котором проводятся работы по отработке технологий наплавки бородок бандажных полок лопаток ТВД. Ведутся работы по получению порошков для селективного лазерного сплавления (20–40, 10–50 мкм).



Рис. 6. Установка послойного лазерного сплавления M2 Cusing компании Concept Laser

В 2014 году ВИАМ приобрел установку для селективного лазерного сплавления металлических порошков Concept Laser M2 Cusing (рис. 6), позволяющую получать детали практически любой сложности внутреннего строения напрямую из металлических порошков без использования оснастки. Начаты исследования в области получения деталей по полному циклу, что обеспечит в дальнейшем ускорение внедрения аддитивных технологий в производство. Также в ФГУП «ВИАМ» методом послойного лазерного сплавления на установке M2 Cusing фирмы Concept Laser из порошка ЭП648-ВИ (ВХ4Л) начато изготовление завихрителей для двигателей 100-07, 100-08, 100-09. В рамках НИР по заказу Федерального космического агентства проведены работы, показавшие возможность получения порошков (гранул) на основе никеля и титана для проведения селективного лазерного сплавления.

Аддитивные технологии в «росатоме»: цикл от порошков до применения

Рис. 7. Дорожная карта развития аддитивных технологий «Росатома»

Импорт в Россию аппаратов для аддитивных технологий
Россия удовлетворяет потребности в 3D-принтерах, работающих на металлических порошках, за счет импорта этой продукции. По данным «Инфомайн», Россия импортировала в 2009–2015 годах 29 установок для аддитивных технологий на металлических порошках на сумму около 12 млн долларов. При этом характерным является тренд на рост импортных поставок (рис. 10). Как видно, 2014 и 2015 годы характеризовались наивысшим уровнем поставок на сумму свыше 200 тыс. долларов.




Рис. 8. Атомайзер ALD VIGA-2B

Научный центр порошкового материаловедения (НЦПМ) при Пермском научно-исследовательском политехническом университете (ПНИПУ) приобрел в 2011 году атомайзер ALD VIGA-2B (рис. 8). В апреле 2014 года АМ-машина была запущена. Установка предназначена для исследований и получения небольших экспериментальных партий порошков. Она позволяет распылять все нетугоплавкие металлы и сплавы с температурой плавления до 1700 °C. По словам специалистов Научного центра, порошки получаются сферические, но неоднород-ные - крупностью от 0,5 до 100 мкм.


Рис. 9. Структура поставки в РФ 3D-принтеров основными зарубежными производителями в 2009–2015 гг., %