Является простая модель пуассоновского потока. Определение Пуассоновского потока. Свойства. Моделирование неординарных потоков событий

  • Перевод

Введение

Одним из важнейших процессов, наблюдаемых в природе, является пуассоновский точечный процесс. Поэтому важно понять, как такие процессы можно моделировать. Методы моделирования различаются в зависимости от типа пуассоновского точечного процесса, т. е. пространства, в котором протекает процесс и однородности или неоднородности процесса. Мы не будем заинтересованы развитием пуассоновского точечного потока или с важными приложениями его в различных областях. Чтобы этот материал показался интересным, читателю настоятельно рекомендуется прочитать соответствующие разделы в Феллере (1965) и Синларе (1975) для основной теории и некоторые разделы в Триведи (1982) для приложений в ИТ.

На первом шаге мы определим пуассоновский процесс на = T
UNTIL Ложь (это бесконечный цикл; по желанию можно добавить критерий остановки)

Этот алгоритм просто реализовать, поскольку нет нужды генерировать пуассоновские случайные величины. Для других простых множеств A, существуют тривиальные обобщения теоремы 1.2. Например, когда A=x, где t может равняться бесконечности, 0 < T1 < T2 <… - равномерный пуассоновский процесс с интенсивностью λ и U1,U2,… - последовательность независимых одинаково распределённых равномерно на случайных величин, то (T1,U1),(T2,U2),… определяют пуассоновский процесс с интенсивностью λ на А.

Пример 1.1.
Равномерный пуассоновский процесс на единичной окружности
Если A - окружность с единичным радиусом, то разные свойства равномерного пуассоновского процесса можно использовать, чтобы получить несколько методов генерации (которые обобщаются на d-мерные сферы). Пусть λ - желаемая интенсивность.
Во-первых, мы просто могли бы сгенерировать случайную пуассоновскую величину N с параметром λπ, а затем вернуть последовательность N независимых одинаково распределённых равномерно на единично окружности векторов. Если мы применим метод порядковых статистик, предлагаемый теоремой 1.2, то пуассоновская случайная величина получается неявно. Например, перейдя в полярные координаты (R,φ) заметим, что для равномерного пуассоновского процесса R и φ независимы, и случайная величина R имеет плотность 2r, r меняется от 0 до 1, а φ равномерно распределена на . Таким образом, мы можем поступить следующим образом: Сгенерировать равномерный пуассоновский процесс 0 < φ1 < φ2 <… < φN с параметром интенсивности λ/(2π) на экспоненциальным методом и вернуть (φ1,R1),...,(φN,RN), где Ri - независимые одинаково распределённые случайные величины с плотностью 2r на , которые можно сгенерировать, взяв максимум из двух независимых равномерно распределённых на случайных величин. Особой причины применять эспоненциальный метод к углам нет. Таким же образом мы могли подобрать и радиусы. К сожалению, порядковые радиусы не формируют одномерный равномерный пуассоновский процесс на . Однако, тем не менее они образуют неоднородный пуассоновский процесс, и генерация таких процессов будет рассмотрена в следующем разделе.

Неоднородные пуассоновские процессы

Бывают такие ситуации, когда события происходят в «случайные моменты времени», но некоторые моменты более возможны, чем другие. Это случай прибытий в центры интенсивной терапии, предложений работ в компьютерных центрах и травмы игроков НХЛ. Для этих случаев очень хорошей моделью является модель неоднородного пуассоновского процесса, определённого здесь ради удобства на = T
UNTIL False

Пример 1.2. Однородный пуассоновский процесс
Для особого случая λ(t)=λ, Λ(t)=λt несложно видеть, что InvΛ(E+Λ(T))=T+E/λ, в результате чего мы снова получаем экспоненциальный метод.
Пример 1.3.
Для моделирования утреннего потока автомобилей перед часом пик, мы иногда можем взять λ(t)=t, тогда Λ(t)=t^2/2 и получим шаг

Если функцию интенсивности можно представить в виде суммы функций интенсивности, т. е. ,

0 < T i1 < T i2 <… T in - независимые реализации отдельных неоднородных пуассоновских процессов, то объединённая упорядоченная последовательность образует реализацию неоднородного пуассоновского процесса с функкцией интенсивности λ(t). Это относится к методу композиции, но разница теперь состоит в том, что нам нужны реализации всех компонентов процесса. Декомпозицию можно использовать, когда существует естественное разложение, продиктованное аналитической формой λ(t). Поскольку основная операция в слиянии процессов - взять минимальное значение из n процессов, для больших n преимущество может предоставить хранение моментов времени в куче из n элементов.

В итоге получим метод композиции:

Сгенерировать T,...,T для n пуассоновских процессов и хранить эти значения вместе с индексами соответствующих процессов в таблице
T = 0 (текущее время)
k = 0
REPEAT
Найти минимальный элемент T в таблице и удалить его
k = k + 1
T[k] = T
Сгенерировать T и вставить в таблицу
UNTIL False

Третий общий принцип - это принцип утоньшения (Льюис и Шедлер, 1979). Аналогично тому, что происходит в методе отклонения, предполагаем, что существует лёгкая доминирующая функция интенсивности λ(t) <= μ(t) для любого t.

Тогда идея состоит в том, чтобы сгенерировать однородный Пуассоновский процесс на части положительной полуплоскости между 0 и μ(t), затем рассмотреть однородный пуассоновский процесс под λ и, наконец, вернуть x-компоненты событий в этом процессе. Это требует следующей теоремы.



Теперь рассмотрим метод утоньшения Льюиса и Шедлера:

T = 0
k = 0
REPEAT
Сгенерировать Z, первое событие в неоднородном пуассоновском процессе с функцией интенсивности μ, который происходит после момента времени T. Присвоить T = Z
Сгенерировать равномерно распределённую на случайную величину U
IF U <= λ(Z)/μ(Z)
THEN k = k + 1, X[k] = T
UNTIL False

Утверждается, что последовательность X k так сгенерированная образует неоднородный пуассоновский процесс с функцией интенсивности λ. Заметим, что мы взяли неоднородный процесс 0 < Y1 < Y2 <… с функцией интенсивности μ и убрали некоторые точки. Насколько мы знаем, (Y i ,U i μ(Y i) - однородный пуассоновский процесс с единичной интенсивностью на кривой, если U i независимые одинаково распределённые равномерно на случайные величины в силу теоремы 1.3. Таким образом, подпоследовательность на кривой λ определяет однородный пуассоновский процесс с единичной интенсивностью на этой кривой (часть 3. теоремы 1.3). Наконец, взятие x-координат только этой подпоследовательности даёт нам неоднородный пуассоновский процесс с функцией интенсивности λ.
Неоднородный пуассоноский процесс с функцией интенсивности μ обычно моделируют методом инверсии.

Пример 1.4. Функция с циклической интенсивностью
Следующий пример также принадлежит Льюису и Шедлеру (1979). Рассмотрим функцию с циклической интенсивностью λ(t)= λ(1+cos(t)) с очевидным выбором доминирующей функции μ=2λ.

Тогда алгоритм моделирования примет вид:

T = 0
k = 0
REPEAT
Сгенерировать экспоненциальную случайную величину E c параметром 1
T = T + E/(2λ)
Сгенерировать равномерную на случайную величину U
IF U <= (1+cos(T))/2
THEN k = k + 1, X[k] = T
UNTIL False

Нет нужды говорить о том, что можно использовать здесь теорему о двух милиционерах, чтобы избежать вычисления косинуса в большинстве случаев.

Заключительное слово об эффективности алгоритма, когда моделируется неоднородный пуассоновский процесс на множестве . Среднее число событий, которое необходимо от доминирующего процесса, равно в то время, как среднее число возвращённых случайных величин равно
Отношение средних величин может быть рассмотрено как объективная мера эффективности, сравнимая в духе константы отклонения в стандартном методе отклонения. Заметим, что мы не можем использовать среднюю величину отношения, поскольку она, в общем случае, была бы равна бесконечности в силу положительной вероятности того, что ни одна величина не возвратится.

Под потоком событий в теории вероятностей понимается последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток заказных писем, поступающих в почтовое отделение, и т.п. События, образующие поток, в общем случае могут быть различными. Если события различаются только моментами появления, то поток событий называется однородным .

Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени. Такой поток сравнительно редко встречается в реальных системах, но представляет интерес как предельный случай.

Поток событий называется стационарным , если вероятность попадания того или иного числа событий на промежуток времени зависит только от длительности промежутка и не зависит от того, где именно на оси времени расположен этот промежуток.

На практике часто встречаются потоки заявок, вероятностные характеристики которого не зависит от времени. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же в течение

Поток событий называется потоком без последействия , если для любых непересекающихся участков времени число событий, обладающих на одно из них, не зависит от числа событий, попадающих на другие.

Например, поток пассажиров, входящих на станцию метро, можно считать потоком без последействия. Поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой.

Выходной поток (или поток обслуженных заявок), покидающий систему массового обслуживания, обычно имеет последействие, даже если входной поток его не имеет. Рассмотрим, например, одноканальную систему массового обслуживания, для которой

время обслуживания любой заявки имеет одну и ту же величину t об . Тогда в потоке обслуженных заявок минимальный интервал времени между заявками, покидающими

систему, будет равен t об . Нетрудно убедиться, что наличие такого минимального интервала неизбежно приводит к последействию. Действительно, пусть известно, что в какой-то момент t 1 систему покинула обслуженная заявка. Тогда можно утверждать с достоверностью, что на любом интервале времени, лежащем в пределах (t 1 , t 1 + t об ) ,

ни одна заявка не покинет систему. Значит, будет иметь место зависимость между числами событий на непересекающихся участках.

Поток событий называется ординарным ,если вероятность появления двух и более событий за малый промежуток времени имеет более высокий порядок малости по сравнению с вероятностью появления за этот промежуток одного события. Для ординарного потока событий вероятность одновременного появления более чем одного события равна нулю.


Условие ординарности означает, что заявки приходят по одиночке, а не парами, тройками и т.д.

Пуассоновским (простейшим ) потоком называют поток, который обладает свойствами стационарности, отсутствия последействия и ординарности. Название “пуассоновский” связано с тем, что для этого потока число событий, попадающих на любой фиксированный интервал времени, будет распределено по закону Пуассона.

Пуассоновский поток играет среди потоков событий особую роль, до некоторой степени аналогичную роли нормального закона среди других законов распределения. Можно доказать, что аналогично тому как при суммировании большого числа независимых случайных величин, подчиненных практически любым законам распределения, получается величина, приближенно распределенная по нормальному закону, при суммировании (взаимном наложении) большого числа ординарных, стационарных потоков с практически любым последействием получается поток, сколь угодно близкий к пуассоновскому. Условия, которые должны для этого соблюдаться, аналогичны условиям центральной теоремы, а именно – складываемые потоки должны оказывать на сумму приблизительно равномерное влияние.

На практике чаще всего ограничиваются рассмотрением простейшего (пуассоновского) потока заявок.

Определение. Поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия , называется простейшим (или стационарным пуассоновским) потоком . Для простейшего потока событий вероятность того, что на участке времени длины t наступит ровно k событий, имеет распределение Пуассона и определяется по формуле:

Р{X(t,t) = k} = a k e -a /k! (k=0, 1, 2,…),

где а = lt , l – интенсивность потока.

Физический смысл интенсивности потока событий – это среднее число событий, приходящееся на единицу времени (число заявок в единицу времени), размерность – 1/время.

Простейшим этот поток назван потому, что исследование систем, находящихся под воздействием простейших потоков, проводится самым простым образом.

Распределение интервалов между заявками для простейшего потока будет экспоненциальным (показательным) с функцией распределения и плотностью , где – интенсивность поступления заявок в СМО.

Рассмотрим основные свойства простейшего потока:

Стационарность;

Ординарность;

Отсутствие последействия.

Стационарность . Свойство стационарности проявляется в том, что вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от его расположения на оси . Другими словами, стационарность означает неизменность вероятностного режима потока событий во времени. Поток, обладающий свойством стационарности, называют стационарным . Для стационарного потока среднее число событий, воздействующих на систему в течение единицы времени, остаётся постоянным. Реальные потоки событий в экономике предприятия яв­ляются в действительности стационарными лишь на ограниченных участках времени.

Ординарность. Свойство ординарности потока присутствует, если вероятность попадания на элементарный участок времени двух и более событий пренебрежимо мала по сравнению с длиной этого участка. Свойство ординарности означает, что за малый промежуток времени практически невозможно появление более одного события. Поток, обладающий свойством ординарности, называют ор­динарным. Реальные потоки событий в различных экономических системах либо являются ординарными, либо могут быть достаточно просто приведены к ординарным.

Отсутствие последействия . Данное свойство потока состоит в том, что для любых непересекающихся участков времени количество событий, попадающих на один из них, не зависит от того, сколько событий попало на другие участки времени. Поток, обладающий свойством отсутствия последействия, называют потоком без последействия .


Поток событий, одновременно обладающий свойствами стационарности, ординарности и отсутствия последействия, называется простейшим потоком событий.

2.6. Компоненты и классификация

моделей систем массового обслуживания (СМО)

Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудниками Копенгагенской телефонной компании, датским учёным А. К. Эрлангом (1878–1929 гг.) в период между 1908 и 1922 гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, работа морских и речных портов, магазинов, терминальных классов, радиолокационных комплексов, радиолокационных станций и т. д. и т. п. может быть описана в рамках ТСМО.

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить посты технического обслуживания автомобилей; любое предприятие сферы сервиса; персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач; аудиторские фирмы; отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчётности предприятий; телефонные станции и т. д.

Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания. Причём на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, наладки и т. д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

Основными компонентами системы массового обслуживания любого вида являются:

Входной поток поступающих требований или заявок на обслуживание;

Дисциплина очереди;

Механизм обслуживания.

Входной поток требований . Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идёт о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди – это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

– первым пришёл – первый обслуживаешься (FIFO);

– пришёл последним – обслуживаешься первым (LIFO);

– случайный отбор заявок (RANDOM);

– отбор заявок по критерию приоритетности (PR);

– ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания или количеством мест, что ассоциируется с понятием «допустимая длина очереди»).

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента, и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Cистема обслуживания может иметь не один канал обслуживания, а несколько – система такого рода способна обслуживать одновременно несколько требований. В этом случае, если все каналы обслуживания предлагают одни и те же услуги, можно утверждать, что имеет место параллельное обслуживание – многоканальная система.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно.

Рассмотрев основные компоненты систем обслуживания, можно утверждать, что функциональные возможности любой систе­мы массового обслуживания определяются следующими основными факторами:

Вероятностное распределение моментов поступлений заявок на обслуживание (единичных или групповых);

Вероятностное распределение времени продолжительности обслуживания;

Конфигурация обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

Количество и производительность обслуживающих каналов;

Дисциплина очереди;

Мощность источника требований.

В системах с ограниченным ожиданием может ограничиваться длина очереди, время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоявшая в очереди, ждёт обслуживание неограниченно долго, т. е. пока не подойдёт очередь.

Приведённая классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определённого момента, после чего система начинает работать как система с отказами.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью её функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

Вероятность немедленного обслуживания поступившей заявки;

Вероятность отказа в обслуживании поступившей заявки;

Относительная и абсолютная пропускная способность системы;

Средний процент заявок, получивших отказ в обслуживании;

Среднее время ожидания в очереди;

Средняя длина очереди;

Средний доход от функционирования системы в единицу времени.

Случайный характер потока заявок и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса, происходящего в системе массового обслуживания (СМО), различают марковские и немарковские. Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

· системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и покидает очередь;

· системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Для указания типа СМО используются общепринятые обозначения Кендалла – Баша: X/Y/Z/m ,

где X – вид закона распределения интервалов поступления заявок;
Y – вид закона распределения времени обслуживания заявок;
Z – число каналов;

m – число мест в очереди.

В обозначениях вида закона распределения буква M соответствует экспоненциальному распределению (от слова Марковиан ), буква E – распределению Эрланга, R – равномерному распределению и D – детерминированной величине.

Например, запись M/M/1 означаетодноканальную систему с экспоненциальными распределениями времени поступления и обслуживания заявок (М – марковская) без очереди.

2.7. Расчёт основных характеристик СМО

на основе использования их аналитических моделей

Рассмотрим такие СМО, в которых возможные состояния системы образуют цепь и каждое состояние, кроме исходного и последнего, связано прямой и обратной связью с двумя соседними состояниями. Такая схема процесса, протекающего в системе, называется схемой «гибели и размножения». Термин ведёт начало от биологических задач, процесс описывает изменение численности популяции.

Если в такой системе все потоки, переводящие систему из состояния в состояние пуассоновские, то процесс называется марковским случайным процессом «гибели и размножения».

Заметим, что в таких системах все состояния являются существенными, а значит, существуют финальные вероятности состояний, которые можно найти из линейной системы уравнений Эрланга.

На практике значительная часть систем (СМО) может описываться в рамках процесса «гибели и размножения».

Рассмотрим некоторые типы таких систем:

а) одноканальные с отказами (без очереди);

б) одноканальные с ограниченной очередью;

в) многоканальные с отказами (без очереди);

г) многоканальные с ограниченной очередью.

Пусть в эксперименте проводятся повторные испытания по схеме Бернулли и число испытаний велико , вероятность появления наблюдаемого события в одном испытании мала , а параметр является постоянной величиной. Тогда для вероятности - вероятности того, что событие в испытаниях появится раз, справедливо соотношение

. (3.1)

При вычислении вероятности в таком случайном эксперименте можно использовать приближенную формулу

, (3.2)

которая называется формулой Пуассона, а число - параметром Пуассона.

Задача 3.1. Вероятность брака при изготовлении некоторого изделия равна 0,008. Найти вероятность того, что при контроле среди 500 изделий будет не более двух бракованных.

Решение: поскольку вероятность мала, а число испытаний велико, то можно применить формулу Пуассона с параметром . Искомая вероятность является вероятностью суммы трех событий: бракованных изделий оказалось два, одно или ни одного. Поэтому

Определение 3.1

Потоком событий называется последовательность событий, наступающих в случайные моменты времени.

Например , потоком событий будут вызовы, поступающие на АТС, сигналы при сеансе радиосвязи, сообщения, поступающие на сервер, и.т.д.

Определение 3.2

Поток событий называется пуассоновским (простейшим) если он обладает следующими свойствами:

1. Свойством стационарности , т.е. интенсивность потока - постоянная.

2. Свойством ординарности, т.е. появление двух или более событий за малый промежуток практически невозможно.

3. Свойством отсутствия последействия, т.е. вероятность появления событий за промежуток времени не зависит от того, сколько событий появилось на любом другом участке.

Если обозначить - вероятность появления событий пуассоновского потока c интенсивностью за время , то справедлива формула:

. (3.3)

Задача 3.2. Страховая компания обслуживает 10000 клиентов. Вероятность того, что в течение одного дня клиент обратится в компанию, равна 0,0003. Какова вероятность того, что в течение двух дней в нее обратятся 4 клиента?



Решение: Интенсивность потока клиентов в течение одного дня равна

Следовательно, .

Решение задач 3.1 и 3.2 в среде Mathcad показано на рис. 3.

Задача 3.3. Вероятность сбоя считывающего устройства турникета метрополитена в течение часа мала. Найти эту вероятность, если вероятность того, что за 8 часов будет хотя бы один сбой, равна 0,98, и если известно, что за час через турникет проходит в среднем 1000 человек?

Решение: По формулам (1.3) и (3.3) при вероятность того, что в течение 8 часов будет хотя бы один сбой, равна:

С помощью символьных команд, а затем определяется искомая вероятность .

Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины с нормальным законом распределения в прикладной теории вероятностей. Такое положение объясняется тем обстоятельством, что в теории потоков, так же как и в теории случайных величин, имеется предельная теорема , согласно которой сумма большого числа независимых потоков с любым законом распределения приближается к простейшему потоку с ростом числа слагаемых потоков.

Стационарным пуассоновским (простейшим) называется поток, обладающий тремя свойствами:ординарностью ,отсутствием последействия истационарностью .

Распределение событий на малом интервале времени

По определению, интенсивностью потока называется предел
, так как простейший поток стационарен, то для него
.

Стационарность потока и отсутствие последействия исключают зависимость вероятности появления событий на интервале
как от расположения этого интервала на оси времени, так и от событий ему предшествующих. Поэтому
.

Для любого промежутка времени имеем . При устремлении
всеми членами правой части этой формулы, за исключением первого, можно пренебречь, т.к. в силу ординарности потока событий эти величины пренебрежимо малы по сравнению с
:

.

С учетом изложенного преобразуем исходное выражение для интенсивности потока:

.

Отсюда имеем равенство
, т.е. вероятность появления одного события на малом интервале времени пропорциональна этому интервалу с коэффициентом.

Очевидно, что
. Следовательно,
, откуда имеем
- вероятность непоявления ни одного события на малом интервале времени
.

Распределение событий в пуассоновском потоке

Найдем выражение
, где
- вероятность того, что на интервале
произойдетсобытий. Это событие произойдет в одном из двух взаимоисключающих случаях:

По теореме сложения вероятностей несовместных событий имеем вероятность наступления ситуации 1 или 2:

Откуда . Устремив
, получим
.

Определим аналогичное соотношение для
. Чтобы событие на интервале
не наступило ни одного раза, необходимо и достаточно, чтобы оно наступило0 раз в интервалеи0 раз - в
. Вероятность этого события равна. Откуда аналогично получим
.

Таким образом, пуассоновский поток событий описывается системой линейных дифференциальных уравнений

,

с очевидными начальными условиями .

Из первого уравнения получаем
, из начальных условий имеем
, откудас = 1 . Окончательно
.

Таким образом, для пуассоновского потока вероятность
отсутствия событий на любом интервале длинойопределяется экспоненциальной зависимостью. Для решения полной системы уравнений используем преобразование Лапласа. Имеем,

откуда
;
и далее
;
; ...
.

Взяв обратное преобразование Лапласа, с помощью таблиц получим
, т.е. распределение Пуассона.

Таким образом, простейший поток подчиняется закону распределения Пуассона, для которого математическое ожидание и дисперсия соответственно равны
.

Распределение интервалов между событиями

Найдем закон распределения интервалов времени между событиями для простейшего потока. Рассмотрим случайную величину - промежуток времени между двумя произвольными соседними событиями в простейшем потоке. Требуется найти функцию распределения
.

Рассмотрим противоположное событие
. Это вероятность того, что, начиная с некоторого момента появления события, за времяне появится больше ни одного события. Так как поток без последействия, то тот факт, что событие появилось в момент , не должен оказать никакого влияния на поведение потока в дальнейшем. Поэтому вероятность
, откуда
и плотность распределения вероятности
.

Такой закон распределения называется показательным (экспоненциальным) с параметром. Найдем математическое ожидание и дисперсиюэтого процесса:

;

Показательный закон обладает замечательным свойством: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка
(он будет таким же, как закон распределения промежутка).

Докажем это свойство. Пусть
- вероятность того, что обслуживание, продолжавшееся(с), еще продлится не менее(с): т.е. на интервале времениa + t не произойдет ни одного события. При показательном законе распределения времени обслуживания
.

По теореме о произведении вероятностей событий . При показательном законе;
и, следовательно,
, т.е. при показательном законе времени обслуживания закон распределения оставшейся части времени обслуживания не зависит от того, сколько времени уже длилось обслуживание. Можно доказать, что показательный закон единственный , для которого справедливо это свойство.

Рассмотренное свойство , по существу, представляет другую формулировку свойстваотсутствия последействия .