Элементов ручной сборки высококлассным технологиям. Технология сборки столярных изделий. Виды работ, связанные со сборкой электроаппаратов

Сборочные работы, в зависимости от типа производства, составляют от 20 до 40% общей трудоемкости изготовления машины. Эти работы обычно требуют значительных затрат физического труда слесарей сборщиков. Если в условиях массового производства, например, автомобилей широко применяются средства автоматизации и мехагн изации сборочных процессов, то в индивидуальном и мелкосерийном производстве, особенно при создании уникальной техники, экспериментальных экземпляров новых машин проблемы автоматизации сборочных работ практически не решены.

В зависимости от типа производства и вида изделия сборка может быть организована различным способом.

При массовом производстве наиболее эффективной является подвижная поточная сборка, при которой изделие перемещается по специализированным рабочим местам, где выполняются простейшие сборочные операции. Такие места могут быть оснащены специальными средствами механизации или быть полностью автоматизированы. (При такой форме организации сборки выпускают изделия бытовой техники, компьютеры, боеприпасы…). Такую форму организации сборки предложил Генри Форд, решая задачу массового выпуска автомобилей. При сборке автомобиля количество сборочных операций довольно велико, поэтому длина такого конвейера составляет сотни метров, а с учетом конвейеров сборки отдельных узлов автомобиля – многие километры. Конечно, внутри производственных зданий такие конвейеры располагается во много рядов и на нескольких уровнях по высоте. В то же время продолжительность элементарных сборочных операций при сборке автомобиля составляет не более нескольких минут, что позволяет обеспечить малый такт выпуска изделия. (обычно с конвейера, менее чем через минуту, сходит собранный автомобиль).

При производстве крупногабаритных изделий (электрогенераторов, турбин, самолетов, судов, станков…) применяют поточную стационарную сборку. В этом случае изделия, находящиеся в различных стадиях сборки, располагаются неподвижно, на специальных стапелях, а специализированные рабочие места (бригады рабочих с соответствующим оборудованием) перемещаются от изделия к изделию, производя соответствующие сборочные операции.

В условиях единичного и мелкосерийного производства такие виды сборки экономически неоправданы и сборка обычно выполняется бригадами высококвалифицированных специалистов, производящих все действия по сборке, регулировке и требуемым испытаниям. При этом трудоемкость сборки и продолжительность существенно выше. Так постройка подводной лодки по индивидуальному проекту может занимать до нескольких лет. Во время же второй мировой войны поточная сборка подводных лодок позволяла Германии выпускать одну подводную лодку в день, в США же производилось в день до нескольких судов водоизмещением 10000т.

Сборка заключается в соединении сопрягаемых сборочных единиц и деталей путем приведения в соприкосновение основных баз – сопрягаемых поверхностей. Такие поверхности определяют положение деталей относительно друг друга, выполняются с наибольшей точностью и определяют во многом качество машины. Так суппорт токарного станка устанавливается на направляющих поверхностях станины и может перемещаться по ним в одном направлении. От точности этих поверхностей станины будет зависеть точность (прямолинейность) перемещения суппорта – одна из важнейших характеристик качества станка.

В процессе сборки детали соединяется неподвижно или подвижно относительно друг друга. Такие соединения могут быть разъемными, когда соединение можно разобрать, например, для замены детали, узла (соединения по подвижным и переходным посадкам, резьбовые) и неразъемными, когда разборка невозможна без разрушения какого либо элемента (заклепочные, сварные, клеевые…).

В процессе сборки требуется производить ряд специфических операций, которые требуют затрат энергии и имеют определенную временную протяженность, уменьшение которой, также как и при обработке деталей, наталкивается на физические ограничение.

Конечно время завертывания винта можно уменьшить, повысив скорость вращения специального инструмента, но возникающие динамические нагрузки, при определенной скорости, приведут к разрушению либо винта, либо резьбы. Автомобилистам известно, что время завинчивания винта для крепления колеса вручную доходит до 1 минуты, с применением же специального механизированного инструмента на автомобильном заводе время завинчивания всех четырех винтов не превышает 1 секунды, т.е. уменьшено до предела.

Время же реализации таких соединений как сварное, клеевое определяются особенностями протекания теплофизических, металлургических, химических процессов.

Сложность современных машин (количество деталей самолета, судна может достигать нескольких миллионов) определяла бы очень большую продолжительность процесса последовательной сборки деталь за деталью.

Поэтому сборку ведут параллельно во времени собирая узлы изделия, группы деталей, которые монтируют на базовую деталь (или узел). Так собранная турбина устанавливается в корпус корабля, причем одновременнов корпус могут монтироваться и управляющая аппаратура, вооружение (пушки, ракетные установки и т.д.). В корпус самолета (планер) устанавливается собранный двигатель, который обычно и производится даже на другом предприятии.

Узел машины это сборочная единица, которая имеет самостоятельные функции, которые могут быть испытаны вне машины. Например, топливный насос, масляный фильтр и т.д. В соответствии с этим узлы могут быть унифицированы, производиться самостоятельно и применяться в различных машинах. Сборочные единицы, называемые группами, обычно самостоятельных функций не имеют и выделяются из общей сборки по принципу удобства соединения деталей в группу в отдельном процессе, с целью сокращения общего времени сборки машины.

Для построения технологического процесса сборки технологами производится анализ конструкции машины для выявления составляющих ее узлов, деталей, возможности вычленения групп деталей сборка которых возможна отдельно. Конечно, при проектировании машины конструктор должен уделять внимание технологичности машины, возможности сборки ее в параллельных во времени процессах. Если машина спроектирована неправильно, то никакие усилия технолога по оптимизации технологии ее изготовления не приведут к положительным результатам.

Поэтому конструктор при проектировании машины должен руководствоваться определенными стандартными правилами.

Так требования к составу сборочной единицы предполагают:

    расчленеие ее на рационалтьное число частей с учетом принципа агрегатирования;

    виды используемых соединений деталей и узлов должны позволять автоматизацию или механизацию сборочных работ;

    сборка изделия не должна предполагать применения сложного технологического оснащения;

    конструкция сборочной единицы должна предусматривать базовую составную часть, которая является основой для расположения других составных частей; , и т.д.

Среди многих требований, обеспечивающих технологичность машины, наибольшее значение имеет требование взаимозаменяемости всех ее узлов и деталей. Принцип взаимозаменяемости, закладываемый при проектировании искусственных объектов, не используется природой. Как известно, каждый природный организм уникален и приходится предпринимать специальные усилия в случае замены отдельных частей живых организмов. На первом этапе развития машинного производства, вплоть до начала 20-го века многие машины создавались в процессе пригонки отдельных деталей друг к другу. Например, размеры шеек вала задавались в виде номинальных. Без регламентации допуска на изготовление, а размер подшипниковой втулки задавался с требованием выполнить его по полученной шейке вала с определенным зазором. В этих условиях изготовить подшипниковую втулку можно было только после изготовления вала. Это увеличивало цикл изготовления машины и не позволяло производить ее ремонт с использованием запасных частей. Хотя принцип взаимозаменяемости был известен со средних веков, и даже был внедрен при производстве огнестрельного оружия еще по указу Петра 1, появление первых стандартов и его широкое применение относится именно к началу 20-го века. Несмотря на кажущуюся эффективность взаимозаменяемости применение этого принципа имеет ряд ограничений, так как в ряде случаев значительно удорожает изготовление машины. Это связано с тем, что качество функционирования отдельных узлов и машины в целом зависит от отклонений замыкающих звеньев, которые определяются допускаемыми отклонениями всех входящих в размерную цепь звеньев

Так в роликовом подшипнике качения должен быть зазор Зр между роликами 1 и кольцами 2 и 3, что обеспечивает свободу движения подшипника. В то же время большая величина этого зазора резко снижает качество подшипника, так как приводит к «болтанке» установленного в нем вала, значительным динамическим нагрузкам (ударам), нарушает точность кинематических связей деталей, установленных на валу с другими деталями машины. Но этот зазор возникает в процессе сборки подшипника и зависит от точности изготовления его деталей, причем максимальная и минимальная, возможная величина этого зазора равны: Зр макс = (Дкн макс – Дкв мин – Др мин)/2

Зр мин = (Дкн мин - Дкв макс – Др макс)/2

Для повышения качества подшипников колебания зазора стремяться свести к минимуму, но это требует чрезвычайно точного выполнения всех его деталей, что привело бы к значительному (на порядки) его удорожанию. Поэтому, даже в этом простейшем случае, от принципа полной взаимозаменяемости приходится отказываться и применять так называемую селективную (с использованием отбора) сборку. В этом случае допуски на изготовление отдельных деталей можно расширить, но потом, перед сборкой детали сортируют на отдельные группы, подбирая в этих группах истинные размеры так, чтобы при сборке получить минимальные колебания зазоров в подшипниках. Естественно, что часть (по теории вероятности очень малая) деталей не найдет себе применения, но эти потери с лихвой окупятся за счет снижения точности обработки отдельных элементов.

В реальных машинах размерные цепи могут состоять из десятков взаимосвязанных размеров и полная взаимозаменяемость, часто не только экономически не оправдана, а даже невозможна. Поэтому, на практике, при сборке машин применяют не только метод подбора, но и метод пригонки, когда отдельные элементы обрабатывают «по месту» с учетом требуемых размеров замыкающего звена.

Методы достижения точности замыкающих размеров размерных и кинематических цепей при сборке машин в соответствии со стандартами подразделяются:

    метод полной взаимозаменяемости, основанный на расчете размеров замыкающего звена по максимальным и минимальным допустимым размерам составляющих размерную цепь звеньев (метод макимум минимум). Этот м етод обеспечивает полную взаимозаменяемость, но требует довольно точного выполнения размеров составляющих звеньев (деталей) и применим в массовом и крупносерийном производстве, когда число размеров, входящих в размерную цепь невелико.

    При методе неполной взаимозаменяемосьти допуски на размеры составляющих звеньев расширяют (чтобы удешевить производство деталей), По теории вероятностей отклонения размеров составляющих звеньев (реальных деталей) на практике при сборке могут компенсировать друг друга (детали с отклонениями в большую сторону с деталями имеющими отклонения в меньшую сторону. Кроме того, размеры с отклонениями близкими к центру поля допуска встречаются значительно чаще, чем с крайними предельными отклонениями. Такой принцип обеспечения взаимозаменяемости рационально применять в серийном и массовом производстве, при сложных многозвенных размерных цепях.

    Метод групповой взаимозаменяемости применяют при создании соединенийвысокой точности, когда полная взаимозаменяемость либо недостижима, либо связана с чрезвычайно большими затратами. В этом случае детали изготавливают по расширенным допускам, а потом сортируют на группы (например, при производстве подшипников качения). Такая сборка целесообразна в массовом и крупносерийном производстве.

    Сборка методом пригонки трудоемка и применяется в единичном и мелкосерийном производстве. Метод регулирования снижает трудоемкость пригонки и требует применения в конструкции специальных регулирующих устройств, которые могут несколько усложнять конструкцию машины.

Машина, состоящая из множества деталей, которые группируются в узлы, подузлы, группы деталей может быть собрана множеством способов, вплоть до последовательной сборки «деталь за деталью».

Выбор же оптимального технологического процесса является сложной задачей, для решения которой приходится применять многие математические методы (линейное и нелинейное программирование, теорию массового обслуживания и т.д.). Причем оптимизация технологии сборки требует построения целевой функции в качестве которой может использоваться минимальная себестоимость изделия, время производства изделия или различные комбинации этих функций.

При построении технологического процесса сборки машины используется ряд практических правил, суммирующих накопленный производственный опыт. Общая сборка машины начинается с установки базирующей детали или базирующей сборочной единицы машины, роль которой обычно выполняет корпусная деталь. Это может быть рама, станина, корпус, основание и т.д.

Базирующую деталь устанавливают или закрепляют в удобном для сборки положении. Иногда эту деталь закрепляют в специальном приспособлении, которое либо увеличивает жесткость детали, либо позволяет ее поворачивать или перемещать требуемым при сборке способом.

При поточной подвижной сборки это приспособление, зачастую, перемещается вместе с изделием до завершения процесса сборки. Иногда же оно позволяет закреплять изделие до окончания процесса сборки и перемещать собранное изделие в рабочую среду (судостроительный стапель).

При сборке отдельных узлов также выявляется базовая деталь, которую принимают за основу при сборке узла.

При разработке процесса сборки необходимо учитывать доступность места сборки, поэтому, в первую очередь, устанавливают узлы и детали, минимально затрудняющие установку последующих узлов и деталей. При этом необходимо учитывать возможность размещения монтажного инструмента.

Следует подчеркнуть, что несмотря на широкие возможности комбинаторики в выборе технологического процесса сборки машины, возможности качественной, производительной сборки закладываются на стадии проектирования конструктором. Разработанную последовательность сборки машины изображают в виде графической схемы сборки (рис.2). На схему общей сборки наносятся условные обозначения деталей и сборочных единиц, поступающих на общую сборку. Схема наглядно показывает в какой последовательности на базовую деталь устанавливаются узлы и детали. Нарушение последовательности, предусмотренной этой схемой недопустимо.

Кажется очевидным, что разборку машины можно произвести в обратном порядке, однако в процессе сборки могут применяться неразъемные соединения. Целью же разборки может быть дефектация машины после испытаний, упаковка для отправки заказчику, в тех случаях, когда разобранная машина более транспортабельна, ремонт. Поэтому для разборки машины составляются специальные схемы, соответствующие целям разборки.

Такое схематическое представление технологического процесса сборки отличается наглядностью и, зная продолжительность и стоимость выполнения отдельных операций сборки, можно легко оценить время сборки машины и стоимость процесса. При определении времени выполнения отдельных операций сборки, производимых с применением ручного труда, используются статистические экспериментальные оценки. При этом, конечно, определение норм времени должно производиться с учетом средних возможностей слесарей сборщиков.

Трудоемкость процессов сборки обуславливает разработку средств ее механизации и автоматизации. В настоящее время, особенно в условиях массового и крупносерийного производства широко применяются промышленные роботы, позволяющие в ряде случаев полностью освободить человека от выполнения сборочных операций. Возможности промышленных роботов, хотя и совершенствуются с каждым годом, но до настоящего времени значительно уступают возможностям человека. Поэтому изделия для автоматической сборки, зачастую, проектируют, учитывая достигнутые возможности автоматизации сборочных процессов. Так, многие резьбовые соединения оказалось целесообразным переводить на сварные, клеевые, заклепочные, которые значительно проще выполняются автоматами. В то же время ремонтопригодность таких изделий значительно снижается.

Многие знают, что в настоящее время при ремонте бытовой техники, оказывается рациональным заменять целые агрегаты, ремонт которых либо невозможен, либо экономически неоправдан.

Высокий уровень автоматизации сборочных операций достигнут в настоящее время только в условиях массового и крупносерийного производства, хотя требования рынка определяют необходимость выпуска изделий максимально удовлетворяющих индивидуальным требованиям потребителя. Так известно, что обладание людьми одинаковыми вещами, вызывает чувство некоторого дискомфорта. Производство же отличающихся друг от друга вещей в условиях поточного производства существенно усложняет технологические задачи. Первые попытки, решить эту проблему, предприняты на заводах, производящих автомобили Мерседес. В настоящее время их собирают в условиях максимально автоматизированной поточной сборки, по индивидуальным заказам, когда входящие в сборку узлы могут варьироваться исходя из требований заказчика. Так определенный кузов может оснащаться теми или иными сидениями, радиоэлектронным оборудованием и т.д. Это требует решения сложнейших задач логистики, которое стало возможным при применении современных средств вычислительной техники.

Вопросы для самопроверки:

    Виды организационных форм процессов сборки машин.

    На какие элементы может разделяться конструкция в процессе ее изготовления?

    Какие виды соединений применяются при сборке машин?

    В каком типе производства рационально применять поточную стационарную сборку?

    Какие ȔȍȚȖȌȣ ȌȖșȚȐȎȍȕȐȧ ȚȖȟȕȖșȚȐ ȏȈȔȣȒȈȦȡȐȝ ȘȈȏȔȍȘȖȊ ȘȈȏȔȍȘȕȣȝ Ȑ

ȒȐȕȍȔȈȚȐȟȍșȒȐȝȞȍȗȍȑǪȣȏȕȈȍȚȍ?

    ǪȒȈȒȐȝșȓțȟȈȧȝȕȍȘȈȞȐȖȕȈȓȤȕȖȐșȗȖȓȤȏȖȊȈȚȤȔȍȚȖȌȗȖȓȕȖȑȊȏȈȐȔȖȏȈȔȍȕȧȍȔȖșȚȐ?

    Перечислите методы снижения трудоемкости процессов сборки машин.

Образец карты тестового контроля:

    Какие технологии применяются при сборке машин?

а). Свинчивание, склеивание, сварка.

б). Сверление, долбление, притирка.

в). Пригонка, опиливание, шабрение, распиливание.

    В каких случаях производят сборку с пригонкой деталей друг по другу? А). При изготовлении особо точных машин и приборов.

Б) При изготовлении крупногабаритных конструкций.

В) При изготовлении оптических приборов.

Сертификация систем качества

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практической работе студентов

«ПОСТРОЕНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ СБОРКИ ИЗДЕЛИЯ»

Направление подготовки: 220500 «Управление качеством»

Специальность: 220501 «Управление качеством»

очной формы обучения

Разработал к.т.н., доц. Кашмин О.С.

Рассмотрено на заседании каф. АСС
Протокол №_______ от__________________2006 г.

Зав. каф. д.т.н. проф.

Иноземцев А.Н

1.ч работы копируем полностью в работу.

Цель и задачи работы

Ознакомиться с формой и порядком заполнения спецификаций изделий, изучить правила построения технологических схем сборки и их назначение.

Общая часть

Сборка – завершающий этап производственного процесса в машиностроении, она в значительной мере определяет качество изделий и их выпуск в заданные сроки. Трудоемкость узловой и общей сборки составляет в среднем около 30 % всей трудоемкости изготовления машин. В массовом и крупносерийном производстве эта доля меньше, а в единичном и мелкосерийном, где выполняется большой объем пригоночных работ, трудоемкость сборки достигает 40…50%. В связи с этим правильная организация, всесторонняя технологическая проработка сборочных работ, по части их содержания, структуры, механизации и автоматизации, имеет большое народнохозяйственное значение.

Технологический процесс сборки - процесс, содержащий действия по установке и образование соединений составных частей заготовки или изделия.

Узловая сборка – сборка, объектом которой является составная часть изделия.

Общая сборка – сборка, объектом которой является изделие в целом.

Законченную часть технологического процесса, выполняемую на одном рабочем месте называют технологической операцией . Операция включает все действия оборудования и рабочих над одним или несколькими совместно собираемыми объектами (операционная партия).

Элементами технологических операций являются технологические и вспомогательные переходы, рабочие и вспомогательные ходы, установ, позиция .

Кроме технологических, различают еще вспомогательные операции , к которым относятся транспортирование, контроль, маркировку, смазку и др. работы. Сборку выполняют в определенной технологически и экономически целесообразной последовательности для получения изделий, полностью отвечающих установленным для них требованиям. Увеличение выпуска машин должно обеспечиваться интенсификацией технологических процессов. Поэтому основная задача технолога–машиностроителя заключается в построении высокопроизводительных технологических процессов.

Большую помощь технологам при разработке технологических процессов общей и узловой сборки оказывают технологические схемы сборки. Эти схемы отражают структуру и последовательность сборки изделия и его составных частей. Технологические схемы сборки, не входящие согласно стандартам ЕСТД (Единой Системы Технологической Документации) в комплект технологической документации, рекомендуется составлять непосредственно по чертежам изделия перед разработкой основной технологической документации (технологических карт установленных форм).

Технологические схемы упрощают проектирование процессов сборки и позволяют оценить технологичность конструкции изделия. При построении технологических схем можно выявить допущенные конструктивные неувязки собираемого изделия. Технологические схемы сборки дают возможность четко представить порядок и последовательность выполнения сборочных операций, определяя их содержание и средства механизации. Для построения технологических схем необходимо различать виды изделий, классификация которых установлена ГОСТ 2.101-68 (рис.1), в соответствии с которой различают: детали, сборочные единицы, комплексы и комплекты.

Изделием называется любой предмет или набор предметов производства, подлежащих изготовлению на предприятии. Определение видов изделий.

Деталь – изделие, изготовленное из однородного по наименованию и марке материала, без применения сборочных операций.

Сборочная единица – изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе сборочными операциями (свинчиванием, сочленением, клепкой, пайкой и т.п.).

Комплекс – два или более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенные для выполнения взаимосвязанных эксплуатационных функций.

Комплект – два или более изделия, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера. Например, комплект запасных частей, комплект инструментов и принадлежностей.

Изделия в зависимости от наличия или отсутствия в них составных частей делятся на:

а) неспецифицированные (детали) – не имеющих составных частей;

б) специфицированные (сборочные единицы, комплексы, комплекты) - состоящие из двух или более составных частей. Понятие "составная часть" следует применять только в отношении конкретного изделия, в состав которого она входит. Составной частью может быть любое изделие (деталь, сборочная единица, комплекс и комплект).

Рис.1 Виды изделий и их структура

Правила построения технологических схем сборки

Сборку изделия (его составной части) начинают с базовой детали, которая первая устанавливается в сборочное приспособление (стенд, панель) и к которой в процессе сборки присоединяются другие детали или сборочные единицы.

Технологический процесс общей и узловой сборок представляется с помощью технологических схем, которые отражают структуру и последовательность сборки изделия и его составных частей.

Примеры технологических схем общей и узловых сборок показаны в приложении.

Единых общепринятых правил построения и оформление схем сборки в отечественной технологии машиностроения нет, в различных источниках могут встречаться не совпадающие рекомендации. Тем не менее можно сформулировать ряд правил, которые следует соблюдать при построении схем и их пользовании, исходящих из общепринятых требованиям наглядности и однозначности представлений.

2.1. На схемах каждый элемент изделия (деталь, сборочная единица) имеет свое условное обозначение (таблица). Деталь обозначается прямоугольником, сборочная единица шестиугольником, которые разделены на три зоны:

в зоне 1 проставляются обозначение и позиция детали (сборочной единицы) по чертежу;

в зоне 2 – наименование детали (сборочной единицы) по чертежу;

в зоне 3 – количество одновременно устанавливаемых деталей (сборочных единиц). Указанные в таблице размеры условного обозначения элемента изделия желательно выдерживать, составляя технологическую схему сборки, при выполнении данной лабораторной работы. В общем случае условные элементы изображаются произвольного масштаба, одинакового для данной схемы.

2.2. Процесс общей сборки изображают на схеме сплошной горизонтальной линией. Начало линии сборки обозначается сплошь зачерненным кружком Ш5 мм.

2.3. построение технологической схемы общей сборки начинают с базового элемента изделия, который располагают в левой части схемы, условное обозначение собранного объекта – в правой.

2.4. Процесс узловой сборки изображается линией, которую проводят в направлении от базового элемента к собранному объекту.

2.5. Линия сборки изображается сплошной основной линией по ГОСТ2.303-68.

2.6. Условное изображение сборочных единиц, деталей, а также линии установки, демонтажа, информации выполняется сплошной тонкой линией по ГОСТ 2.303-68.

2.7. Условное обозначение всех деталей непосредственно входящих в изделие располагают сверху в порядке последовательности сборки.

2.8. Условное обозначение всех непосредственно входящих в изделие сборочных единиц располагают снизу.

2.9. При возможности одновременной установки нескольких составных частей изделия на его базовую деталь их соединительные линии на схеме сходятся в одной точке.

2.10. При необходимости технологические схемы сборки снабжают надписями-сносками, поясняющими характер сборочных работ (запрессовку, смазку, проверку зазора, доработку, клепку, выверку и т.п.), когда они не ясны из схемы, и выполняемый при сборке контроль.

2.11. Составляют в первую очередь схему общей сборки, а затем схемы узловой сборки (параллельно), обеспечивая необходимую согласованность и координацию действий на основе схемы общей сборки изделия.

Технологические схемы сборки на одно и тоже изделие можно составить в нескольких вариантах, которые отличаются структурой и последовательностью комплектования сборочных элементов. Принятый вариант фиксируют составленной схемой, которая является одним из технологических документов.

Создавая новые машины, следует предусмотреть их общую сборку из предварительно собранных составных частей (принцип узловой сборки), что обеспечивает преимущества не только при их производстве, но также при обслуживании, эксплуатации и ремонте.

3. ВОПРОСЫ ДЛЯ КОНТРОЛЯ

3.1. Составные части технологического процесса.

3.2. Классификация изделий и их составных частей по ЕСКД.

3.3. Назначение технологических схем сборки.

3.4. Основные правила составления технологических схем сборки.

4. ЗАДАНИЕ ДЛЯ РАБОТЫ

Получив в качестве объекта работы изделие, оформить его сборочный чертеж и спецификацию, а также построить технологическую схему сборки сборки изделия. Произвести описание принятой схемы сборки.

5. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

5.1. Ознакомиться с инструкцией по безопасному выполнению лабораторных работ.

5.2. Ознакомиться с содержанием лабораторной работы, заданием.

5.3. Получить изделие для выполнения работы и необходимые инструменты.

5.4. Ознакомиться с конструкцией и назначением изделия.

5.5. Оформить сборочный чертеж изделия (вывести позицию на входящие в изделия сборочные единицы и детали).

5.6. Построить технологическую схему сборки.

5.7. Произвести сборку изделия и окончательно откорректировать технологическую схему сборки.

5.8. Составить отчет и сдать его преподавателю.

6. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ОТЧЕТА

Отчет оформляется на специальных бланках, выданных преподавателем.

Графическая и текстовая часть отчета должна быть выполнена карандашом аккуратно, стандартным шрифтом с использованием чертежных инструментов.

Отчет составляется индивидуально и подписывается каждым студентом.

7. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. ГОСТ 2.101- 68 ЕСКД Виды изделий.

2. ГОСТ 2.108-68 (СТ СЭВ 2516-80). ЕСКД Спецификация.

3. ГОСТ 3.1407-74. ЕСКД Правила оформления документации на слесарные, слесарно-сборочные и электромонтажные работы.

4. Сборка и монтаж изделий машиностроения: Справочник. В 2-х т. /Ред. совет: В.С.Корсаков (пред.) и др. - М.: Машиностроение, 1983.– Т.1. Сборка изделий машиностроения / Под ред. В.С.Корсакова, В.К. Замятина, 1983.- 480 с.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Раздел 6.

Технология сборки машин.

Урок 5

Тема: Основные понятия и определения.

Цели урока: дать основные понятия о принципах и методах сборки. Научиться составлять технологическую схему сборки.

План изложения материала:

1. Основные понятия и определения.

2. Методы сборки.

3. Стадии сборки.

4. Технологическая документация процесса сборки.

5. Технологическая схема сборки.

Задание на дом :

, «Технология изготовления деталей на станках с ЧПУ» М. Машиностроение, 1989г., стр. 221…233.

1. Основные понятия и определения.

Сборка является заключительным этапом в производственном процессе, предусматривающим получение готовых изделий из отдельных деталей и сборочных единиц путём их соединения. Любая машина состоит из отдельных, не поддающихся разборке частей – деталей, каждая из которых изготовлена из одного куска материала без каких-либо соединений. Детали бывают разнообразных форм и размеров. Иногда используются комбинированные детали: сварные и армированные. Основные определения и понятия, используемые при сборке.

Изделием в машиностроении называют предмет, подлежащий изготовлению на данном предприятии.

Установлены следующие виды изделий: деталь, сборочная единица, комплекс, комплект.

Деталь - изделие (составная часть), изготовленная из однородного по наименованию и марке материала без применения сборочных операций.

Сборочная единица (узел) - изделие, составные части которого соединяют на предприятии – изготовителе.

Технологическим признаком сборочной единицы является возможность её сборки обособленно от других элементов изделия. Она может включать в себя отдельные детали или составные части высших или низших порядков. Деление на составные части производится по технологическому признаку. Составная часть первого порядка входит непосредственно в составную часть изделия, составная часть второго порядка – в первую и т. д. Составная часть высшего порядка делится только на детали.

Комплекс – два или более специализированных изделий, не соединённых на предприятии – изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций.

В комплекс могут входить кроме изделий детали, сборочные единицы и комплекты (например, запасных частей).

Комплект – два или более изделий, не соединённых на предприятии – изготовителе сборочными операциями и представляющих собой набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера, например, комплект инструментов и т. д.

Сборка – это образование разъёмных или неразъёмных соединений, составных частей заготовки или изделия. По содержанию сборку делят на общую и узловую.

2. Методы сборки.

При соединении деталей машин в процессе сборки необходимо обеспечить их взаимное расположение в пределах заданной точности это достигается применением одного из следующих методов.

1. Полной взаимозаменяемости.

Этот принцип заключается в том, что любая деталь может быть поставлена на машину без каких либо пригоночных работ; точно также деталь, снятая с машины данной модели, должна без всякой пригонки подойти к любой такой же машине. Этот принцип применяется в массовом и крупносерийном производстве, т. к. при этом методе себестоимость изготовления деталей увеличивается, а сборки – уменьшается. Процесс сборки разбивают на ряд операций. Высокая квалификация рабочих необходима только на некоторых операциях, а на большинстве есть возможность использовать рабочих низкой квалификации.

2. Групповой взаимозаменяемости.

Сборка путём группового подбора деталей применяется тогда, когда по условиям работы соединения требуемый зазор или натяг настолько мал, что допуски основных размеров деталей, входящих в соединение, технологически выполнить трудно. В этом случае расширяют поля допусков размеров, а заданную точность соединения обеспечивают соответствующим подбором деталей. Этот вид сборки позволяет получить весьма точные соединения, его можно успешно применять, когда детали изготавливаются большими партиями. При этом методе детали сортируют на размерные группы в пределах одного и того же допуска. Например: собирается узел из двух деталей и посадка осуществляется путём установки вала в отверстие. Валы и детали, имеющие отверстия сортируют на группы. При сборке к деталям, имеющим максимальное значение отверстия, подбирают группу валов, имеющих максимальное значение наружного размера.

3. Пригонка.

Этот вид сборки применяют в единичном и мелкосерийном производствах, а также при экспериментальных работах. При механической обработке деталей расширяют поля допусков отдельных размеров. Получающаяся неточность компенсируется замыкающим размером детали, который будет изготавливаться по месту, т. е. пригоняться. Перед отправкой на общую сборку детали подвергаются ручной слесарной обработке для получения окончательной формы и размеров, после чего их пригоняют по месту опиливанием, пришабриванием, притиркой, шлифованием, развёртыванием и т. д. Пригонка является трудоёмкой операцией, требующей рабочих высокой квалификации.

4. Регулирование.

5. С помощью компенсирующих материалов.

Эти методы близки к методу пригонки и заключаются в том, что точность замыкающего звена достигается изменением значения компенсирующего звена без удаления слоя материала. При методе регулирования изменение значения компенсирующего звена осуществляют путём изменения положения одной из деталей или путём введения специальной детали требуемого размера. В первом случае такую деталь называют подвижным компенсатором, во втором – неподвижным. Подвижный компенсатор в виде втулки устанавливают в отверстие стенки корпуса и закрепляют, выдерживая требуемый зазор. Компенсатор является подвижным вследствие того, что в продольном направлении его можно установить в нужном положении, зафиксировав затем это положение стопорным винтом. При этом не требуется пригоночных работ. Широко распространены компенсаторы в виде мерных втулок, шайб, прокладочных колец. Этот метод применяется часто при регулировании подшипников.

3. Стадии сборки.

По стадиям сборку разделяют на:

1. предварительную (сборка заготовок);

2. промежуточную (сборка заготовок, выполняемая для их совместной обработки);

3. сборку под сварку;

4. окончательную (сборка, после которой не предусмотрена разборка).

По методу образования соединения различают слесарную сборку, монтаж, электромонтаж, сварку, пайку, клёпку, склеивание.

В зависимости от видов и условий производства применяют поточную и не поточную форму организации сборочных работ.

4. Технологическая документация процесса сборки.

К технологической документации относят: технологические карты сборки, технологические схемы узловой и общей сборки, карты маршрутной технологии, операционные карт, комплектовочные карты, карты оснастки сборки.

В условиях единичного производства вместо технологической карты используют технологические схемы сборки или карты маршрутной технологии и сборочные чертежи.

В серийном и массовом производстве следующий комплект документов: сборочный чертёж, технологические карты, комплектовочные карты и карты оснастки.

Техпроцесс сборки разрабатывают в следующей последовательности:

1) устанавливают организационную форму сборки, такт, ритм;

2) отработка конструкции на технологичность;

3) размерный анализ, выбор метода сборки;

4) определяют степень расчленения сборочного процесса;

5) устанавливают последовательность соединения и составляют схему сборки;

6) определяют способы соединения, определяют содержание операций, методы контроля и испытания;

7) разрабатывают необходимую оснастку;

8) нормируют;

9) оформляют документацию.

5. Составление технологической схемы сборки.

Для разработки ТП сборки составляют технологические схемы сборки. В этих схемах условно изображают последовательность сборки машины из элементов (деталей, групп или подгрупп). Схему сборки обычно составляют в соответствии со сборочным чертежом и спецификацией. Типовая схема разбивки изделия на сборочные элементы представлена на рисунке, где каждый элемент изображён в виде прямоугольника, внутри которого (или рядом с ним) пишется наименование и номер сборочного элемента, а иногда и трудоёмкость сборки. В технологических схемах подписывают название методов соединения там, где они не определены типом соединения деталей. Так указывают: «приварить», «запрессовать», «набить смазкой» (но не делают указание «заклепать», если показана установка заклёпки). На основе технологической схемы сборки разрабатывается технологический процесс, который, так же как процесс механической обработки, состоит из отдельных операций, которые в свою очередь расчленяются на более мелкие составные части – элементы технологического процесса при сборке. Рассмотрим примеры выполненных технологических схем сборки.

Технологическая схема сборки.

Закрепление материала

Порядок составления технологической схемы сборки разберём на примере узла, показанного в методическом пособии по проведению практической работы № 16.

Работу проведём в следующей последовательности:

1. Изучить сборочный чертеж, спецификацию и описание работы узла.

2. Установить последовательность сборки.

3. Составить технологическую схему сборки.

4. Сравнить составленную схему со схемой, показанной в методическом пособии.

5. При необходимости внести коррективы в составленную схему.

Урок 6

Практическая работа № 16.

Составление технологической схемы сборки

Урок 7

Тема: Сборка типовых соединений

Цели урока: разобрать последовательность сборки типовых соединений.

План изложения материала

1. Сборка подшипников.

2. Сборка зубчатых соединений.

3. Сборка резьбовых пар.

Задание на дом:

, «Технология изготовления деталей на станках с ЧПУ», М., Машиностроение,1989г., стр. 233…237.

1. Сборка подшипников.

Сборка подшипников включает установку внутренних и наружных колец, регулировку натяга, проверку и испытание. Внутренние кольца соединяют с валом по посадкам с натягом. Наружные кольца с корпусом соединяют по посадкам с зазором, переходным и посадкам с натягом при тяжелом режиме работы.

Этапы, предшествующие сборке подшипников :

1. Расконсервация. (непосредственно перед монтажом.)

2. Промывка. (6% раствор мыла в бензине или горячем антикоррозионном растворе.)

3. Контроль. (Визуально проверяют внешний вид, отсутствие коррозии, прижогов, трещин, повреждений, наличие маркировки, лёгкость вращения, размеры, радиальное и осевое биения, радиальный зазор и т. д.)

4. Выбор способа монтажа.

5. Предварительная регулировка. (устранение зазоров и создание предварительного натяга)

Способы монтажа подшипников:

· Запрессовка с помощью пресса или молотка.

· Запрессовка с помощью съёмника.

· Гидропрессовый метод

· Сборка с нагревом.

· Сборка с охлаждением.

Процесс сборки подшипников состоит из их установки, пригонки, укладки вала и по необходимости в регулировании опор.

2. Сборка зубчатых зацеплений.

Сборка зубчатых зацеплений с валами подразделяется на сборку зубчатых колёс на валу, установки валов с колёсами в корпус и регулировки их зацепления. Зубчатые колёса устанавливают на вал с зазором или с натягом вручную или с помощью пресса в холодном состоянии; при больших размерах колёс с нагревом колёс или с охлаждением вала. Нормальное зацепление зубчатых колёс обеспечивается правильным положением ведущего и ведомого валов в корпусе, т. е. при расположении их осей в одной плоскости, их параллельности и соблюдении межцентрового расстояния. Правильность положения валов осуществляется регулированием положения гнёзд под подшипники в корпусе.

Правильность зацепления проверяется по пятну контакта поверхностей зубьев с помощью краски. В передачах, работающих на средних скоростях пятно – 60…65% рабочей длины зуба. В передачах, работающих на высоких скоростях – 70…80%.

В конических передачах правильность заце6пления регулируется перемещением вдоль осей одного или обоих зубчатых колёс. Боковой зазор контролируется щупом, краской, пластиной и регулируется мерными шайбами.

При сборке червячных передач особое значение имеют правильное расположение оси червяка и червячного колеса, боковой зазор и пятна касания (не меньше 65…70% от рабочей длины зуба).

3. Сборка резьбовых пар.

Качество сборки резьбовых пар зависит от правильной затяжки болтов и гаек, от чистоты поверхности и перпендикулярности торца гайки или болта и бобышки под них. Перекос гайки может вызвать обрыв болта.

Сборку болтовых соединений следует производить завинчиванием от руки до соприкосновения болта с деталью, а затем постепенно завинчивать болт ключом до полной затяжки. Длина рукоятки ключа не должна превышать 15 диаметров резьбы, что обеспечивает нормальную затяжку и предотвращает срыв резьбы. При большом количестве болтовых соединений вначале затягивают гайки, расположенные посередине, а затем по концам детали. При большом количестве болтовых соединений по окружности затягивают гайки крест накрест.

Существует ряд способов затяжки гаек, обеспечивающих достаточную плотность соединения:

· затяжка с замером удлинения болта (шпильки);

· затяжка с замером угла поворота гайки;

· затяжка тарированным ключом на величину крутящего момента.

Сборка резьбовых пар.

Винтовое соединение. Болтовое соединение.

Монтажные работы" href="/text/category/montazhnie_raboti/" rel="bookmark">монтажные работы и работы, связанные с разборкой изделия. При нормировании границей расчленения ТП обычно служит сборочная единица, т. е. комплект, который хранится, перемещается и подаётся на дальнейшую сборку как единое целое (с одного рабочего места на другое). Расчленение операции является необходимым условием нормирования и изучения ручного труда.

В слесарно-сборочных работах трудовые приёмы, как основные (соединение или изменение размеров), так и вспомогательные (перемещение деталей и т. д.), являются ручными, поэтому при нормировании оперативное время не подразделяется на основное и вспомогательное.

Выбор методов и способа нормирования производят в зависимости от того, с какой степенью точности и обоснованности должна быть установлена норма. При этом учитывают тип производства, в котором выполняется работа .

При массовом и крупносерийном производстве ТП разрабатывается подробно, каждый вид работы закреплён за конкретным рабочим местом, используют аналитический метод расчёта норм времени.

В серийном производстве при применении универсального и специализированного оборудования применяют укрупнённые нормативы времени.

В мелкосерийном и единичном производстве при использовании универсального оснащения, маршрутного ТП нормирование производят по типовым нормам методом сравнения или хронометража.

Норма штучного времени на сборочную операцию рассчитывается по формуле:

где m – число i-х расчётных комплексов в операции;

Нормированное время на выполнение расчётного комплекса приёмов;

Суммарный поправочный коэффициент i – му комплексу приёмов в зависимости от характера и условий выполняемой работы;

К" – коэффициент, учитывающий тип производства.

2. Пример расчёта.

Исходные данные:

Работа выполняется на месте сборки агрегата при ограничении вращения гаечного ключа. Производство среднесерийное, партия сборки 200 изделий. Количество и характеристика собираемых деталей: корпус цилиндра – один, уплотнитель D = 18 мм – один, штуцер М181,5, L = 20 мм – один.

https://pandia.ru/text/78/011/images/image010_52.gif" height="23">= 0,15 мин. Содержание расчётного комплекса (б) включает: взять штуцер, ввернуть предварительно вручную, взять ключ и завернуть окончательно, отложить ключ. По нормативам t= 0,3 мин. В условиях ограниченного движения инструмента вводится поправочный коэффициент 1,4. Тогда t=0,3https://pandia.ru/text/78/011/images/image013_38.gif" width="15 height=24" height="24">=1,5%, а=2,5%, аhttps://pandia.ru/text/78/011/images/image016_26.gif" width="12" height="24 src=">=(0,15+0,42){1+(1,5+2,5+1)/100}0,9=(0,15+0,42)1,050,9=0,54 (мин)

5. При повышенных требованиях к точности расчёта можно пользоваться аналитическими формулами.

Страница 80 из 89

Глава двадцатая
ТЕХНОЛОГИЯ СБОРКИ
20-1. ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ СБОРКИ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ
Технологическая схема сборки. Сборка относится к завершающему этапу изготовления электроаппаратов. Технологический процесс сборки расчленяется на сборку сборочных единиц и общую сборку электрического аппарата/Нахождение оптимального варианта, обеспечивающего качество собираемого объекта при наименьших затратах средств и труда, представляет сложную задачу.
Намеченную последовательность сборки каждой сборочной единицы и всего электроаппарата удобно изображать в виде графической схемы сборки.
В качестве примера на рис. 20-1 приведена схема сборки блока контактов кулачкового конечного выключателя, изображенною на рис. 20-2. Цифра в левой части прямоугольника означает номер детали или сборочной единицы па чертеже (рис. 20-2), а в правой - количество деталей или сборочных единиц.
Правильность выбранного варианта последовательности сборки сборочных единиц и общей сборки электроаппарата проверяется при его осуществлении в производственных условиях, в результате чего выявляются недостатки и окончательная корректировка технологического процесса.

Виды работ, связанные со сборкой электроаппаратов

. Главными видами работ па сборочных операциях являются следующие:
1) слесарно - пригоночные работы (опиловка, подгибка, обработка отверстии, нарезание резьб и др.). Эти работы выполняются при индивидуальном и мелкосерийном производствах;
2) очистка, обдувка воздухом или промывка детален перед сборкой;
3) сборка - выполнение соединений (свинчнвание, развальцовка, клепка, запрессовка, склеивание, монтаж
проводов и др.);
3) регулировка с целью получения заданных характеристик за счет компенсирующих регулировочных" звеньев (выполняет сборщик);
5) испытания собранного аппарата или комплектного устройства (выполняет контролер);
6) окраска поврежденных мест у ранее окрашенных деталей и окончательная окраска собранного нитрата или комплектного устройства;
7) консервация деталей и упаковка готового аппарата.
Сборка. Общие указания для разработки последовательности сборки сборочных единиц и общей сборки электроаппарата заключаются в следующем:
1) вначале необходимо монтировать детали и другие сборочные единицы, являющиеся наиболее ответственными в процессе эксплуатации;
2) собранные в первую очередь детали н более крупные сборочные единицы не должны препятствовать монтажу последующих сборочных единиц;
3) общую сборку электроаппарата рекомендуется начинать с установки на стенде главной базирующей детали;
4) необходимо стремиться к тому, чтобы запроектированные сборочные операции позволяли широко применять различную оснастку, обеспечивающую улучшение качества сборочных работ, повышение производительности труда и облегчение труда рабочих.
В связи с тем что технология сборки электрических аппаратов близка к технологии сборки машиностроения и приборостроения, здесь будут рассмотрены только особенности сборки и монтажа, которые объясняются наличием у электроаппаратов токоведущих, магнитопроводящих, электроизоляционных, дугогасящих деталей и сборочных единиц .

20-2. МЕТОДЫ И ФОРМЫ СБОРКИ

а) МЕТОДЫ СБОРКИ
В процессе производства электрических аппаратов применяют следующие три основных метода:
1) дополнительная обработка одной из деталей, компенсирующая неточности обработки;
2) применение предусмотренного конструкцией регулируемого компенсатора;
3) применение метода групповой взаимозаменяемости заключающегося в сборке рассортированных детален на группы но размерам или параметрам.
б) ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИЕ МЕТОДЫ СБОРКИ
1. Сборка с индивидуальной слесарной подгонкой деталей имеет место в основном только при единичном производстве аппаратов.
2. Сборка с ограниченной взаимозаменяемостью деталей имеет место главным образом в мелкосерийном производстве с целью сокращения количества оснастки и тем самым снижения себестоимости аппарата.
3. Сборка с полной взаимозаменяемостью деталей применяется в крупносерийном и массовом производствах аппаратов .
В зависимости от расположения и габаритов сборочной единицы или электроаппарата сборка может быть стационарной или подвижной, а в зависимости от производственной программы и расположения сборочных мест относительно друг друга - поточной или непоточной.
При стационарной сборке рабочий или группа рабочих собирают изделия на неподвижных стендах (все необходимые детали и сборочные единицы подаются к рабочему месту). Стационарная сборка электрических аппаратов в зависимости от габаритов изделия может производиться на: а) специально отведенной площадке цеха; б) верстаках; в) оборудованных стендах. Стационарная сборка применяется в единичном и серийном производствах.
Подвижная форма сборки применяется в крупносерийном и массовом производствах.
Поточная сборка }