Полиамиды. Классификация по методу получения. Способы получения полиамидов

Московский Институт Электронной Техники

(Технический Университет)

Курсовая работа

по теме:

«Полиамиды»

Выполнил:

студент гр. ЭТМ-23

Шаров Н.А.

Москва

2000

Полиамиды — высокомолекулярные соединения, относящиеся к гетероцепным полимерам, в основной цепи которых содержатся амидные связи, посредством которых соединены между собой мономерные остатки. Примером полиамидов является найлон. Поэтому рассмотрим полиамиды на примерах полимерах и найлона.

Полимеры

Полимеры — химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами. В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров — полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С — эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С — твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

Растворимость сульфосодержащих полиамидов

Большинство ароматических полиамидов растворяется в ограниченном числе растворителей, что заметно сужает области их применения и усложняет технологию переработки. Введение в полиамидную цепь сульфогрупп сказывается на растворимости полимеров . При определенном содержании сульфогрупп ароматические полиамиды приобретают способность растворяться в воде. Для рассматриваемых нами полиамидов этот переход соответствует диапазону обменной емкости 2,6–3,2 г-экв/г. В амидных растворителях при значениях обменной емкости 2,6 г-экв/г и ниже они образуют стабильные растворы с концентрацией 5–15% масс. Следует отметить, что все представленные полиамиды вне зависимости от строения и количества сульфогрупп растворимы в 96%-ной серной кислоте.

Найлон (анид, полиамид-6,6) получают поликонденсацией двух мономеров:

адипиновой кислоты HOOC-(CH 2 ) 4 -COOH и

гексаметилендиамина H 2 N-(CH 2 ) 6 -NH 2 .

Цифры в названии «полиамид-6,6» означают число атомов углерода между амидными группами -NH-CO- в структурном звене. Для обеспечения строгой эквивалентности адипиновой кислоты и диамина сначала приготовляют их соль (соль АГ) путем смешения реагирующих веществ в растворе метанола:

H 2 N(CH 2 ) 6 NH 2 +HOOC(CH 2 ) 4 COOH +

Затем нагревают водный раствор или суспензию (60-80%) очищенной соли в автоклаве. По окончании реакции расплавленный полиамид выдавливается из автоклава в виде непрерывной ленты, которая потом рубится на «крошку». Весь процесс поликонденсации и дальнейшие операции с расплавленным полимером проводят в атмосфере азота, тщательно освобожденного от кислорода во избежание окисления и потемнения полимера.

Области применения найлона, как и других полиамидов, — получение синтетического волокна и некоторых конструкционных деталей.

Характеристики некоторых полиамидов

ПОЛИАМИД ПА6-ЛТ-СВУ4

Стеклонаполненная термостабилизированная, ударопрочная полиамидная композиция, стойкая к действию масел и бензина. ПА6-ЛТ-СВУ4 рекомендуется для изготовления корпусных деталей электро- и пневмоинструментов, строительно-отделочных и других машин, работающих в условиях ударных нагрузок и вибраций.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

2 , не менее

ПОЛИАМИД ПА6-ЛПО-Т18

Тальконаполненный окрашенный пластифицированный композиционный материал ПА6-ЛПО-Т18 отличается повышенной стабильностью размеров, стойкостью к деформации, износостойкостью. Рекомендуется для изготовления деталей конструкционного, антифрикционного и электротехнического назначения, требующих повышенной размерной точности. При переработке обеспечивает низкий износ литьевых машин и оснастки.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Ударная вязкость по Шарпи, КДж/м 2 , не менее

ПОЛИАМИД ПА66-1А

Конструкционный полиамид ПА66-1А — термостабилизированный продукт поликонденсации гексаметилендиамида и адипиновой кислоты. Отличается высокими прочностными свойствами, теплостойкостью, деформационной стабильностью. Устойчив к действию щелочей, масел, бензина. Используется для изготовления деталей, работающих при повышенных механических нагрузках (шестерни, вкладыши подшипников, корпуса и т. д.)

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Температура плавления, ‘С

ПОЛИАМИД ПА66-2

Конструкционный полиамид ПА66-2 — термостабилизированный продукт поликонденсации гексаметилендиамида и адипиновой кислоты. Отличается высокими прочностными свойствами, теплостойкостью, деформационной стабильностью. Устойчив к действию щелочей, масел, бензина. Используется для изготовления деталей, работающих при повышенных механических и тепловых нагрузок в электротехнической промышленности.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Температура плавления, С

ПОЛИАМИД ПА66-1-Л-СВ30

ПА66-1-Л-СВЗО — стеклонаполненная композиция на основе полимидной смолы. Рекомендуется для изготовления изделий конструкционного, электроизоляционного назначения, применяемых в машиностроении, электронике, автомобилестроении, приборостроении, работающих в условиях повышенных температур.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Изгибающее напряжение при разрушении, МПа, не менее

ПОЛИАМИД ПА66-ЛТО-СВ30

Полиамид ПА66-ЛТО-СВ30 — термостабилизированная стеклонаполненная композиция, отличающаяся стойкостью к действию антифризов, минеральных масел, бензина. Имеет высокие физико- механические показатели. Рекомендуется для изготовления деталей в автомобилестроении.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Ударная вязкость по Шарпи, КДж/м 2 , не менее

ПОЛИАМИД ПА610-Л

Полиамид ПА610-Л — литьевой термопласт, получаемый поликонденсацией гексаметилендиамида и себациновой кислоты. Обладает высокими физико-механическими и электроизоляционными свойствами, повышенной размерной стабильностью, низким влагопоглощением. Материал масло-, бензиностоек. Применяется для изготовления деталей конструкционного, антифрикционного назначения, прецизионных деталей точной механики (мелкомодульные шестерни, золотники, манжеты и т.д.). Разрешен для изготовления изделий, контактирующих с пищевыми продуктами, и игрушек.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Ударная вязкость по Шарпи, КДж/м 2

ПОЛИАМИД ПА610-Л-СВ30

ПА610-Л-СВЗО — стеклонаполненная композиция на основе полимидной смолы ПА610. Отличается повышенной прочностью, теплостойкостью, износостойкостью, малым коэффициентом теплового расширения. Изделия могут работать при температуре до 150’С и кратковременно до 180’С. Рекомендуется для конструкционных деталей, работающих в условиях повышенных нагрузок и температуры.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Ударная вязкость по Шарпи, КДж/м 2 , не менее

ПОЛИАМИД ПА610-Л-Т20

Тальконаполненный окрашенный пластифицированный композиционный материал ПА610-ЛПО-Т20 отличается повышенной стабильностью размеров, стойкостью к деформации, износостойкостью. Рекомендуется для изготовления деталей конструкционного, антифрикционного и электроизоляционного назначения, требующих повышенной размерной точности. При переработке обеспечивает низкий износ литьевых машин и оснастки.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Ударная вязкость по Шарпи, КДж/м 2 , не менее

Примеры получения полиамидов

Н 2 С СН 2

| | нагр

Н 2 С C …- NH (CH 2 ) 5 — CNH (CH 2 ) 5 — CNH (CH 2 ) 5 — C -…

| || || ||

NH O O O

Н 2 С

Аналоги полипептидов можно получить синтетически из w -аминокислот, причем практическое применение находят соединения этого типа, начиная с «полипептида» w -аминокапроновой кислоты. Эти полипептиды (полиамиды) получаются нагреванием циклических лактомов, образующих посредством бекмановской перегруппировки оксидов циклических кетонов.

Из расплава этого полимера капроновой смолы вытягиванием формуют волокно капрон. В принципе этот метод применим для получения гомологов капрона.

Полиамиды можно получать и поликонденсацией самих аминокислот (с отщеплением воды):

nNH 3 -(CH 2 ) 6 -C-O …-NH(CH 2 ) 6 -CNH(CH 2 ) 6 -CNH(CH 2 ) 6 -C-…

|| || || ||

O O O O

Фрагмент макромолекулы полиамида энтант

nNH 3 -(CH 2 ) 10 -C-O…-NH(CH 2 ) 10 -CNH(CH 2 ) 10 -CNH(CH 2 ) 10 -C-

|| || || ||

O O O O

Фрагмент макромолекулы полимаида рильсана.

Полиамиды указанного типа идут для изготовления синтетического волокна, искусственного меха, кожи и пластмассовых изделий, обладающих большой прочностью и упругостью (типа слоновой кости). Наибольшее распространение получил капрон, в следствии доступности сырья и наличие давно разработанного пути синтеза. Энтант и рильсан обладают преимуществом большой прочности и легкости. . chimmed . ru /

1 слайд

2 слайд

Определение полимеров ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. Термин «полимеры введен Й. Я. Берцелиусом в 1833.

3 слайд

Классификация По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.

4 слайд

Строение ПОЛИМЕРЫ - вещества, молекулы которых состоят из большого числа структурно повторяющихся звеньев - мономеров. Молекулярная масса полимеров достигает 106, а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам приближаются к коллоидным системам.

5 слайд

Строение По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные, имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

6 слайд

Реакция полимеризации Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

7 слайд

Получение полипропилена n СН2 = СН → (- СН2 – СН-)n | | СН3 СН3 пропилен полипропилен Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.

8 слайд

Реакция сополимеризации Образование полимера из разных веществ непредельного характера, например, бутадиенстирольного каучука. nСН2=СН-СН=СН2 + nСН2=СН → (-СН2-СН=СН-СН2- СН2-СН-)n ǀ ǀ C6H5 C6H5

9 слайд

Реакция поликонденсации Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

10 слайд

Получение крахмала или целлюлозы nС6Н12О6 → (- С6Н10О5 -)n + Н2О глюкоза полисахарид

11 слайд

Классификация Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

12 слайд

Применение Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов.

13 слайд

Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.




Температура плавления 210–260 °С; Нейлон-6,6 разрушается сильными кислотами, но устойчив к щелочам. Он также устойчив к большинству органических растворителей, но может быть растворён в муравьиной кислоте или феноле. Восприимчив к действию ультрафиолета. Если намочить нейлон то он потеряет от 7 до 20%своей прочности Прочность не уменьшается при низких температурах до -40°C Молекулярная масса 8–40 тыс. Плотность 1010–1140 кг/м3 Физические свойства


Нейлон-66 синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль): Синтез найлона-6 (капрона) из капролактама проводится гидролитической полимеризацией капролактама по механизму «раскрытие цикла присоединение»: Химические свойства


Текстильная промышленность- женские чулки, куртки, носки, зонты, свадебные вуали, спортивный инвентарь,ковровые покрытия, веревки, для производства трикотажа, для создания парашютов, бронежилетов, военной формы, спасательных жилетов. Автомобильная промышленность- Колпаки автомобильных колес. Корпус зеркала заднего вида. Кожухи вентиляторов. Подогреватель воды омывателя ветрового стекла. Кожухи подвесных моторов. Бачки радиаторов. Крышки головки блока цилиндров … Приборостроение- Стойки, заклепки, загушки, винты, кнопки, втулки, шайбы. Скобы, хомуты, держатели, стяжки для крепления проводов и кабелей. Медицина- зубное протезирование, для регенерации и замены кости Машиностроение- создания литейных форм Электропромышленность- Полимерные батареи Используется также в 3D печатание Из нейлона делают оправы для очков, рыболовные сети, струны для гитары Применение


Преимущества и недостатки *Отличные противоударные свойства. *Хорошие механические свойства. Эластичность полиамида-6,6 выше, чем у ацетата целлюлозы, он меньше снашивается и на 15% легче его. *Его прозрачность позволяет добиться особого блеска и оригинальных цветовых эффектов. *отличается мягкостью и легкостью *Тенденция к высыханию, вследствие чего материал становится хрупким. *Ограниченные возможности окрашивания в массе. *Чувствительность к воздействию ультрафиолетового излучения (желтеет).


Название этого материала - состоит из двух слов: N.Y. (Нью-Йорк) и Lon (Лондон). Впервые произведен 28 февраля 1935 года Уоллисом Каразесом в Дюпонте. Нейлон первое синтетическое волокно, которое было сделано полностью из угля, воды и воздуха. Известные производители- «Honeywell Nylon Inc», «Invista», «Wellman Inc»,«Dupont» Зубные щётки из нейлона - это как напильник, который стирает эмаль и портит десны и не только. Это интересно

Материал к уроку химии в 11 классе

УМК О.С. Габриеляна


  • ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов.
  • Термин «полимеры введен Й. Я. Берцелиусом в 1833.

  • По происхождению полимеры делят на природные , или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.


  • По строению макромолекулы подразделяются на линейные , схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные , имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

  • Реакцию образования полимера из мономера называют полимеризацией . В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

  • n СН 2 = СН → (- СН 2 – СН-) n

пропилен полипропилен

Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.


  • Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

  • n С 6 Н 12 О 6 → (- С 6 Н 10 О 5 -) n + Н 2 О

глюкоза полисахарид


  • Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.