Барьер звука. Первый в мире человек, преодолевший скорость звука

В настоящее время проблема «преодоления звукового барьера», по-видимому, является по существу задачей мощных силовых двигателей. Если имеется достаточная сила тяги для преодоления возрастания сопротивления, встречающегося до звукового барьера и непосредственно на нем, так что самолет может быстро пройти через критический диапазон скоростей, то не следует ожидать особых трудностей. Возможно, самолету было бы легче летать в сверхзвуковом диапазоне скоростей, чем в переходном диапазоне между дозвуковой и сверхзвуковой скоростью.

Таким образом, ситуация отчасти аналогична той, которая преобладала в начале этого века, когда братья Райт смогли доказать возможность активного полета, потому что у них был легкий двигатель с достаточной тягой. Если бы мы имели соответствующие двигатели, то сверхзвуковой полет стал бы довольно обычным. До недавних пор преодоление звукового барьера в горизонтальном полете осуществлялось только с использованием довольно неэкономичных двигательных установок, таких как ракетные и прямоточные воздушно-реактивные двигатели (ПВРД) с очень высоким потреблением топлива. Экспериментальные самолеты типа Х-1 и Скай-рокет (Sky-rocket) оснащены ракетными двигателями, которые надежны только в течение нескольких минут полета, или же турбореактивными двигателями с форсажными камерами, но на момент написания этой книги создано несколько самолетов, которые могут летать со сверхзвуковой скоростью в течение получаса. Если вы прочитаете в газете, что самолет «прошел через звуковой барьер», то это часто означает, что он сделал это посредством пикирования. В этом случае сила тяжести дополнила недостаточную силу тяги.

Существует странное явление, связанное с этими фигурами высшего пилотажа, которое я хотел бы отметить. Предположим, что самолет

приближается к наблюдателю на дозвуковой скорости, пикирует, достигнув сверхзвуковой скорости, затем выходит из пикирования и снова продолжает полет на дозвуковой скорости. В этом случае наблюдатель на земле зачастую слышит два громких гулких звука, довольно быстро следующих друг за другом: «Бум, бум!» Некоторые ученые предложили объяснения происхождения двойного гула. Акерет в Цюрихе и Морис Руа в Париже оба предположили, что гул возникает благодаря накоплению звуковых импульсов, таких как шум двигателя, издаваемых в то время, когда самолет проходил через звуковую скорость. Если самолет двигается по направлению к наблюдателю, то издаваемый самолетом шум достигнет наблюдателя за более короткий промежуток времени по сравнению с интервалом, в котором он был издан. Таким образом, всегда происходит некоторое накопление звуковых импульсов при условии, что источник звука двигается к наблюдателю. Однако если источник звука двигается со скоростью близкой к скорости звука, то накопление бесконечно усиливается. Это становится очевидным, если считать, что весь звук, издаваемый источником, двигающимся точно со скоростью звука прямо по направлению к наблюдателю, достигнет последнего в один короткий момент времени, а именно, когда источник звука приблизился к местонахождению наблюдателя. Причина состоит в том, что звук и источник звука будут передвигаться с одинаковой скоростью. Если бы звук двигался в этот период времени со сверхзвуковой скоростью, то последовательность воспринимаемых и издаваемых звуковых импульсов была бы обратной; наблюдатель различит сигналы, издаваемые позднее, прежде чем он воспримет сигналы, изданные ранее.

Процесс двойного гула, в соответствии с этой теорией, можно проиллюстрировать диаграммой на рис. 58. Предположим, что самолет двигается прямо по направлению к наблюдателю, но с переменной скоростью. Кривая АВ показывает перемещение самолета в зависимости от времени. Угол наклона касательной к кривой указывает мгновенную скорость самолета. Параллельные прямые, показанные на диаграмме, указывают распространение звука; угол наклона в этих прямых соответствует скорости звука. Сначала на участке скорость самолета дозвуковая, затем на участке - сверхзвуковая, и наконец, на участке - снова дозвуковая. Если наблюдатель находится на начальном расстоянии D, то точки, показанные на горизонтальной линии соответствуют последовательности воспринимаемых им

Рис. 58. Диаграмма расстояния-времени самолета, летящего с переменной скоростью. Параллельные линии с углом наклона в показывают распространение звука.

звуковых импульсов. Мы видим, что звук, издаваемый самолетом во время второго прохождения звукового барьера (точка ), достигает наблюдателя раньше, чем звук, издаваемый во время первого прохождения (точка ). В эти два мгновения наблюдатель воспринимает через бесконечно малый интервал времени импульсы, издаваемые во время ограниченного периода времени. Следовательно, он слышит гул, похожий на взрыв. Между двумя звуками гула он одновременно воспринимает три импульса, издаваемые в разное время самолетом.

На рис. 59 схематично показана интенсивность шума, которую можно ожидать в этом упрощенном случае. Следует отметить, что накопление звуковых импульсов в случае приближающегося источника звука является тем же процессом, который известен как эффект Доплера; однако характеристика последнего эффекта обычно ограничена изменением высоты тона, связанной с процессом накопления. Интенсивность воспринимаемого шума трудно рассчитать, поскольку она зависит от механизма образования звука, который не очень хорошо известен. К тому же процесс осложняется формой траектории, возможным эхом, а также ударными волнами, которые наблюдаются в различных частях самолета во время полета и энергия которых преобразуется в звуковые волны после того, как самолет уменьшит скорость. В некоторых

Рис. 59. Схематичное представление интенсивности шума, воспринимаемого наблюдателем.

последних статьях по этой теме явление двойного гула, иногда тройного, наблюдаемого в сверхскоростном пикировании, приписывается этим ударным волнам.

Проблема «преодоления звукового барьера» или «звуковой стены», по-видимому, волнует воображение общественности (английский кинофильм под названием «Разрушение звукового барьера» дает некоторое представление о задачах, связанных с полетом через единичный Мах); летчики и инженеры обсуждают проблему как серьезно, так и в шутку. Следующий «научный доклад» околозвукового полета демонстрирует прекрасное сочетание технических знаний и поэтических вольностей :

Мы плавно скользили по воздуху со скоростью 540 миль в час. Мне всегда нравился маленький XP-AZ5601-NG за его простое управление, и за то, что индикатор Прандтля-Рейнольдса запрятан в правом углу вверху панели. Я проверил приборы. Воду, топливо, обороты в минуту, КПД Карно, путевую скорость, энтальпию. Все ОК. Курс 270°. Полнота сгорания в норме - 23 процента. Старина ТРД урчал спокойно как всегда, и зубы Тони едва постукивали от его 17 створок, перекинутых им над Шенектади. Из двигателя просачивалась только тонкая струйка масла. Вот это жизнь!

Я знал, что двигатель самолета хорош для скоростей выше тех, которые мы когда-либо пытались развивать. Погода была такая ясная, небо такое голубое, воздух такой спокойный, что я не устоял и прибавил скорость. Я медленно переместил рычаг вперед на одну позицию. Регулятор только слегка качнулся, и спустя пять минут или около того все было спокойно. 590 миль в час. Я опять нажал на рычаг. Засорились только два сопла. Я нажал на очиститель узких отверстий. Снова открыты. 640 миль в час. Тихо. Выхлопная труба едва совсем не согнулась, несколько квадратных дюймов с одной стороны все еще открыты. Руки у меня так и чесались на рычаге, и я снова нажал на него. Самолет разогнался до 690 миль в час, пройдя через критический отрезок, не сломав ни единого иллюминатора. В кабине становилось тепло, поэтому я подал еще немного воздуха в вихревой холодильник. Мах 0,9! Я никогда не летал быстрее. Я мог видеть небольшое сотрясение за окном иллюминатора, поэтому отрегулировал форму крыла, и оно исчезло.

Тони теперь дремал, и я выпустил дымок из его трубки. Я не мог устоять и прибавил скорость еще на один уровень. Ровно за десять минут мы сравнялись с Махом 0,95. Сзади в камерах сгорания общее давление дьявольски падало. Вот это была жизнь! Индикатор Кармана показывал красный, но мне было все равно. Свеча Тони все еще горела. Я знал, что гамма на нуле, но мне было наплевать.

От возбуждения у меня кружилась голова. Еще немного! Я положил руку на рычаг, но как раз в этот момент Тони потянулся, и его колено задело мою руку. Рычаг подпрыгнул на целых десять уровней! Трах! Небольшой самолет содрогнулся во всю длину, а колоссальная потеря скорости отбросила нас с Тони на панель. Казалось, что мы ударились о твердую кирпичную стену! Я мог видеть, что нос самолета был смят. Я посмотрел на махометр и замер! 1,00! Боже, в один миг подумал я, мы на максимуме! Если я не заставлю его сбавить скорость, прежде чем он соскользнет, мы окажемся в убывающем сопротивлении! Слишком поздно! Мах 1,01! 1,02! 1,03! 1,04! 1,06! 1,09! 1,13! 1,18! Я был в отчаянии, но Тони знал, что делать. В мгновение ока он дал задний

ход! Горячий воздух ринулся в выхлопную трубу, он сжат в турбине, вновь прорвался в камеры, расширил компрессор. Топливо начало поступать в баки. Измеритель энтропии качнулся к полному нулю. Мах 1,20! 1,19! 1,18! 1,17! Мы спасены. Он сполз назад, он сместился назад, пока Тони и я молились, чтоб не залип делитель потока. 1,10! 1,08! 1,05!

Трах! Мы ударились о другую сторону стены! Мы в ловушке! Не хватает отрицательной тяги, чтоб прорваться назад!

В то время как мы съежились от страха перед стеной, хвост маленького самолета развалился и Тони крикнул: «Зажигай ракетные ускорители!» Но они повернули не в ту сторону!

Тони протянул руку и подтолкнул их вперед, линии Маха струились с его пальцев. Я поджог их! Удар был ошеломляющим. Мы потеряли сознание.

Когда я пришел в себя, наш маленький самолет, весь искореженный, как раз проходил через нулевой Мах! Я вытащил Тони, и мы тяжело упали на землю. Самолет замедлял ход на востоке. Через несколько секунд мы услышали грохот, как будто он ударился о другую стену.

Не было найдено ни единого винта. Тони занялся плетением сетки, а я побрел в МТИ.

Что мы представляем себе, когда слышим выражение «звуковой барьер»? Некий предел и которой может серьёзно повлиять на слух и самочувствие. Обычно звуковой барьер соотносят с покорением воздушного пространства и

Преодоление этой преграды способно спровоцировать развитие застарелых болезней, болевых синдромов и аллергических реакций. Правильны ли эти представления или они представляют собой установившиеся стереотипы? Имеют ли они под собой фактическую основу? Что такое звуковой барьер? Как и почему он возникает? Всё это и некоторые дополнительные нюансы, а также исторические факты, связанные с этим понятием, мы попробуем выяснить в данной статье.

Эта таинственная наука - аэродинамика

В науке аэродинамике, призванной разъяснить явления, сопровождающие движение
летательного аппарата, существует понятие «звуковой барьер». Это ряд явлений, возникающих при движении сверхзвуковых самолётов или ракет, которые передвигаются на скоростях, приближенных к скорости звука или больших.

Что такое ударная волна?

В процессе обтекания аппарата сверхзвуковым потоком в аэродинамической трубе возникает ударная волна. Её следы могут быть заметны даже невооружённым глазом. На земле они выражены жёлтой линией. Вне конуса ударной волны, перед жёлтой линией, на земле самолёт даже не слышно. При скорости, превышающей звуковую, тела подвергаются обтеканию звуковым потоком, что влечёт за собой ударную волну. Она может быть не одна, что зависит от формы тела.

Преобразование ударной волны

Фронт ударной волны, который иногда называют скачком уплотнения, имеет довольно малую толщину, позволяющую тем не менее отследить скачкообразные изменения свойств потока, снижение его скорости относительно тела и соответствующее возрастание давления и температуры газа в потоке. При этом кинетическая энергия частично преобразуется во внутреннюю энергию газа. Количество этих изменений напрямую зависит от скорости сверхзвукового потока. По мере того как ударная волна удаляется от аппарата, уменьшаются перепады давления, и ударная волна преобразуется в звуковую. Она может достичь стороннего наблюдателя, который услышит характерный звук, напоминающий взрыв. Существует мнение, что это свидетельствует о достижении аппаратом скорости звука, когда звуковой барьер самолёт оставляет позади.

Что происходит на самом деле?

Так называемый момент преодоления звукового барьера на практике представляет собой прохождение ударной волны с нарастающим гулом двигателей самолёта. Теперь аппарат опережает сопровождающий его звук, поэтому гул двигателя будет слышен после него. Приближение скорости к скорости звука стало возможным ещё в ходе Второй мировой войны, но при этом пилоты отмечали тревожные сигналы в работе самолётов.

После окончания войны немало авиаконструкторов и лётчиков стремились достичь скорости звука и преодолеть звуковой барьер, но многие из этих попыток заканчивались трагически. Пессимистически настроенные учёные утверждали, что этот предел превзойти невозможно. Отнюдь не экспериментальным, но научным путём получилось объяснить природу понятия «звуковой барьер» и найти способы его преодоления.

Безопасные полёты на околозвуковых и сверхзвуковых скоростях возможны при избегании волнового кризиса, возникновение которого зависит от аэродинамических параметров самолёта и высоты производимого полёта. Переходы с одного уровня скорости на другой должны выполняться максимально оперативно с применением форсажа, что поможет избежать долгого полёта в зоне волнового кризиса. Волновой кризис как понятие пришёл из водного транспорта. Возникал он в момент движения судов со скоростью, близкой к скорости волн на поверхности воды. Попадание в волновой кризис влечёт за собой затруднение роста скорости, и если максимально просто преодолеть волновой кризис, то можно выйти на режим глиссирования или скольжения по водной глади.

История в управлении самолётами

Первый человек, который достиг сверхзвуковой скорости полёта на экспериментальном самолёте, - это американский лётчик Чак Йегер. Его достижение отмечено в истории 14 октября 1947 года. На территории СССР звуковой барьер был преодолён 26 декабря 1948 года Соколовским и Фёдоровым, которые управляли опытным истребителем.

Из гражданских преодолел звуковой барьер пассажирский лайнер Douglas DC-8, который 21 августа 1961 года достиг скорости 1.012 М, или 1262 км/ч. Полёт имел целью сбор данных для проектирования крыла. Среди летательных аппаратов мировой рекорд поставила гиперзвуковая аэробаллистическая ракета «воздух-земля», которая находится на вооружении российской армии. На высоте в 31,2 километра ракета развила скорость 6389 км/час.

Через 50 лет после преодоления звукового барьера в воздухе англичанин Энди Грин совершил аналогичное достижение на автомобиле. В свободном падении пробовал побить рекорд американец Джо Киттингер, который покорил высоту в 31,5 километра. В наши дни, 14 октября 2012 года, Феликс Баумгартнер поставил мировой рекорд, без помощи транспорта, в свободном падении с высоты 39 километров, преодолев звуковой барьер. Скорость его при этом достигла 1342,8 километра в час.

Самое необычное преодоление звукового барьера

Странно подумать, но первым в мире изобретением, преодолевшим этот предел, стал обычный хлыст, который придумали древние китайцы почти 7 тысяч лет назад. Практически до изобретения моментальной фотографии в 1927 году никто и не подозревал, что щелчок хлыста - это миниатюрный звуковой удар. Резкий взмах формирует петлю, а скорость резко возрастает, что и подтверждает щелчок. Звуковой барьер преодолевается на скорости порядка 1200 км/час.

Загадка самого шумного города

Не зря жители маленьких городов испытывают шок, увидев столицу в первый раз. Обилие транспорта, сотни ресторанов и развлекательных центров сбивают с толку и выбивают из привычной колеи. Начало весны в столице обычно датируется апрелем, а не мятежным вьюжным мартом. В апреле здесь чистое небо, бегут ручьи и распускаются почки. Люди, уставшие от долгой зимы, широко распахивают окна навстречу солнцу, и в дома врывается уличный шум. На улице оглушительно щебечут птицы, поют артисты, декламируют стихи весёлые студенты, не говоря уже о шуме в пробках и метро. Сотрудники отделов гигиены отмечают, что долго находиться в шумном городе вредно для здоровья. Звуковой фон столицы состоит из транспортных,
авиационных, промышленных и бытовых шумов. Наиболее вредным является как раз автомобильный шум, так как самолёты летают достаточно высоко, а шум от предприятий растворяется в их зданиях. Постоянный же гул автомобилей на особо оживлённых магистралях превышает все допустимые нормы в два раза. Как в столице преодолевается звуковой барьер? Москва опасна обилием звуков, поэтому жители столицы устанавливают стеклопакеты, чтобы приглушить шум.

Как осуществляется штурм звукового барьера?

До 1947 года не было фактических данных о самочувствии человека в кабине самолёта, который летит быстрее звука. Как оказалось, преодоление звукового барьера требует определённых сил и отваги. В процессе полёта становится ясно, что нет никаких гарантий выжить. Даже профессиональный пилот не может точно сказать, выдержит ли конструкция самолёта атаку стихии. В считанные минуты самолёт может просто развалиться на части. Чем же это объясняется? Следует отметить, что движение с дозвуковой скоростью создаёт акустические волны, разбегающиеся как круги от упавшего камня. Сверхзвуковая скорость возбуждает ударные волны, а стоящий на земле человек слышит звук, похожий на взрыв. Без мощных вычислительных машин сложно было решить сложные и приходилось опираться на продувание моделей в аэродинамических трубах. Иногда при недостаточном ускорении самолёта ударная волна достигает такой силы, что вылетают окна из домов, над которыми пролетает самолёт. Преодолеть звуковой барьер сможет далеко не каждый, ведь в этот момент трясёт всю конструкцию, значительные повреждения могут получить крепления аппарата. Поэтому для пилотов так важно крепкое здоровье и эмоциональная стабильность. Если полёт идёт мягко, а звуковой барьер преодолён максимально быстро, то ни пилот, ни возможные пассажиры не почувствуют особо неприятных ощущений. Специально для покорения звукового барьера был сооружён исследовательский летательный аппарат в январе 1946 года. Создание машины было инициировано заказом министерства обороны, но взамен оружия её напичкали научной аппаратурой, которая отслеживала режим работы механизмов и приборов. Этот самолёт походил на современную крылатую ракету со встроенным ракетным двигателем. Преодоление самолётом звукового барьера происходило при максимальной скорости 2736 км/ч.

Вербальные и материальные памятники покорению скорости звука

Достижения в преодолении звукового барьера высоко ценятся и сегодня. Так, самолёт, на котором Чак Йегер впервые его преодолел, сейчас выставлен в Национальном музее воздухоплавания и космонавтики, который находится в Вашингтоне. Но технические параметры этого человеческого изобретения мало бы стоили без достоинств самого пилота. Чак Йегер прошёл лётное училище и воевал в Европе, после чего вернулся в Англию. Несправедливое отстранение от полётов не сломило дух Йегера, и он добился приёма у главнокомандующего войсками Европы. За годы, оставшиеся до конца войны, Йегер участвовал в 64 боевых вылетах, во время которых сбил 13 самолётов. На родину Чак Йегер вернулся со званием капитана. В его характеристике указана феноменальная интуиция, невероятное хладнокровие и выдержка в критических ситуациях. Не один раз Йегер устанавливал рекорды на своём самолёте. Его дальнейшая карьера шла в подразделениях ВВС, где он осуществлял тренинг пилотов. В последний раз Чак Йегер преодолел звуковой барьер в 74 года, что пришлось на пятидесятую годовщину его истории полётов и на 1997 год.

Комплексные задачи создателей летательных аппаратов

Известные на весь мир самолеты МиГ-15 стали создавать в тот момент, когда разработчики поняли, что невозможно базироваться только на преодолении звукового барьера, а следует решать комплексные технические задачи. В результате была создана машина настолько удачная, что её модификации встали на вооружение разных стран. Несколько различных конструкторских бюро включились в своеобразную конкурентную борьбу, призом в которой был патент на самый успешный и функциональный летательный аппарат. Разрабатывались самолёты со стреловидными крыльями, что было революцией в их конструкции. Идеальный аппарат должен был быть мощным, быстрым и невероятно устойчивым к любым повреждениям извне. Стреловидные крылья у самолётов стали элементом, который помогал им втрое повышать скорость звука. Далее продолжала нарастать, что объяснялось увеличением мощности двигателей, применением инновационных материалов и оптимизацией аэродинамических параметров. Преодоление звукового барьера стало возможным и реальным даже для непрофессионала, но менее опасным оно от этого не становится, поэтому любой экстремал должен здраво оценивать свои силы, прежде чем решиться на такой эксперимент.

15 октября 2012, 10:32


Австрийский спортсмен Феликс Баумгартнер совершил затяжной прыжок с парашютом из стратосферы с рекордной высоты. Его скорость в свободном падении превысила скорость звука и составила 1342,8 км в час, фиксированная высота - 39,45 тысячи метров. Об этом официально объявлено на итоговой конференции на территории бывшей военной базы Розуэлл (штат Нью-Мексико).
Стратостат Баумгартнера с гелием объемом 850 тысяч кубометров, сделанный из тончайшего материала, стартовал в 08:30 утра по времени Западного побережья США (19:30 мск), набор высоты занял около двух часов. Порядка 30 минут шли довольно волнительные приготовления к выходу из капсулы, замеры давления и проверка приборов.
Свободное падение, по словам специалистов, длилось 4 минуты и 20 секунд без раскрытого тормозного парашюта. Между тем организаторы рекорда заявляют, что все данные будут переданы австрийской стороне, после чего состоится окончательное фиксирование и сертификация. Речь идет о трех мировых достижениях: прыжок с самой высокой точки, продолжительности свободного падения и преодолении скорости звука. В любом случае Феликс Баумгартнер - первый в мире человек, преодолевший скорость звука, находясь вне техники, отмечает ИТАР-ТАСС. Свободное падение Баумгартнера продолжалось 4 минуты 20 секунд, но без стабилизирующего парашюта. В результате спортсмен едва не вошел в штопор и в течение первых 90 секунд полета не поддерживал радиосвязь с землей.
"На какое-то мгновение мне показалось, что я теряю сознание, - описал спортсмен свое состояние. - Однако раскрывать тормозной парашют я не стал, а попытался стабилизировать полет самостоятельно. При этом каждую секунду я отчетливо понимал, что со мной происходит". В итоге "погасить" вращение удалось. В противном случае, если бы штопор затянулся, стабилизирующий парашют раскрылся бы автоматически.
В какой момент удалось превысить в падении скорость звука, австриец сказать не может. "Я не имею об этом ни малейшего представления, так как был слишком занят тем, чтобы стабилизировать свое положение в воздухе", - признался он, добавив, что не слышал также никакого характерного хлопка, который обычно сопровождает преодоление звукового барьера самолетами. По словам Баумгартнера, "во время полета он практически ничего не чувствовал, не думал ни о каких рекордах". "Я думал лишь о том, как вернуться на Землю живым и увидеть семью, родителей, свою девушку, - сказал он. - Иногда человеку нужно подняться на такую высоту только для того, чтобы осознать, насколько он мал". "Я думал только о своей семье", - поделился переживаниями Феликс. За несколько секунд до прыжка его мыслью было: «Господи, не оставь меня!»
Самым опасным моментом скай-дайвер назвал выход из капсулы. "Это был самый волнительный момент, ты не чувствуешь воздух, не понимаешь физически, что происходит, при этом важно отрегулировать давление, чтобы не погибнуть, - отметил он. - Это самый неприятный момент. Ненавижу это состояние". А "самый красивый момент - осознание, что стоишь на "вершине мира", - поделился спортсмен.

Или превышающих её.

Энциклопедичный YouTube

    1 / 3

    Как САМОЛЕТ преодолевает ЗВУКОВОЙ БАРЬЕР

    Полет в "космос" на самолете U-2 / Вид из кабины пилота

    Звуковой барьер. Полеты на сверхзвуковой скорости.

    Субтитры

Ударная волна, вызванная летательным аппаратом

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с ещё большими скоростями, мы не сможем летать на них. На прошлой неделе я на своём «Мустанге» спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трёхстах метрах от земли я с трудом выровнял машину…

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).

Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй мировой войны с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время, реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

В полётах со снижением на опытном истребителе