Объекты процессов и потоков. Техническое состояние объекта. Основные состояния процесса

11.08.2019 Снилс

Процессы изменения технического работоспособного состояния объектов в принципе представляют собой процессы старения и деградации, приводящие к отказу изделия.

Причины изменения технического состояния объектов:

а) конструктивные (несовершенство конструкций изделий);

б) технологические (нарушение принятой технологии изготовления или ввиду ее неоптимальности);

в) эксплуатационные (нарушение правил эксплуатации);

г) старение и износ, приводящие к тому, что даже изделия высокого качества (с хорошими конструкцией и технологией, правильной эксплуатацией) отказывают с течением времени.

По характеру протекания процессы деградации можно разбить на две группы:

1) вызывающие внезапное (катастрофическое) изменение технического состояния вследствие резкого изменения условий протекания физических процессов в изделии, приводящего к скачкообразному изменению характеристик объектов (поломки от перегрузок, заедания, из-за погрешностей изготовления, ошибок обслуживающего персонала, сбоя системы управления и т. п.);

2) процессы, приводящие к постепенному изменению состояния (т. е. деградационные изменения в материалах (изделиях) с течением времени накапливаются и приводят к дрейфу параметров и потере работоспособности), износ, старение, коррозия, усталость и т. д.

В общем случае процесс изменения состояния машины можно представить в виде

где - вектор - функция от t; составляющая (кси) характеризует в машине необратимые изменения; (эта) - обратимые изменения; - погрешность измерительных цепей.

Составляющая определяет (тенденцию) «тренд» или закономерность постепенного изменения процесса, в большей степени детерминированную его часть, а и характеризуют стохастическую часть процесса.

Для простоты описания и можно их объединить и получить выражение:

Таким образом, деградационные процессы, по причине возникновения, могут быть детерминированными (закономерными, характеризующими постоянные отказы) и стохастическими (случайными).

В настоящее время существует пакет прикладных программ, реализующих алгоритмы прогнозирования деградационных процессов и микропроцессорные устройства для осуществления прогнозирования.

Системы диагностирования

Современные системы мониторинга позволяют уже не только контролировать величины параметров, сравнивая их с пороговыми значениями, и выявлять тенденции их изменения во времени, но и прогнозировать время , когда они достигнут пороговых значений.

Проблемы пользователя систем мониторинга связаны с необходимостью расшифровывать, оценивать, интерпретировать обнаруживаемые и прогнозируемые изменения состояния. Естественной границей, разделяющей системы мониторинга и диагностики, мог бы быть этап деления обнаруженных изменений на две группы, а именно, обратимые (т.е. изменение условий работы машины) и необратимые (дефекты). К сожалению, ни одна из систем мониторинга не решает полностью задачу такого деления. Поэтому системы диагностики должны вступать в действие до того, как обнаруженные системой мониторинга изменения будут разделены на группы обратимых и необратимых. В связи с этим, одной из основных характеристик систем диагностики следует считать глубину ее интеграции в систему мониторинга (т. е. стремятся т. о. повысить эффективность процесса систем диагностирования в целом).


Структура системы диагностирования

В общем случае система диагностирования состоит из 3-х элементов: объекта диагностирования (ОД), технических средств диагностирования (ТСД) и оператора (Оп).

Объект в системе диагностирования рассматривают как единое целое или как совокупность структурных единиц, объединенных связями (в том случае, если требуется диагностика отдельных частей объекта в различные моменты времени).

Для проведения функционального диагностирования и мониторинга используют ТСД, основой которого являются средства съема и обработки информации о состоянии объекта. Для осуществления тестового диагностирования в состав ТСД вводят средства, формирующие и стимулирующие тестовые воздействия, подаваемые на объект (по которым оценивают состояние машины, объекта). К ТСД помимо специальных устройств, различных датчиков относят также программные средства.

В самом общем случае оператор (человек) в СД выполняет следующие функции:

Воспринимает информацию о ходе диагностирования;

Осуществляет анализ поступившей информации;

В соответствии с результатами анализа принимает решение, формирует и выдает команды в СД.

Основными средствами приема информации у Оп являются зрение (~80% информации)и слух (~15%).

Важнейшей характеристикой систем диагностики является необходимая степень подготовки оператора. По объему требуемой от оператора диагностической подготовки системы могут быть разделены на три группы.

Первая группа – профессиональные системы диагностики , в которых оператор самостоятельно выбирает информационную технологию (т. е. технологию, методы получения диагностической информации) и средства измерения. Знания и опыт оператора-эксперта при использовании подобной системы полностью определяют глубину и достоверность диагноза и прогноза.

Вторая группа – экспертные системы диагностики , включающие в себя экспертные программы, содержащие ответы на типовые запросы оператора, т. е. помогающие оператору принимать решение в определенных ситуациях. Экспертные системы могут применяться операторами, имеющими специальную подготовку, но не обладающими знаниями и опытом экспертов-профессионалов.

Третья группа – системы автоматического диагностирования . Они строятся по методам, позволяющим автоматизировать постановку диагноза, формируя для оператора программу измерений, и не требуя от пользователя специальной подготовки. Время обучения оператора работе с такими диагностическими системами не превышает двух-трех дней. В настоящее время системы автоматического диагностирования получают широкое распространение, непрерывно расширяя номенклатуру диагностируемых машин и оборудования.

В зависимости от задач, решаемых в процессе диагностирования, характера использования и эксплуатации, а также конструктивных особенностей ОД элементы в системе диагностирования могут иметь различные связи или, иначе говоря, иметь различную структуру. Наиболее простую структуру имеет СД (рис.), предназначенная для функционального диагностирования.


восприятие

Входной выходной

функционирует

Х 0 – входные воздействия, поступающие на функционирующий ОД;

У 0 – реакция ОД на входные воздействия.

С рабочего или контрольных выходов ОД на ТСД поступают сигналы, несущие информацию о качестве продукции или выполнения ОД своих функций. Оп воспринимает с ТСД информацию о состоянии объекта и воздействует на ТСД, уточняя диагноз (проверяет, повторяет измерения). Характерная особенность этой СД – отсутствие связей Оп с объектом и односторонняя связь ТСД с ОД. Такой тип структуры применяют в том случае, когда необходимо оценить состояние объекта, правильное функционирование (работоспособное или неработоспособное) в процессе выполнения поставленных перед ним задач. Оператор принимает решение о дальнейшем использовании объекта без вмешательства в его рабочие функции.

х

Все мы хорошо понимаем о чем речь, когда произносится слово "объект". А тем из нас, кто имеет отношение к программированию приходят на ум слова "свойства", "методы", "класс". Но вот придумать "правильное", энциклопедическое определение слову объект крайне сложно. не верите? попробуйте! Вот для примера цитата из википедии:

На первый взгляд, вроде ничего так определение. Посмотрим, что такое атрибут?

Итак, понятие сведено к мысли и мышлению. Только не надо сейчас лезть в википедию за определением слова "мышление"..... Слазили? А я говорил, что не надо?

Когда энциклопедическое определение не помогает, приходится обращаться к интуитивному, бытовому толкованию. Если рассмотреть термин "понятие" с точки зрения программиста ИИ - должно получиться что-то вроде "то, чем оперирует разум/интеллект". Некая единица смысла(не факт, что элементарная), которой можно оперировать.

Возвращаемся к термину "объект"... Хотя почему только к нему, то же самое происходит и со словами типа "процесс", "событие", "состояние".

Состоя́ние - абстрактный многозначный термин, в общем, обозначающий множество стабильных значений переменных параметров объекта .

Что же общего в этих понятиях? Что их объединяет? Что мешает дать словесное определение, но позволяет оперировать любым другим способом?

Может быть то, что эти понятия СЛИШКОМ АБСТРАКТНЫЕ? мы привыкли давать определения, как указание класса-предка в общей системе классификации с выделением отличительных признаков, характерных для данного понятия. Селедка, это рыба, которая выглядит так-то и так-то, обычно имеет такие-то размеры, вес, место обитания, внутри селедок различают такие-то сорта и.т.д. Но В ПЕРВУЮ ОЧЕРЕДЬ, СЕЛЕДКА - ЭТО РЫБА. Если необходимо более точное определение - селедка, это белковое существо со следующим генотипом (далее должно следовать химическое описание генотипа на пару терабайт). Мы легко приводим примеры объектов, но не можем сказать, чем является сам объект. Термин "философская категория" не предлагать! в отличие от "объекта" и "процесса" это понятие абсолютно синтетическое. им невозможно оперировать на уровне здравого смысла. можно разве что перечислить эти самые категории, как в математике множество задается перечислением.

Ну что ж, некая зацепка есть. Мы имеем понятия, как единицы смысла, и некоторые операции над ними:

Приведение примера (конкретизация)

Сравнение (выделение сходств и различий).

Дача определения (поиск или создание более абстрактного понятия).

отношение "конкретный-абстрактный" заставляет вспомнить о системе классификации, т.е. таксономии(см. статью ), и всех тех механизмах наследования атрибутов и построения классов которые мы напридумывали в статье . При рассмотрении методов построения становится похоже, что "проблемные" термины упомянутые выше были получены не уточнением более абстрактного класса (за его отсутствием), а собраны, как перечислимое множество элементов, имеющих хоть какой-то общий интуитивно-бытовой признак. понятие "философская категория", напротив, было собрано, как перечислимое множество элементов ничего общего не имеющих.

Теперь обратимся к самому детализированному, богатому на связи термину "событие". "Событие" увязывает "явление", положение в пространстве и времени.

Простра́нство - понятие, используемое (непосредственно или в составе сложных терминов) в естественных языках, а также в таких разделах знания, как философия , математика , физика и т. п.

На уровне повседневного восприятия пространство интуитивно понимается как арена действий, общий контейнер для рассматриваемых объектов, сущность некоторой системы.

По данному вопросу энциклопедические определения никакого ключа к действию не дают, поэтому придется обратиться к здравому смыслу.

В 12 часов дня на ул. Ленина автомобиль сбил фонарный столб. Это - событие . Его описание дает ответы на вопросы КОГДА, ГДЕ, КТО/ЧТО и С ЧЕМ, что СДЕЛАЛ, то есть фиксирует

  • положение во времени (12 часов дня)
  • положение в пространстве (ул. Ленина)
  • объект(ы) и субъект(ы) (конкретный автомобиль и конкретный столб)
  • действие (сбить)

Если опустить любой из перечисленных аспектов - получится не событие, а что-то другое. Например, уберем действие (вместе с субъектом) - останется "автомобиль [находился] в 12 часов дня на ул. Ленина". Это скорее можно назвать факт ом. Уберем время - "автомобиль сбил столб на ул. Ленина". Вроде бы и событие, но какое-то, неполное, недоопределенное. Непонятно, как с ним работать, соотносить с другими событиями - что было раньше, что позже, что одновременно. То же самое будет если убирать другие аспекты "в 12 дня автомобиль сбил столб", "в 12 дня на ул. Ленина кто-то что-то сбил". Можно убрать время и поменять действие "автомобиль едет по ул. Ленина". Получился явный такой процесс, в бытовом, интуитивном его понимании. Впрочем сбитие столба можно тоже рассмотреть, как процесс , например смены состояния столба со стоячего на лежачее. Если выразиться точнее - изменение значения свойства "ориентация" со "стоячее" на "лежачее".

Надеюсь, эта словесная ахинея вас достаточно утомила, чтобы вы задались вопросом "чем мы тут занимаемся"? А занимаемся мы формализованным выражением связей между наиболее общими понятиями, применяемыми в описании любой предметной области. В научном словаре это называется страшным словом "онтология ". Честно.

Обычно под онтологией подразумевается эксплицитная, то есть явная, спецификация концептуализации, где в качестве концептуализации выступает описание множества объектов и связей между ними. Формально онтология состоит из понятий терминов , организованных в таксономию , их описаний и правил вывода. Основной вопрос онтологии: что существует?

Наукообразные словечки типа "онтология" и "таксономия" уже достаточно емки и тяжелы для понимания, так что пока мы окончательно не вывихнули мозг "эксплицитной спецификацией концептуализации", нужно побыстрее понять, зачем это все нужно, и спуститься к конкретным примерам. Последнее усилие:

Формально онтология определяется как O = , где

  • X - конечное множество понятий предметной области,
  • R - конечное множество отношений между понятиями,
  • F - конечное множество функций интерпретации.

Итак, именно онтология, как система понятий, отношений между ними и их интерпретации, даст нам возможность адекватно описывать предметную область и оперировать понятиями (если угодно - исчислять понятия), что необходимо для любого, хоть и искусственного, но мало-мальского интеллекта.

Лобовое решение - описать всё и вся (а именно такова философская интерпретация онтологии - наука о бытии, т.е. описание всего сущего), бесконечно трудоемко, поэтому возникает вопрос об автоматическом или хотя бы автоматизированном построении онтологий. Но для того чтобы машина могла

Парадигмы объектно-ориентированного программирования для адекватного моделирования предметной области недостаточно, поскольку

Изобретение относится к области структурного распознавания образов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического объекта по данным измерительной информации, а также в системах идентификации, распознавания, контроля и диагностики технического и функционального состояний изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности. Технический результат заключается в наглядном представлении для динамического анализа обобщенных данных о состоянии многопараметрического объекта. Технический результат достигается за счет того, что производится оперативное преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. 3 ил.

Изобретение относится к области структурного распознавания образцов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического процесса или объекта (МПО) по данным измерительной информации, а также для динамического анализа изменения состояний сложных объектов и процессов в экономике, финансах и энергетике. Известны устройства и способы контроля и диагностики состояний технического объекта (СССР, А.С. N-01504653, A1, G 06 F 15/46, 1989 г.), при реализации которых в процессе контроля и диагностики фиксируются медленные изменения параметров за каждый цикл, а полученные данные сравниваются с эталонными значениями и на основании сравнения делается заключение о состоянии объекта, а также способ для ввода считываемых автоматически цифровых данных в полутоновые изображения (ЕВП/ЕР/, N-0493053, A2, G 06 K 1/12, 19/06, 15/00, 1992 г.) и способ обработки данных (ЕВП/ЕР/, N-0493105, A1, G 06 F 15/20, 1992 г.). Предлагаемые устройства и способы не позволяют оперативно проводить диагностику состояний МПО по большому множеству измерительных параметров. Наиболее близким по технической сущности является способ контроля и оценки технического состояния МПО по данным телеметрической информации (Патент N 2099792, Бюллетень N 35, 1997 г. М., кл. G 06 F 7/00, 15/00). Использование предлагаемого способа в реальных условиях обеспечивает проведение локального динамического анализа текущего состояния объекта диагностики с оперативным обнаружением источников возмущений и мест их возникновения в объектах по данным телеметрической информации. Вместе с тем, способ не позволяет проводить динамический анализ обобщенного состояния объекта (процесса) по всему объему диагностической информации, в том числе с определением величины и характера изменения интегрального состояния (класса состояний) объекта. Цель изобретения - наглядное представление для динамического анализа обобщенного по всему множеству контролируемых параметров состояния многопараметрического объекта или процесса с оперативным определением относительной величины и характера изменения его состояния, а также сокращение сроков анализа для информационной поддержки принятия решений при диагностике состояния МПО. Цель достигается реализацией заявляемого способа динамического анализа состояний МПО по данным измерительной информации, позволяющего реализовать принцип учета предыстории функционирования объекта (процесса) по последовательности переходов его из одного состояния в другое во времени. Способ позволяет обеспечить наглядное представление для динамического анализа изменения состояния МПО с экрана одного многоцветного видеомонитора и оперативное (в реальном масштабе времени) определение относительной величины изменения и характера развития диагностируемого процесса с оценкой последовательности (предыстории) его изменения. Все это в комплексе обеспечивает сокращение сроков анализа изменения состояния МПО и используемых технических средств отображения результатов обработки динамических данных для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения (АПР) по распознаванию состояния МПО и который является элементом автоматизированной системы диагностики. Пусть МПО характеризуется некоторым конечным множеством параметров которые изменяются во времени. При анализе динамических МПО весьма важными характеристиками являются различные оценки изменения класса состояния МПО. Введем следующую характеристику изменения n-го параметра, которая определяет возможные оценки состояния этого параметра (класса состояний A n) в виде: A n = < A 1 n , A 2 n , A 3 n >, n N, j = 1, 2, 3, (1) где A 1 n состояние n-го параметра, который не изменяется в течение некоторого заданного временного интервала, что характеризует (по этому параметру) стабильное (неизменное) состояние K c n K объекта процесса; A 2 n (A 3 n) - состояние параметра, который уменьшает (увеличивает) свое физическое (или относительное) значение в течение некоторого заданного временного интервала, что характеризует соответствующее состояние (класс состояния) объекта или процесса K п n (K р n) объекта или процесса. Обобщая выражение (1) по всему множеству параметров n N, получаем обобщенные оценки изменения пространства состояний параметров МПО в виде A = < A 1 , A 2 , A 3 >, j = 1, 2, 3, (2) Состояние параметров, оцененных в соответствии с выражением (2) по этапам функционирования (движения, развития) МПО, определяет соответственно его обобщенное (интегральное) состояние и переходы объекта из одного класса состояний в другой (динамику состояний). Обобщенные множества (идентифицированные классы состояния параметры) A 1 , A 2 , A 3 и их распределение во времени, таким образом, определяют соответствующие множества (классы) состояний МПО K с, K п, K р. Для сложного МПО с высокой динамикой смены его состояний, комплексный (системный) анализ изменения даже незначительного количества динамических параметров при обработке в соответствии с выражениями (1-2) и традиционным графическим представлением вызывает определенные трудности. Это связано с рядом причин, среди которых основными для традиционных методов обработки являются высокая динамика изменения параметров и погрешности измерения, сбора, обработки и анализа измерительной информации, обусловленные активным или пассивным воздействием внешней среды. Особенно это характерно для удаленных от центра обработки МПО, таких как летательные аппараты и т.п., состояние которых контролируется десятками сотен и тысяч параметров. Аналогичные сложности по наглядному представлению и динамическому анализу большой группы параметров (показателей) возникают при анализе динамики состояний такого класса объектов как финансово-экономические МПО. Например, при оперативной оценке биржевых курсов на всех биржах традиционно используются различные показатели для характеристики динамики цен акций, зарегистрированных на них компаний, количество которых, как правило, весьма велико. Так, Американская фондовая биржа оценивает различные показатели для 800 зарегистрированных на бирже компаний. В этом случае в качестве динамического параметра можно рассматривать тот или иной показатель n-й компании, состояние которого может представляться в виде выражений (1), а состояние рассматриваемого показателя, обобщенное по всем компаниям, т.е. по бирже в целом в виде выражения (2). Высокая динамика цен акций и большое количество компаний, с одной стороны, и необходимость оперативной оценки динамики изменения (колебания) биржевых курсов, с другой, вызывают известные трудности при аналитической обработке и анализе исходных динамических данных, представляемых в традиционной табличной форме или в виде множества графиков. Таким образом, с повышением требований к диагностике состояния МПО по оперативности, например, при обеспечении оперативной диагностики в реальном масштабе времени протекания высокодинамических процессов на объекте, проведение обработки и представление ее результатов для анализа традиционными методами диагностики становится проблематичным. В этих условиях проведение наглядного представления и оперативного динамического анализа состояний МПО по всему множеству параметров вызывает значительные трудности ввиду отсутствия соответствующих методов оперативной оценки и представления необходимых обобщенных данных для информационной поддержки принятия решений по диагностике состояний МПО. Введем обобщенную характеристику где N - общее количество контролируемых динамических параметров (оцениваемых типовых показателей для всех компаний биржи), N(t i) - количество параметров, текущее значение которых в t i -й момент времени отнесено к одному классу из множества A выражения (2). На основе применения результатов допусковой оценки факта и направления изменения n-го параметра, с дальнейшим обобщением по всему множеству N, а также с проведением декомпозиции в соответствии с выражением (2) и с использованием введенной характеристики (3) возможно проведение динамического анализа интегрального состояния МПО с оперативным определением относительной величины и характера изменения его состояния в виде так называемых цветокодовых матриц-диаграмм представления обобщенных данных для информационной поддержки принятия решений по диагностике состояния МПО. Так, кодируя определенным цветовым кодом видимого спектра каждый из выделенных классов состояний параметров (2) и представляя относительную величину A j * в виде информационного поля соответствующего множества параметров, получаем цветокодовые матрицы - диаграммы состояний МПО. В качестве наблюдаемого процесса (объекта) могут быть: а) для сложных технических МПО - давление, температура и т.п.; б) для финансово-экономических МПО - индексы курсы акций (облигации) или курсовой цены, число акций определенного типа, номинал акции и т.п. В качестве оцениваемой характеристики процесса (объекта) могут быть: а) для сложных технических МПО - амплитуда, частота, дисперсия и т.п.; б) для финансово-экономических МПО - цена акций (номинальная, средневзвешенная) и т.п. В качестве используемых динамических параметров оцениваемой характеристики могут быть: а) для сложных технических МПО - быстро меняющиеся (вибропараметры), медленно меняющиеся параметры, траекторные параметры; б) для финансово-экономических МПО - контролируемые показатели по каждой зарегистрированной на бирже компании, и т.п. Сущность способа состоит в том, что с целью обеспечения наглядного представления для оперативного динамического анализа изменения обобщенного состояния МПО осуществляется преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы, с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. Операцию преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки факта и направления изменения динамического параметра (падает - повышается) с обобщением по всему множеству параметров на заданном временном интервале, при этом отображают информационные сигналы посредством матрицы-диаграммы, столбцы которой соответствуют относительной величине оцененного класса состояния параметров объекта, строки - заданным временем интервалам, а относительную величину и характер изменения интегрального состояния объекта определяют по направлениям изменения и относительным величинам этого изменения во времени цветовых сигналов, обобщенных по всему множеству параметров по контролируемой характеристике исследуемого процесса. В соответствии с используемым принципом причинно-следственных зависимостей, происходящих во времени в МПО процессах, отображаемых параметрами, по временной шкале будет представлено изменение интегрального (обобщенного по всему множеству динамических параметров) состояния МПО, идентифицированное по наблюдаемому процессу (процессам). Это позволяет однозначно по виду цветокодовой матрицы-диаграммы, которую по наглядности представления можно отнести к когнитивной (т.е. порождающей новые значения у АПР), определять в наблюдаемые моменты времени по всему множеству относительную величину и характер развития процесса в МПО. Степень дискретизации наблюдаемой характеристики (параметра, показателя компании) A и выбор цветового решения определяет АПР в зависимости от специфики объекта и условий решаемой задачи оперативной диагностики по данным динамической информации. Таким образом, новизна предлагаемого способа по сравнению с известными устройствами и способами диагностики состояния объекта заключается в том, чтобы всю совокупность обрабатываемых по допусковому способу динамических параметров по контролируемой характеристике исследуемого процесса преобразуют в соответствующие информационные сигналы, при обобщении которых по всему множеству параметров, определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. При этом, на экране видеомонитора по временной шкале будут последовательно отображаться относительная величина и характер изменения каждого из составляющих классов изменения параметров (падает, повышается, не изменяется), совокупность которых характеризует динамику интегрального состояния объекта (процесса) последовательно во времени. Сущность предложенного способа хорошо иллюстрируется для финансовых МПО, например, при исследовании различных показателей для характеристики динамики цен акций зарегистрированных в биржах компаний. На фиг. 1 приведено традиционное представление графиков изменения контролируемого типового показателя для ряда (N=7) компаний, каждая из которых с заданной дискретностью сообщает соответствующие значения показателя, множество которых характеризует динамику изменения цен акций этой компании. На фиг. 2 приведено наглядное представление процесса изменения обобщенного типового показателя для всех N компаний в виде цветокодовой матрицы-диаграммы состояний МПО, где A j * - относительное количество компаний, контролируемый показатель каждой из которых принадлежит j-му классу состояния (в рассматриваемом случае j = 3); t i-5 - начало и t i+8 - конец устойчивого (лавинообразного) процесса изменения курса цен акций. < A 1 , A 2 , A 3 > идентифицированные классы состояний типового показателя (параметра), динамическое сочетание (интеграция) которых определяет соответствующие классы состояния < K с, K р, K п > исследуемого МПО, где K с - стационарный класс состояния МПО, K р (K п - класс состояния МПО, обусловленный изменением (ростом или падением) составляющих множества A j * . Использование предлагаемого способа позволит получить новые нетрадиционные формы представления динамики состояний МПО. Так, совмещая представление частиц множества (классов состояний параметров) A j * на одном информационном поле общего A * получаем компактное представление динамики распределения состояний МПО (фиг. 3). В это случае повышается наглядность проведения динамического анализа перехода МПО из одного класса состояний в другой. При этом обеспечивается наглядность выделения (декомпозиции) так называемых нечетных (размытых, расплывчатых) классов K н динамических состояний МПО, характеризуемый неопределенностью, вызванной как одновременным увеличением, так и уменьшением составляющих множества A * . Анализ рассматриваемых представлений обобщенных данных о МПО (фиг. 2, 3), раскрывающих суть предлагаемого способа, позволяет проводить оперативный динамический анализ интегрального состояния МПО, в том числе оценить характер изменения обобщенного по всем параметрам (компаниям) анализируемого показателя (процесса) для объекта (биржи) в целом. Так, проведение динамического анализа изменения состояния МПО с использованием предлагаемого способа, один из примеров реализации которого приведен на фиг. 3, позволяет: а) определить устойчивый лавинообразный характер роста курса цен относительно количества акций компаний на интервале (t i-5 - t i-3), а также устойчивый и постепенный характер понижения роста курса на интервале (t i+2 - t i+4); б) определить устойчивый лавинообразный характер падения курса цен относительного количества акций компаний на интервале (t i - t i+4), а также устойчивый и лавинообразный характер уменьшения падения курса на интервале (t i+5 - t i+8); в) оценить распределение диаграммы изменения (роста или падения) курса цен по всему множеству наблюдаемых параметров (показателей), а также соотношения между ними по временной оси, что позволяет оценить в целом динамику движения денежной массы во времени;
г) оценить в относительной величине максимальную (минимальную) величину изменения (роста или падения) курса цен по общему количеству компаний, принявших решение о изменении ставок. Таким образом, способ позволяет осуществить наглядное представление для динамического анализа интегрального состояния объекта с экрана видеомонитора, оперативно (в реальном масштабе времени) обнаруживать изменение класса состояний МПО и оценивать относительную величину и характер изменения состояния по всему множеству контролируемых параметров. К достоинствам способа можно отнести:
возможность выявления новых (системных) свойств и закономерностей исследуемых процессов в МПО за счет наглядного представления обобщенных результатов оценки всего множества параметров в динамике их изменения, такое наглядное динамическое представление позволяет комплексно оценить величину и характер изменения интегрального состояния МПО по большому множеству контролируемых измерительных параметров, которые могут быть разнотипными;
высокую оперативность представления общей картины развития процесса изменения состояния МПО с возможностью оценки характера его развития, сокращение сроков анализа динамической информации и используемых технических средств ее отображения для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения по диагностике состояния МПО и который является элементом автоматизированной системы оперативной диагностики. От использования изобретения следует ожидать вторичный эффект, заключающийся в удешевлении систем диагностики различных технических объектов и систем организационно-технологического класса. Целесообразно использовать в системах идентификации, распознавания, контроля и диагностики технического и функционального состояния изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности.


Изобретение относится к области структурного распознавания образов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического объекта по данным измерительной информации, а также в системах идентификации, распознавания, контроля и диагностики технического и функционального состояний изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности. Технический результат заключается в наглядном представлении для динамического анализа обобщенных данных о состоянии многопараметрического объекта. Технический результат достигается за счет того, что производится оперативное преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. 3 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области структурного распознавания образцов и может быть использовано в автоматизированных системах оперативной диагностики технического и функционального состояний многопараметрического процесса или объекта (МПО) по данным измерительной информации, а также для динамического анализа изменения состояний сложных объектов и процессов в экономике, финансах и энергетике. Известны устройства и способы контроля и диагностики состояний технического объекта (СССР, А.С. N-01504653, A1, G 06 F 15/46, 1989 г.), при реализации которых в процессе контроля и диагностики фиксируются медленные изменения параметров за каждый цикл, а полученные данные сравниваются с эталонными значениями и на основании сравнения делается заключение о состоянии объекта, а также способ для ввода считываемых автоматически цифровых данных в полутоновые изображения (ЕВП/ЕР/, N-0493053, A2, G 06 K 1/12, 19/06, 15/00, 1992 г.) и способ обработки данных (ЕВП/ЕР/, N-0493105, A1, G 06 F 15/20, 1992 г.). Предлагаемые устройства и способы не позволяют оперативно проводить диагностику состояний МПО по большому множеству измерительных параметров. Наиболее близким по технической сущности является способ контроля и оценки технического состояния МПО по данным телеметрической информации (Патент N 2099792, Бюллетень N 35, 1997 г. М., кл. G 06 F 7/00, 15/00). Использование предлагаемого способа в реальных условиях обеспечивает проведение локального динамического анализа текущего состояния объекта диагностики с оперативным обнаружением источников возмущений и мест их возникновения в объектах по данным телеметрической информации. Вместе с тем, способ не позволяет проводить динамический анализ обобщенного состояния объекта (процесса) по всему объему диагностической информации, в том числе с определением величины и характера изменения интегрального состояния (класса состояний) объекта. Цель изобретения - наглядное представление для динамического анализа обобщенного по всему множеству контролируемых параметров состояния многопараметрического объекта или процесса с оперативным определением относительной величины и характера изменения его состояния, а также сокращение сроков анализа для информационной поддержки принятия решений при диагностике состояния МПО. Цель достигается реализацией заявляемого способа динамического анализа состояний МПО по данным измерительной информации, позволяющего реализовать принцип учета предыстории функционирования объекта (процесса) по последовательности переходов его из одного состояния в другое во времени. Способ позволяет обеспечить наглядное представление для динамического анализа изменения состояния МПО с экрана одного многоцветного видеомонитора и оперативное (в реальном масштабе времени) определение относительной величины изменения и характера развития диагностируемого процесса с оценкой последовательности (предыстории) его изменения. Все это в комплексе обеспечивает сокращение сроков анализа изменения состояния МПО и используемых технических средств отображения результатов обработки динамических данных для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения (АПР) по распознаванию состояния МПО и который является элементом автоматизированной системы диагностики. Пусть МПО характеризуется некоторым конечным множеством параметров

Которые изменяются во времени. При анализе динамических МПО весьма важными характеристиками являются различные оценки изменения класса состояния МПО.

Введем следующую характеристику изменения n-го параметра, которая определяет возможные оценки состояния этого параметра (класса состояний A n) в виде:
A n = < A 1 n , A 2 n , A 3 n >, n ∈ N, j = 1, 2, 3, (1)
где A 1 n состояние n-го параметра, который не изменяется в течение некоторого заданного временного интервала, что характеризует (по этому параметру) стабильное (неизменное) состояние K c n ∈ K объекта процесса; A 2 n (A 3 n) - состояние параметра, который уменьшает (увеличивает) свое физическое (или относительное) значение в течение некоторого заданного временного интервала, что характеризует соответствующее состояние (класс состояния) объекта или процесса K п n (K р n) объекта или процесса. Обобщая выражение (1) по всему множеству параметров n ∈ N, получаем обобщенные оценки изменения пространства состояний параметров МПО в виде
A = < A 1 , A 2 , A 3 >, j = 1, 2, 3, (2)
Состояние параметров, оцененных в соответствии с выражением (2) по этапам функционирования (движения, развития) МПО, определяет соответственно его обобщенное (интегральное) состояние и переходы объекта из одного класса состояний в другой (динамику состояний). Обобщенные множества (идентифицированные классы состояния параметры) A 1 , A 2 , A 3 и их распределение во времени, таким образом, определяют соответствующие множества (классы) состояний МПО K с, K п, K р. Для сложного МПО с высокой динамикой смены его состояний, комплексный (системный) анализ изменения даже незначительного количества динамических параметров при обработке в соответствии с выражениями (1-2) и традиционным графическим представлением вызывает определенные трудности. Это связано с рядом причин, среди которых основными для традиционных методов обработки являются высокая динамика изменения параметров и погрешности измерения, сбора, обработки и анализа измерительной информации, обусловленные активным или пассивным воздействием внешней среды. Особенно это характерно для удаленных от центра обработки МПО, таких как летательные аппараты и т.п., состояние которых контролируется десятками сотен и тысяч параметров. Аналогичные сложности по наглядному представлению и динамическому анализу большой группы параметров (показателей) возникают при анализе динамики состояний такого класса объектов как финансово-экономические МПО. Например, при оперативной оценке биржевых курсов на всех биржах традиционно используются различные показатели для характеристики динамики цен акций, зарегистрированных на них компаний, количество которых, как правило, весьма велико. Так, Американская фондовая биржа оценивает различные показатели для 800 зарегистрированных на бирже компаний. В этом случае в качестве динамического параметра можно рассматривать тот или иной показатель n-й компании, состояние которого может представляться в виде выражений (1), а состояние рассматриваемого показателя, обобщенное по всем компаниям, т.е. по бирже в целом в виде выражения (2). Высокая динамика цен акций и большое количество компаний, с одной стороны, и необходимость оперативной оценки динамики изменения (колебания) биржевых курсов, с другой, вызывают известные трудности при аналитической обработке и анализе исходных динамических данных, представляемых в традиционной табличной форме или в виде множества графиков. Таким образом, с повышением требований к диагностике состояния МПО по оперативности, например, при обеспечении оперативной диагностики в реальном масштабе времени протекания высокодинамических процессов на объекте, проведение обработки и представление ее результатов для анализа традиционными методами диагностики становится проблематичным. В этих условиях проведение наглядного представления и оперативного динамического анализа состояний МПО по всему множеству параметров вызывает значительные трудности ввиду отсутствия соответствующих методов оперативной оценки и представления необходимых обобщенных данных для информационной поддержки принятия решений по диагностике состояний МПО. Введем обобщенную характеристику

Где N - общее количество контролируемых динамических параметров (оцениваемых типовых показателей для всех компаний биржи), N(t i) - количество параметров, текущее значение которых в t i -й момент времени отнесено к одному классу из множества A выражения (2). На основе применения результатов допусковой оценки факта и направления изменения n-го параметра,

С дальнейшим обобщением по всему множеству N, а также с проведением декомпозиции в соответствии с выражением (2) и с использованием введенной характеристики (3) возможно проведение динамического анализа интегрального состояния МПО с оперативным определением относительной величины и характера изменения его состояния в виде так называемых цветокодовых матриц-диаграмм представления обобщенных данных для информационной поддержки принятия решений по диагностике состояния МПО. Так, кодируя определенным цветовым кодом видимого спектра каждый из выделенных классов состояний параметров (2) и представляя относительную величину A j * в виде информационного поля соответствующего множества параметров, получаем цветокодовые матрицы - диаграммы состояний МПО.

В качестве наблюдаемого процесса (объекта) могут быть: а) для сложных технических МПО - давление, температура и т.п.; б) для финансово-экономических МПО - индексы курсы акций (облигации) или курсовой цены, число акций определенного типа, номинал акции и т.п. В качестве оцениваемой характеристики процесса (объекта) могут быть: а) для сложных технических МПО - амплитуда, частота, дисперсия и т.п.; б) для финансово-экономических МПО - цена акций (номинальная, средневзвешенная) и т.п. В качестве используемых динамических параметров оцениваемой характеристики могут быть: а) для сложных технических МПО - быстро меняющиеся (вибропараметры), медленно меняющиеся параметры, траекторные параметры; б) для финансово-экономических МПО - контролируемые показатели по каждой зарегистрированной на бирже компании, и т.п. Сущность способа состоит в том, что с целью обеспечения наглядного представления для оперативного динамического анализа изменения обобщенного состояния МПО осуществляется преобразование результатов допусковой оценки факта и направления изменения динамических параметров по контролируемой характеристике исследуемого процесса в соответствующие информационные сигналы, с обобщением по всему множеству параметров в заданном временном интервале, при динамическом анализе которых определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. Операцию преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки факта и направления изменения динамического параметра (падает - повышается) с обобщением по всему множеству параметров на заданном временном интервале, при этом отображают информационные сигналы посредством матрицы-диаграммы, столбцы которой соответствуют относительной величине оцененного класса состояния параметров объекта, строки - заданным временем интервалам, а относительную величину и характер изменения интегрального состояния объекта определяют по направлениям изменения и относительным величинам этого изменения во времени цветовых сигналов, обобщенных по всему множеству параметров по контролируемой характеристике исследуемого процесса. В соответствии с используемым принципом причинно-следственных зависимостей, происходящих во времени в МПО процессах, отображаемых параметрами, по временной шкале будет представлено изменение интегрального (обобщенного по всему множеству динамических параметров) состояния МПО, идентифицированное по наблюдаемому процессу (процессам). Это позволяет однозначно по виду цветокодовой матрицы-диаграммы, которую по наглядности представления можно отнести к когнитивной (т.е. порождающей новые значения у АПР), определять в наблюдаемые моменты времени по всему множеству относительную величину и характер развития процесса в МПО. Степень дискретизации наблюдаемой характеристики (параметра, показателя компании) A и выбор цветового решения определяет АПР в зависимости от специфики объекта и условий решаемой задачи оперативной диагностики по данным динамической информации. Таким образом, новизна предлагаемого способа по сравнению с известными устройствами и способами диагностики состояния объекта заключается в том, чтобы всю совокупность обрабатываемых по допусковому способу динамических параметров по контролируемой характеристике исследуемого процесса преобразуют в соответствующие информационные сигналы, при обобщении которых по всему множеству параметров, определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. При этом, на экране видеомонитора по временной шкале будут последовательно отображаться относительная величина и характер изменения каждого из составляющих классов изменения параметров (падает, повышается, не изменяется), совокупность которых характеризует динамику интегрального состояния объекта (процесса) последовательно во времени. Сущность предложенного способа хорошо иллюстрируется для финансовых МПО, например, при исследовании различных показателей для характеристики динамики цен акций зарегистрированных в биржах компаний. На фиг. 1 приведено традиционное представление графиков изменения контролируемого типового показателя для ряда (N=7) компаний, каждая из которых с заданной дискретностью сообщает соответствующие значения показателя, множество которых характеризует динамику изменения цен акций этой компании. На фиг. 2 приведено наглядное представление процесса изменения обобщенного типового показателя для всех N компаний в виде цветокодовой матрицы-диаграммы состояний МПО, где A j * - относительное количество компаний, контролируемый показатель каждой из которых принадлежит j-му классу состояния (в рассматриваемом случае j = 3); t i-5 - начало и t i+8 - конец устойчивого (лавинообразного) процесса изменения курса цен акций. < A 1 , A 2 , A 3 > идентифицированные классы состояний типового показателя (параметра), динамическое сочетание (интеграция) которых определяет соответствующие классы состояния < K с, K р, K п > исследуемого МПО, где K с - стационарный класс состояния МПО, K р (K п - класс состояния МПО, обусловленный изменением (ростом или падением) составляющих множества A j * . Использование предлагаемого способа позволит получить новые нетрадиционные формы представления динамики состояний МПО. Так, совмещая представление частиц множества (классов состояний параметров) A j * на одном информационном поле общего A * получаем компактное представление динамики распределения состояний МПО (фиг. 3). В это случае повышается наглядность проведения динамического анализа перехода МПО из одного класса состояний в другой. При этом обеспечивается наглядность выделения (декомпозиции) так называемых нечетных (размытых, расплывчатых) классов K н динамических состояний МПО, характеризуемый неопределенностью, вызванной как одновременным увеличением, так и уменьшением составляющих множества A * . Анализ рассматриваемых представлений обобщенных данных о МПО (фиг. 2, 3), раскрывающих суть предлагаемого способа, позволяет проводить оперативный динамический анализ интегрального состояния МПО, в том числе оценить характер изменения обобщенного по всем параметрам (компаниям) анализируемого показателя (процесса) для объекта (биржи) в целом. Так, проведение динамического анализа изменения состояния МПО с использованием предлагаемого способа, один из примеров реализации которого приведен на фиг. 3, позволяет:
а) определить устойчивый лавинообразный характер роста курса цен относительно количества акций компаний на интервале (t i-5 - t i-3), а также устойчивый и постепенный характер понижения роста курса на интервале (t i+2 - t i+4);
б) определить устойчивый лавинообразный характер падения курса цен относительного количества акций компаний на интервале (t i - t i+4), а также устойчивый и лавинообразный характер уменьшения падения курса на интервале (t i+5 - t i+8);
в) оценить распределение диаграммы изменения (роста или падения) курса цен по всему множеству наблюдаемых параметров (показателей), а также соотношения между ними по временной оси, что позволяет оценить в целом динамику движения денежной массы во времени;
г) оценить в относительной величине максимальную (минимальную) величину изменения (роста или падения) курса цен по общему количеству компаний, принявших решение о изменении ставок. Таким образом, способ позволяет осуществить наглядное представление для динамического анализа интегрального состояния объекта с экрана видеомонитора, оперативно (в реальном масштабе времени) обнаруживать изменение класса состояний МПО и оценивать относительную величину и характер изменения состояния по всему множеству контролируемых параметров. К достоинствам способа можно отнести:
возможность выявления новых (системных) свойств и закономерностей исследуемых процессов в МПО за счет наглядного представления обобщенных результатов оценки всего множества параметров в динамике их изменения, такое наглядное динамическое представление позволяет комплексно оценить величину и характер изменения интегрального состояния МПО по большому множеству контролируемых измерительных параметров, которые могут быть разнотипными;
высокую оперативность представления общей картины развития процесса изменения состояния МПО с возможностью оценки характера его развития, сокращение сроков анализа динамической информации и используемых технических средств ее отображения для информационной поддержки принятия решений обработчиком-аналитиком, подготавливающему решения по диагностике состояния МПО и который является элементом автоматизированной системы оперативной диагностики. От использования изобретения следует ожидать вторичный эффект, заключающийся в удешевлении систем диагностики различных технических объектов и систем организационно-технологического класса. Целесообразно использовать в системах идентификации, распознавания, контроля и диагностики технического и функционального состояния изделий авиационной и космической промышленности, а также в энергетике и финансово-экономической деятельности.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ динамического анализа состояний многопараметрического объекта или процесса, заключающийся в оперативном преобразовании результатов допусковой оценки параметров в соответствующие информационные сигналы в заданном временном интервале, отличающийся тем, что в качества оцениваемой характеристики процесса могут быть амплитуда, частота и т.п., в качестве параметров оцениваемой характеристики используют динамические параметры, операция преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки факта и направления изменения динамического параметра (падает, повышается, не изменяется) с обобщением по всему множеству параметров на заданном временном интервале, отображают информационные сигналы посредством цветокодовой матрицы-диаграммы, столбцы которой соответствуют относительной величине оцененного класса состояния параметров объекта, а строки - заданным временным интервалам, определяют относительную величину и характер изменения интегрального состояния объекта по направлениях изменения и относительным величинам этого изменения во времени цветовых сигналов.

В широком смысле информацией является отражение одного объекта другим. Поэтому для существования информации необходимо наличие объекта, состояние которого отражается, отражающего объекта и условий, обеспечивающих прохождение процесса отражения. Если отражающему объекту предоставлена возможность целенаправленно воздействовать на состояние отражаемого объекта, то имеет место управление.

В самом общем виде система, в которой реализуется управление (система управления), включает (рис. 1.1): внешнюю среду, объекты управления, управляющие объекты и информацию! состояния.

Процесс управления состоит в следующем: окружающая среда, воздействуя на объекты управления, изменяет их состояние. В результате управляющие объекты получают информацию о состоянии объекта управления, анализируют ее и вырабатывают управляющее воздействие, которое переводит объекты управления в новое состояние. Так как управляющее воздействие состоит в отражении объектами управления состояния управляющих объектов, то оно также ассоциируется с информацией. В дальнейшем будем различать информацию состояния и информацию управления.

Процесс управления является непрерывным циклическим. Один замкнутый цикл включает следующие этапы: сбор от объектов управления информации состояния; преобразование информации состояния в информацию управления (формирование решений) и процесс передачи информации управления. В результате выполнения распоряжений объекты изменяют свое состояние, что вызывает новый цикл процесса управления.

Таким образом, процесс управления является процессом сбора, преобразования и передачи информации, в результате чего происходит изменение состояний объектов управления. В соответствии с этим важнейшим условием для осуществления управления

является обеспечение обмена информацией между объектами системы управления, которые, как правило, находятся на значительном удалении друг от друга.

Количество информации и неопределенность объекта управления

Количество информации, содержащейся в сведениях о том, что некоторый объект управления находится в состоянии,

где - вероятность нахождения объекта в состоянии.

Данная формула имеет наглядный физический смысл: чем меньше априорная (до поступления сведений) вероятность состояния, т. е. чем оно неожиданнее, тем больше информации содержится в сведениях о том, что оно наступило.

Математическое ожидание количества информации на одно состояние называется энтропией:

Энтропия является мерой неопределенности объекта управления. В идеальном случае, когда, во-первых, сведения от объектов управления содержат полную информацию о его состоянии и, во-вторых, информация не теряется в процессе передачи, при получении сведений управляющий объект определяет некоторое состояние объекта управления с апостериорной вероятностью Так как то Отсюда т. е. неопределенность объекта управления устраняется.

В реальных условиях сведения от объектов управления могут не полностью описывать его состояние, а часть сведений может быть потеряна в процессе передачи, т. е. Таким образом, передача сведений в практических случаях не полностью устраняет неопределенность объекта управления.

Количественно остаточная мера неопределенности объекта управления после получения от него сведений характеризуется условной энтропией, которая определяется вероятностью того, что управляющий объект получит сведения о нахождении объекта управления в состоянии в то время как он находится в состоянии

Усредненная по всем возможным состояниям объекта управления условная энтропия (назовем ее остаточной энтропией)

Таким образом, остаточная энтропия характеризует потери информации в процессе составления сведений об объекте управления и их передачи.

Требования системы управления к процессу передачи информации

Информация от объектов управления на управляющие объекты поступает не непрерывно, а в некоторые, в общем случайные, моменты времени в виде законченных массивов - сообщений. Поэтому неопределенность объектов управления изменяется во времени. Выработка на управляющих объектах корректной информации управления, которая обеспечивает успешное функционирование системы управления, возможна только до некоторого уровня неопределенности. При превышении этого уровня может произойти срыв процесса управления, так как управляющая информация перестает соответствовать состоянию объекта управления.

Рассмотрим диаграмму (рис. 1.2), иллюстрирующую изменение во времени энтропии объекта управления, т. е. неопределенность его состояния для управляющего объекта системы управления. На диаграмме: - максимальная энтропия, соответствующая случаю, когда вероятности всех возможных состояний объекта управления равны (максимальная неопределенность); - максимально допустимое значение энтропии, соответствующее максимально допустимой неопределенности, при которой еще возможна выработка обоснованной информации управления; - моменты обновления информации состояния объектов; - остаточная энтропия в момент окончания процесса обновления информации состояния объектов - промежуток времени, в течение которого отсутствует управление (интервал срыва управления)

Из диаграммы видно, что условием существования процесса управления является выполнение неравенства Величина определяется соотношением где - функция, характеризующая процесс изменения энтропии в промежутках между моментами обновления информации.

Таким образом, условием существования процесса управления для произвольного момента будет

Из приведенного неравенства вытекают два основных требования к обмену информацией в системе управления:

требования к надежности и верности передачи, определяющие остаточную неопределенность после приема информации ;

требования к допустимой задержке сообщений, определяющие допустимые интервалы обновления информации о состоянии объектов управления

Вообще говоря, между этими требованиями существует взаимосвязь. Действительно, из диаграммы видно, что при увеличении

Н ост, т. е. при снижении верности и надежности, процесс управления можно сохранить, если уменьшить сроки доставки информации.

Для обеспечения процесса передачи информации создается система передачи информации или система связи, в которой должны выполняться все требования, предъявляемые к процессу передачи.

Информация, передаваемая в системе управления, неоднородна по своему содержанию и может быть разбита по категориям, каждая из которых характеризуется некоторым уровнем требований к процессу передачи. Категории могут различаться по важности информации и срочности. В первом случае они называются категориями важности. К процессу передачи информации этих категорий предъявляются различные требования по надежности доставки. Во втором случае различают категории срочности, требования к которым отличаются по допустимой задержке.

Задание конкретных количественных требований по передаче различных категорий информации при строгой постановке задачи является чрезвычайно сложным, что объясняется необходимостью построения обобщенного критерия эффективности системы управления, учитывающего влияние потерь и искажений сообщений различных категорий в процессе передачи. На практике в каждом конкретном случае требования задаются на основе анализа характера взаимодействия источников и потребителей информации (пользователей), в процессе которого производится обмен. При этом необходимо учитывать, что завышение требований к системе приводит к значительным дополнительным затратам.

Рассмотрим основные предпосылки, которые могут быть использованы при задании требований к процессу передачи сообщений различных категорий.

Сообщения оповещения и телеметрическая информация. Эти категории могут быть объединены в силу общего алгоритма взаимодействия объектов системы управления, который состоит в следующем.

Датчики информации объектов управления, осуществляя контроль некоторых параметров системы, оповещают управляющий объект о возможном изменении ее состояния (в системах оповещения о возможной «катастрофе»). Управляющий объект на основе этой информации принимает решение и оповещает исполнительные объекты. Между моментом срабатывания датчика и моментом возможного изменения состояния системы, как правило, имеется некоторый интервал времени Тогда задержка информации оповещения в процессе передачи не должна превышать

где - время, необходимое соответственно для принятия решения и исполнения команды.

В настоящее время для систем оповещения, в которых объем передаваемой информации достигает нескольких десятков бит, время Тдоп выбирается от 0,1 до 10 с .

Ошибки в сообщении оповещения приводят к его невосприятию и, следовательно, к возможной «катастрофе». Исходя из этого допустимая вероятность ошибки в процессе передачи должна выбираться таким образом, чтобы не оказывать существенного влияния на общую вероятность возникновения «катастрофы». Требования надежности доставки сообщений оповещения могут задаваться из таких же соображений.

Под «катастрофой» обычно понимается событие практически недопустимое, поэтому достоверность и надежность доставки должны обеспечивать практическую невозможность ошибочного приема или пропадания информации оповещения. Понятие практической невозможности определяется в зависимости от области использования. Так, если задать, что система должна обеспечивать вероятность ошибки то для проверки выполнения этого требования необходимо осуществлять в течение нескольких десятков тысяч лет передачи с частотой 1 сообщение/с. Такой эксперимент нереализуем практически.

Если задаться величиной вероятности то испытания должны проводиться в течение приблизительно одного года, что является реальным сроком. Исходя из этого значения допустимой вероятности ошибки и потери сообщений оповещения в большинстве случаев выбираются в пределах

Требования к допустимой задержке телеметрической информации задаются так же, как в системах оповещения. Величина в данном случае определяется частотным спектром измеряемого процесса. Допустимые значения вероятностей ошибки и потери сообщения могут быть различными. Обычно более жесткими являются требования к достоверности передачи. Это объясняется тем, что при пропадании какого-либо из отсчетов измеряемого процесса последствия могут быть сглажены за счет информации соседних отсчетов. При появлении ошибки возможны резкий выброс отсчета и значительные изменения в действиях управляющего элемента.

Опыт эксплуатации ряда телеметрических систем в автоматизированных системах управления технологическими процессами показывает, что граничные значения вероятностей потери и ошибки следует выбирать равными и 10-5 соответственно. В некоторых, например радиолокационных, системах эти требования должны быть более жесткими, что объясняется интенсивностью контролируемых процессов и важностью задач, решаемых такими системами.

Диалоговая и справочная информация. Диалоговая информация передается между двумя объектами (оператор - оператор, оператор - ЭВМ) и включает запросы и ответы объемом от нескольких десятков до нескольких сотен бит.

Известно, что устный телефонный диалог теряет беглость, если задержка сигнала превышает 0,3 с. Если диалог организуется обменом текстов, то беглость утрачивается ввиду необходимости не только обдумывания, но и подготовки запросов и ответов. Исходя из этого беглость диалога в данном случае не может считаться критерием для задания требований к задержке информации.

С диалоговыми режимами связано понятие времени ответа - интервала от момента выдачи запроса до момента получения ответа. Дело в том, что данный режим обмена организуется в процессе решения оператором задач, требующих неоднократного обращения к удаленному объекту (оператору или ЭВМ). Решаемые при этом задачи целесообразно различать в зависимости от интенсивности обращения. Если процесс решения состоит из непрерывных циклов «запрос - ответ - корректировка», то время ответа должно выбираться таким образом, чтобы не нарушать хода умственной деятельности оператора. При этом верхней границей эффективности обратной связи является время 2 с (20].

В случае, когда задача распадается на ряд относительно независимых этапов, а диалог организуется циклами «подготовка данных для этапа - запрос решения по этапу - подготовка данных для этапа - внесение результатов этапа», оператор может прервать ход рассуждений и дождаться результатов по очередному этапу. При этом время ответа ограничивается временем, отводимым для решения задачи, и может выбираться в достаточно широких пределах. Желательно, чтобы оно совпадало со временем подготовки очередного этапа.

При выборе допустимых значений вероятности потери сообщения следует исходить из того, что в процессе диалога передача информации находится под контролем оператора. Задержка ответа больше определенных пределов может быть воспринята как потеря информации, что позволяет оператору возобновить цикл. Исходя из этого диалоговые системы не предъявляют жестких требований к надежности доставки сообщений. Так, вероятность потери информации, равная соответствует в среднем повторению одного из 1000 циклов, что составляет несколько десятков часов непрерывной работы оператора в диалоговом режиме.

Значительно большую опасность для диалоговых систем представляют ошибки в информации. Это обусловлено их кумулятивным влиянием на результаты решения. При той же вероятности 10-3 и в среднем 20 циклах, требующихся на решение одной задачи, ошибочные результаты будут получены в 4% задач. При вероятности ошибки 10-5 неправильные результаты следует ожидать в 0,004% случаев, что допустимо для большинства практических систем широкого назначения.

Справочная информация может запрашиваться в процессе решения задачи на одном из циклов вместо решения. При этом ее объем и требования к системе передачи аналогичны объему и требованиям, приведенным для диалоговой информации.

В специальном случае запрос справочной информации представляет собой самостоятельную операцию и связан с передачей, как правило, значительных объемов информации (до сотен тысяч бит), включающей набор сведений или числовых значений.

Справочная информация обычно запрашивается для относительно длительного использования и требует определенного времени на осмысливание. Например, для более или менее подробного просмотра таблицы чисел или набора сведений объемом 104 бит необходимо время порядка 10 мин. Очевидно, что задержка данной информации на время порядка 3 мин не окажет существенного влияния на эффективность работы оператора.

Выбор допустимых вероятностей ошибки и потерь знаков информации должен основываться на анализе содержания справочной информации. Если передаются таблицы чисел, то предпочтительнее потеря значений, а не ошибочная их выдача.

Большинство систем широкого использования вполне успешно функционирует при вероятности одного из этих событий порядка 10-6. Достаточно отметить, что содержание всей данной книги может быть передано не более чем с десятью ошибками или пропусками. С точки зрения пропадания всего запрашиваемого массива к надежности доставки не предъявляются высокие требования в силу наличия контроля со стороны оператора, как и в диалоговых системах.

При передаче смысловой справочной информации требования к ее надежности и достоверности задаются идентичными. Для того чтобы сохранить читаемость текста, обычно достаточно обеспечить значения вероятностей потери и ошибки порядка однако наличие в тексте чисел существенно ужесточает требования, как и в случае передачи таблиц.

Общие донесения и распоряжения. Под общими донесениями и распоряжениями будем понимать смысловую информацию, которая передается между людьми при решении в системе управления задач, не подлежащих автоматизации. Такие задачи связаны с циклами управления, в которых решение задачи в управляющем объекте или выполнение команды (распоряжения) требует значительного времени (часы, сутки). Поэтому допустимая задержка сообщений указанного рода может составлять от десятков минут до нескольких часов при объеме бит.

Допустимые значения вероятностей потери сообщения и ошибки, как правило, одинаковы и выбираются в зависимости от роли одиночного объекта управления. Естественно, что для распоряжений, предназначенных ряду объектов, эти значения должны быть выше.

В настоящее время имеется достаточно большой опыт в работе систем передачи такого рода информации, обеспечивающих вполне приемлемое качество функционирования систем управления при вероятностях потери или ошибки .

На рис. 1.3 приведены ориентировочные графики зависимости допустимой задержки информации, содержащей различные

сведения, от объемов этих сообщений в битах. Соответствующие группы сообщений образуют категории срочности.

Кроме основных требований по надежности, верности и задержке информации к системам передачи могут предъявляться некоторые дополнительные требования. Наиболее важные из них следующие:

обеспечение двустороннего обмена между объектами АСУ;

возможность передачи информации между любой парой объектов, от одного объекта ко всем или заданному множеству объектов, а также между объектами, изменяющими свое местоположение;

защищенность от несанкционированной передачи информации и ее получения;

предоставление преимуществ более важной и срочной информации.

Все перечисленные требования должны выполняться при минимальных затратах на создание и эксплуатацию системы передачи.

Структуры систем управления

На принципы построения систем передачи информации существенное влияние оказывает структура системы управления, определяющая взаимосвязь в процессе управления множества управляющих объектов и объектов управления.

Централизованная система управления (рис. 1.4, а) предполагает реализацию всех процессов управления в едином центральном

управляющем органе, который осуществляет обработку информации, поступающей от всех объектов управления об их состоянии. При выработке управляющей информации для каждого из элементов управления в централизованной структуре учитывается информация состояния всех объектов.

По такому принципу, в частности, строятся системы управления предприятиями.

В системах управления с децентрализованной структурой (рис. 1.4,6) для каждого объекта управления предусмотрен свой управляющий орган, с которым он обменивается информацией. Если при этом имеется единая цель управления, то управляющие органы в процессе выработки решений также могут использовать информацию о состоянии объектов управления в совокупности. По децентрализованному принципу построены, например, системы управления технологическими процессами.

Системы управления, имеющие комбинированную структуру (рис. 1.4, в), сочетают в себе черты централизованной и децентрализованной структур. Примером таких систем управления являются системы управления промышленными объединениями.

В системах с иерархической структурой (рис. 1.4, г) функции реализации управления распределены между несколькими соподчиненными органами с одновременным соблюдением принципа централизации. При этом управляющий элемент фиксированного уровня является элементом управления для элемента более высокого уровня и в свою очередь вырабатывает информацию управления для элементов более низкого уровня.

Обмен информацией состояния производится «снизу - вверх», а управляющей информацией - «сверху?- вниз». Не исключается возможность передачи информации состояния и между элементами одного уровня.

Частным случаем иерархической системы с двумя уровнями является централизованная структура с автономным управлением (рис. 1.4, д). Характерными примерами указанных систем служат системы управления отраслью.

Система передачи информации, создаваемая в интересах системы управления, строится либо с учетом структуры управления, либо независимо от нее. Следует учитывать, что в первом случае система передачи информации раскрывает структуру системы управления.

Формы информации в АСУ, понятие о данных и сети передачи данных

Автоматизированная система управления является системой, в которой решение задач по управлению осуществляется людьми с помощью комплекса технических средств. При этом обмен информацией происходит непосредственно между людьми, средствами автоматизации и людьми, а также средствами автоматизации. Информация передается в виде сообщений: между людьми -

телефонных и телеграфных, между техническими устройствами, а также между техническими устройствами и человеком - в виде сообщений данных. Как правило, сообщение данных - это формализованная информация, закодированная по определенным правилам с целью обеспечения возможности ее обработки техническими средствами.

Данные не предназначены непосредственно для человека как получателя информации. Осмысливание данных человеком может происходить только после их соответствующей обработки и представления в форме, удобной для их окончательного использования. Важной особенностью данных является то, что сообщения данных не имеют внутренней избыточности, в отличие, например, от телефонных и телеграфных сообщений.

На рис. 1.5 изображен принцип взаимодействия людей и устройств автоматизации в процессе управления на основе использования различных видов связи.

При телефонной связи происходит обмен информацией между людьми, причем этот процесс приближен к личному общению. Телеграфная связь также обеспечивает обмен информацией между людьми, но в этом случае информация предварительно оформляется в виде документов (телеграмм).

При передаче данных операторы получают информацию не непосредственно, а через абонентские пункты, в которых происходят преобразование ее в данные и обратное преобразование.

По мере дальнейшего внедрения средств автоматизации в системы управления роль данных в общем объеме передаваемой информации будет возрастать. Технические средства, являющиеся источниками и потребителями сообщений данных, могут быть разбиты на следующие группы:

1. Автоматические регистрирующие датчики, которые измеряют некоторую физическую величину и преобразуют результаты измерения в сообщение данных. Сюда же относятся устройства, обеспечивающие обратное преобразование сообщений данных в некоторую физическую величину.

2. Абонентские пункты (иногда их называют терминалом), которые предназначены для преобразования сформированной человеком информации в данные.

В настоящее время существует большое число различных типов абонентских пунктов, отличающихся сложностью и своими возможностями. Простейшие абонентские пункты состоят из телеграфного аппарата и электрической пишущей машинки или специального устройства для считывания информации с промежуточного носителя (перфоленты, перфокарты, магнитной ленты), на который ее заносит предварительно человек - оператор. Более сложные абонентские пункты позволяют осуществлять ввод и вывод информации с помощью электронно-лучевой трубки, что облегчает работу оператора по подготовке данных к передаче.

Наконец, существуют абонентские пункты, обеспечивающие некоторые функции по обработке сообщений (так называемые «интеллектуальные терминалы»).

3. Электронно-вычислительные машины и банки данных. Эти элементы осуществляют прием информации, ее обработку (решение задач), хранение и выдачу для передачи на любой абонентский пункт по требованию оператора этого пункта.

В АСУ все перечисленные технические средства автоматизации разнесены в пространстве на значительные расстояния, причем, как правило, необходимо обеспечить передачу данных между любыми двумя техническими средствами. Выполнение этой функции возлагается на систему связи, в которой создается специальная подсистема - сеть передачи данных (ПД). Абонентами такой сети могут быть как непосредственно технические средства, так и операторы, осуществляющие ввод и вывод информации.

Обычно ПД строятся и функционируют аналогично сетям телефонной связи, однако им свойствен целый ряд особенностей, которые в основном определяются высоким уровнем автоматизации процессов, обеспечивающих передачу информации.