Дирижабли в наше время. Как построить дирижабль? Что такое дирижабль? Нужны ли они в современном мире? Зачем они нужны

Современный технический прогресс дает дирижаблям шанс возродиться, что для России может быть крайне полезным. Обладающие целым рядом преимуществ, в том числе экологичностью, экономичностью, значительной грузоподъемностью и другими, в настоящее время дирижабли могут стать эффективным средством решения многих военных задач . О возможных областях применения дирижаблей в области обороны свое мнение на страницах «Оружие России» высказывает заместитель директора Института политического и военного анализа Александр Храмчихин.

Дирижабли после ряда громких катастроф в 30-е годы, казалось, навсегда ушли в прошлое, полностью вытесненные самолетами, а затем и вертолетами. Однако технический прогресс дает дирижаблям шанс возродиться, помогая раскрыть лучшие качества этих летательных аппаратов. Для России они могут оказаться крайне полезными.

Современное дирижаблестроение в России

К преимуществам дирижаблей относятся следующие :

Во-первых , дирижабли чрезвычайно экологичны, причем не только в плане загрязнения воздуха, но и в плане очень низкого уровня шума.

Во-вторых , они весьма экономичны.

В-третьих , они могут быть чрезвычайно грузоподъёмными, значительно грузоподъёмнее самых больших транспортных самолетов.

В-четвертых , они не требуют больших и дорогостоящих ВПП, а могут садиться практически на любую относительно ровную поверхность.

В-пятых , время их нахождения в воздухе может достигать суток и недель, иногда речь идет даже о месяцах и годах. Кроме того, они способны висеть на одном месте, причем тоже очень долго.

В-шестых , дирижабль обладает малой заметностью в инфракрасном и радиолокационном диапазонах.

В-седьмых , подготовить пилота дирижабля гораздо проще, чем пилота самолета или вертолета.

Основной недостаток дирижабля – низкая скорость, примерно 100 км/ч . Но это вполне сопоставимо со скоростями автомобилей и поездов, при этом, в отличие от них, дирижабли не привязаны к дорогам.

Несущим газом нынешних дирижаблей вместо чрезвычайно взрывоопасного водорода (собственно, именно он и погубил дирижабли первой половины ХХ века) стал совершенно негорючий инертный гелий.

Самолет типа «летающее крыло», это нечто вроде гибрида дирижабля и самолета под названием Stingray

Тканевую оболочку, герметизируемую каучуком, заменили новые синтетические материалы (кевлар, полиуретан, майлар, дакрон и т.д.), что в несколько раз снизило массу оболочки и на два порядка – диффузию газа сквозь нее (это очень важно в связи с тем, что гелий обладает высокой текучестью, это его главный недостаток). Оболочка изготавливается методом компьютерного проектирования с помощью лазерных раскроечных машин, а гондолы и грузовые отсеки дирижаблей — из композитов, что также значительно снижает их массу.

При этом кроме классических дирижаблей, где подъемную силу создает несущий газ, появились гибридные дирижабли, где дополнительную подъемную силу обеспечивают либо несущие поверхности (крылья), либо винты вертолетного типа . Например, в США был создан дирижабль «Мегалифтер», который, фактически, представлял собой транспортный самолет С-5, но средняя часть фюзеляжа у него была заменена полужесткой оболочкой дирижабля.

Гибридный дирижабль «Гелистат»

Другой американский дирижабль «Гелистат» представлял собой оболочку, к которой были прикреплены 4 вертолета SH-34J. Один из них управлялся пилотом, остальные – дистанционно. Гибриды сложнее и дороже классических дирижаблей, зато у них выше скорость (до 400 км/ч) и маневренность .

На небольших дирижаблях используются поршневые двигатели, как наиболее экономичные и обеспечивающие высокую маневренность. На более крупных аппаратах применяются газотурбинные двигатели. При этом рассматриваются разного рода экзотические проекты типа двигателей на солнечной энергии или даже ядерных реакторов.











Военные уже проводят конкурсы по дизайну военных дирижаблей

Основные военные задачи, которые могут решать дирижабли, достаточно очевидны и определяются их достоинствами. В первую очередь, это перевозка войск и грузов на большие расстояния.

Не менее очевидно использование дирижаблей для дальнего радиолокационного обнаружения (ДРЛО) , причем здесь речь идет не о привязных беспилотных аэростатах, которые давно применяются в США, Италии, Израиле для охраны границ, а именно об автономных дирижаблях (которые, впрочем, тоже могут быть беспилотными).

В России была разработана беспроводная аэростатная радиосеть (БАРС)

Принципиальная схема работы комплекса БАРС

Кроме того, дирижабли могут успешно использоваться в борьбе с подлодками . Наконец, эти аппараты могут стать очень эффективными ретрансляторами, отчасти заменяя в этом качестве спутники связи, будучи в разы дешевле ИСЗ. Экономичность дирижабля определяется тем, что у него удельный расход топлива в 3–4 раза меньше, чем у самолета, и в 14–15 раз – чем у вертолета. При этом правда, есть проблема гелия, который достаточно дорог.

Впрочем, чем больше будет дирижаблей и чем крупнее они будут по размерам, тем рентабельнее станет добыча гелия. Размер имеет значение и по другим причинам. Один кубометр гелия при обычном атмосферном давлении обеспечивает подъем 1 кг груза . Поэтому, для подъема одной тонны полезной нагрузки (с учетом веса дирижабля) требуется наполнить оболочку 20 тыс. куб. м гелия.

Таким образом, рентабельный грузовой дирижабль по определению должен быть крупным (тем более, что при более высокой грузоподъемности ниже стоимость перевозок). Причем, как показывает сегодняшняя практика (например, известной авиакомпании «Волга-Днепр»), воздушные перевозки крупногабаритных тяжелых грузов – вещь, очень востребованная на рынке, на нее не влияет никакой кризис.

Самый крупный дирижабль в мире – полужесткий аппарат немецкого производства Zeppelin NT LZ 07

Кроме того, чем крупнее летательный аппарат, тем меньше он подвержен действию ветра: сила давления ветра на оболочку пропорциональна квадрату линейных размеров, а сопротивление ветру пропорциональна их кубу . Это даёт возможность строить дирижабли грузоподъёмностью до 2000 т, что почти в 20 раз выше, чем у крупнейших транспортных самолетов.

На сегодняшний день самый крупный дирижабль в мире – полужесткий аппарат немецкого производства Zeppelin NT LZ 07, который осуществляет туристические рейсы, беря на борт 12 пассажиров и двух членов экипажа.

Skyship 600, предоставленный Службой управления дирижаблями и использованный на Олимпийских играх, представлял собой 13-местный дирижабль, наполненный гелием и имеющий моторы Porsche 930

Дирижабль Skyship-600, который также используется для туристических полетов, перевозит 10 пассажиров и двух членов экипажа. Кроме того, имеется масса экспериментальных аппаратов и еще больше грандиозных замыслов. Так, в 1996 году в США было сформировано специальное подразделение под названием JAPO (Joint Aerostat Project Office). Оно занималось разработкой разведывательных систем, размещаемых на аэростатах.

Американцы вовсю развивают военные системы на базе аэростатов. Помимо JLENS (Joint Land Attack Cruise Missile Defense Elevated Netted Sensors) от Ratheyon испытывают еще (правда, пока не особо удачно) локхидовский HALE-D (High Altitude Long Endurance-Demonstrator) — высотный ретранслятор, способный длительное время зависать на большой высоте (до 10км) и обеспечивать связью военные подразделения .

В 1997 году ему была поставлена задача создать систему JLENS (Joint Land attack cruise missile defense Elevated Netted Sensor system). Она предназначалась для загоризонтного обнаружения воздушных целей (в первую очередь – крылатых ракет) и выдачи данных средствам ПВО/ПРО (ЗРК и истребителям) для их уничтожения. РЛС системы размещались в гондолах 70-метровых беспилотных дирижаблей, способных находиться в воздухе до 30 суток.

В ходе испытаний было выяснено, что дирижабль очень устойчив к повреждениям, даже при попадании в него зенитной ракеты он не падает, как самолет в аналогичной ситуации, а медленно опускается на землю , что обеспечивает сохранность оборудования.

Система ПВО Северной Америки NORAD рассматривала возможность принятия на вооружение дирижаблей ДРЛО (они должны были барражировать на высоте 24 км) для обнаружения крылатых ракет на дальности до 740 км. Рассматривается возможность использования беспилотных дирижаблей для ведения воздушной разведки.

Дирижабль ДРЛО экономичнее самолета АВАКС

Например, в США разрабатывается БПЛА MaXflyer эллипсоидальной формы диаметром 80 м. Имея на борту различное разведывательное оборудование, он может летать в заданном районе на высоте 30 км на протяжении нескольких недель. Главной защитой аппарата станет его крайне низкая радиолокационная заметность.

ВМС Великобритании рассматривают возможность покупки дирижаблей для снабжения британских кораблей и проведения разведывательных операций. Они смогут беспосадочно находиться в воздухе в течение трех недель и перевозить грузы массой до 50 тонн. Командование ВМС Великобритании также рассматривает возможность их использования для борьбы с пиратами.

Американский дирижабль гибридного типа «Аэрокрафт»

Ориентировочно, на каждом летательном аппарате сможет разместиться до 150 коммандос вместе с легкими лодками. Разумеется, не были забыты транспортные аппараты. Например, американский дирижабль гибридного типа «Аэрокрафт» (длина 307 м, высота 77 м) должен был доставлять груз массой до 1000 т (18 ударных вертолетов «Апач» или 8 танков «Абрамс» или 16 БМП «Брэдли») на расстояние 9,3 тыс. км.

Британская фирма ATG разрабатывала дирижабль-катамаран «Скайкэт-1000» длиной также 307 м. При собственной массе он способен доставить полезную нагрузку в 1000 т на 7,4 тыс. км или 600 т – на 16 тыс. км. В США рассматривались и такие экзотические варианты использования дирижаблей, как запуск с них МБР МХ.

Подобные пусковые установки стали бы совершенно неуязвимыми для противника. Еще более экзотичным проектом является использование дирижаблей для вывода грузов в космос. Компания JP Aerospace создавала сложнейшую систему из нескольких гигантских дирижаблей размером в несколько километров. Последний из них, используя ионные двигатели, должен был выходить на низкую околоземную орбиту.

Схема дирижабля «Беркут». Внутри оболочки «Беркута» — пять тканых ёмкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа

В России, имеющей хорошие традиции дирижаблестроения, также имеется целый ряд экспериментальных образцов и еще больше проектов. Например, компания «Авгуръ» разрабатывает стратосферный дирижабль «Беркут» длиной 250 м, который может стать альтернативой геостационарных ИСЗ связи. Он может висеть на высоте 20-22 км, при этом для обзора европейской части России достаточно двух таких аппаратов.

Можно отметить, что запасы гелия в России составляют 9,2 млрд. куб. м (треть мирового объема и второе место после США с их 13 млрд. куб. м). Главное же в том, что нам дирижабли могут быть полезны, как никому другому :

Во-первых , как транспортное средство . Для доставки грузов военного и гражданского назначения в восточные регионы страны дирижаблям просто нет цены, только они могут избавить нас от критической зависимости от Транссиба и Севморпути. Это настолько очевидно, что не требует комментариев.

Во-вторых , дирижабли могут стать важнейшим средством ПВО . При этом необязательно ограничивать его применение только ролью разведчика-наблюдателя. Ничто не мешает загрузить дирижабль не только мощной РЛС (которая должна эффективно обнаруживать и самолеты-«невидимки», и крылатые ракеты), но и ракетами «воздух-воздух» для поражения обнаруженных им целей.

Дирижабли могут висеть на высоте 20-30 км над землей, что обеспечит ракетам при запуске очень большую потенциальную энергию, которая хорошо переводится в дополнительную кинетическую. С другой стороны, истребителям противника достать до дирижабля, висящего в стратосфере, будет крайне сложно, если вообще возможно.

К тому же, как было сказано выше, попадание одной-двух ракет не является для дирижабля фатальным, он просто медленно опускается на землю. Несколько десятков дирижаблей ПВО вполне могут стать мощным «кочующим барьером» на воздушных рубежах России, дополняя, а в значительной степени и заменяя истребители и ЗРС. Возможно, что по критерию стоимость/эффективность именно такая система ПВО станет для России наиболее подходящим вариантом.

Испытания новых военных аэростатов «Пересвет»

В-третьих , дирижабль может быть носителем КРВБ большой дальности (нескольких десятков, если не сотен), а также МБР. Аппарат с 1-2 МБР на борту, висящий над Красноярским краем или Якутией, будет абсолютно неуязвим для любого противника. Также из своего воздушного пространства он может наносить удары крылатыми ракетами по наземным и надводным целям.

В-четвертых , благодаря большой грузоподъемности и стратосферной высоте полета дирижабль может нести мощный комплекс РЭБ , позволяющий «задавить» электронику противника на большой территории. В будущем дирижабли могли бы стать носителями и лазерного оружия (боевой лазер, если его создадут, будет, видимо, большим и тяжелым).

С дирижабля в космос (схема)

В-пятых , дирижабли, как уже было сказано, могут заменить ИСЗ связи, будучи гораздо более дешевыми и гораздо менее уязвимыми . В целом, основными препятствиями к полномасштабному возрождению дирижаблей считаются дороговизна гелия и проблема организации базирования.

Однако главная проблема – инерция мышления (это относится не только к России) . Именно она более всего мешает развитию современного воздухоплавания. Страна, которая первой сможет преодолеть эту инерцию, получит очень значительное превосходство над всеми потенциальными оппонентами.

Устройство современных дирижаблей и их данные

1. Дирижабли мягкой системы

Дирижабли мягкой системы не имеют никаких жестких креплений или распорок в своей газовой оболочке. Оболочка дирижаблей мягкой системы представляет собою многослойную прорезиненную ткань. Швы отдельных частей такой оболочки при сшивании тщательно заделываются. Общая форма дирижабля приближается к каплевидной, т. е. несколько утолщенной в передней части и с большим заострением задней для большей удобообтекаемости. Так как в случае прогиба оболочки и изменения благодаря этому формы дирижабля последний теряет свои расчетные аэродинамические качества, становится малопослушным в управлении или непослушным вовсе, что часто приводит к гибели, то понятно, что совершенно необходимо сохранение постоянства формы самого дирижабля.

Это достигается посредством помещенных внутри газовой оболочки особых воздушных мешков, называемых баллонетами.

В случае большой утечки газа, сморщивания или прогиба мягкой оболочки дирижабля баллонеты можно накачать воздухом настолько, что, расширяясь, они сожмут подъемный газ в дирижабле, и восстановленное давление газа вновь выравняет наружный профиль дирижабля. Для более детального ознакомления с устройством дирижаблей мягкой системы мы приводим описание современного нового малого дирижабля указанной системы воздушного флота Великобритании, известного под маркой АД-I.

Оболочка дирижабля АД-I покрыта алюминиевым составом, что в значительной мере предотвращает нагревание дирижабля солнцем. Так как носовая часть при полете воспринимает наибольшее давление, то в дирижабле АД-I она укреплена 24 деревянными ребрами, обмотанными проклеенной лентой и вшитыми в оболочку; ребра сходятся у носовой металлической головки. Баллонетов у АД-I два: передний и задний. Воздух в баллонеты нагнетается особым воздухоулавливателем, который может быть установлен в потоке, отбрасываемом пропеллером. На случай необходимости маневрирования баллонетами при остановленном моторе и отсутствии поступательного движения для накачки баллонетов применяется добавочный нагнетатель в 1 л. с., соединенный трубой с основным воздухопроводом.

Пилот имеет возможность регулировать накачку переднего и заднего баллонетов по своему желанию. Вместимость обоих баллонетов достигает 28 % всего объема оболочки дирижабля (рис. 7).

Рис. 7. Схема дирижабля мягкой системы АД-I (английский): 1 - носовые ребра; 2 - разрывное полотнище: 3 и 13 - баллонеты; 4 - поясная веревка; 5, 9, 11 - клапанная веревка; 6 - лыжа; 7 - стойка, к которой крепится фюзеляж; 8 - воздухонадуватель; 10 - воздухопровод к баллонетам; 12 - центр подъенной силы: 14 - тяга к рулю высоты; 15 - стабилизатор и руль высоты; 16 - тяга руля направления; 17а - киль; 17б - руль направления (поворота); А - воздушные клапаны; Г 1 - газовый клапан маневренный; Г 2 - газовый клапан автоматический и 18 - фюзеляж.

У дирижабля имеются 2 газовых клапана. Первый клапан - маневренный, находится в верхней части оболочки, а второй - автоматический, находится позади, в нижней части оболочки. Этот клапан открывается в случае возрастания давления до 40 мм водяного столба. Баллонеты в нижней части имеют воздушные клапаны, управляемые пилотом. В передней части оболочки дирижабля имеется так называемое «разрывное приспособление», позволяющее быстро выпустить газ в случае необходимости.

Гондола по своему внешнему виду похожа на фюзеляж (остов) самолета. Она имеет спруссовые ланжероны и покрыта фанерой. Гондола подвешивается к оболочке гибкими стальными тросами. На дирижабле, в передней части гондолы, установлен мотор Хорнет, 75 л. с., воздушного охлаждения. Выхлопные трубы проходят под гондолой. В гондоле кроме экипажа помещается горючее и смазочное для моторов, а также и водяной баласт.

Снизу гондола имеет специальную лыжу, прикрепленную на стальных подкосах. Лыжа сделана из ясеня и окована металлом. Назначение лыжи - предохранить от поломки пропеллер при спуске дирижабля на землю. На перилах гондолы укрепляются: гайдроп, якорь и мешки с песочным баластом. Для предохранения от электрических разрядов все металлические части дирижабля соединяются медной проволокой. Дирижабль поднимает всего 3 человека.

Обычный объем мягких дирижаблей не более 6000 куб. м. Наибольшие по объему типы мягких дирижаблей не превышают обычно 15 000 куб. м, что объясняется чрезвычайной трудностью сохранения постоянства формы дирижабля, которая растет с размерами дирижабля.

Данные современных мягких дирижаблей приведены в таблице 12.

Таблица 12. Данные современных мягких дирижаблей

Страна Название дирижабля Год постройки Мотор и мощность в л. с. Объем в куб. м Полезный груз Экипаж Скорость в км/ч Продолжительность полета в час Назначение
Англия АД-I 1928/29 Хорнет 75 1700 680 кг 2–3 Наибольш. 80 15
Англия Коммершел-Эршен 1928 - 6240 - - Крейсерск. 56 - Учебный
Франция Зодиак-Вест 1925 2 Испано по 150 4000 1,7 т - 85 - Военный (морской)
САСШ ТС-6 1928 2 Райт по 150 5600 1,8 т 10 96 21 Учебный
Германия. Рааб-Катценштейн 27 - Анзани 35 1435 0,5 т 4 70 9 Рекламный

2. Дирижабли полужесткой системы

Дирижабли полужесткой системы конструктивно отличаются от дирижаблей мягкой системы наличием жестких креплений оболочки. Эти креплении в первоначальных типах были в виде штанг, идущих вдоль нижней части дирижабля. В современных дирижаблях полужесткой конструкции полужесткость осуществляется специальной платформой, идущей по всей нижней части оболочки дирижабля. Дополнительные крепления у дирижаблей полужесткой системы, обеспечивающие большую, чем у дирижаблей мягкой системы, сохранность формы оболочки дирижабля, позволяют их строить большего размера, чем дирижабли мягких систем. Объем их достигает 50 000 куб. м. Естественно, что скорость, грузоподъемность, радиус действия, возможная высота полета и вместе с тем стоимость и сложность постройки - больше чем у дирижаблей мягкой системы (рис. 8).

Рис. 8. Французский полужесткий дирижабль Зодиак V-10.

Общую схему устройства современного дирижабля полужесткой системы и некоторые детали устройства можно уяснить по конструкции итальянского дирижабля полужесткой системы под названием «Норвегия», известного своим полетом к северному полюсу, а также дирижабля «Италия» конструктора и водителя Умберто Нобиле. Вместо сплошной газовой камеры Нобиле ввел в своих дирижаблях несколько отсеков, сообщающихся между собой небольшими отверстиями. Носовая и кормовая часть дирижабля имеют крепления в виде закаркашивания.

В нижней части дирижабле вдоль всего его корпуса идет трехугольная ферма из стальных труб. Моторы вынесены из кабины и помещены в специальных установках, крепящихся к верхним углам фермы. Внутри фермы, образующей как бы коридор, устроены каюты для экипажа, хранится баласт, горючее, продовольствие и т. д. Назначение фермы помимо крепления - передать равномерно по оболочке тяжесть нагрузки моторов, гондолы и груза, помещаемого в самой ферме (коридоре).

В верхней части оболочки пришит пояс, от которого внутри оболочки проходят тросы для распределения подвески.

Гондола крепится непосредственно к ферме. В ней помещается капитанская рубка, каюткампания, кухня и уборная (устройство рубки - рис. 9). Воздушные баллонеты у дирижабля Нобиле помещаются внизу над рамой. Воздух в баллонеты нагнетается через отверстие в носу дирижабля автоматически в полете.

Рис. 9. Внутренний вид капитанской рубки итальянского дирижабля «Италия».

Таблица 13. Данные полужестких дирижаблей

Название дирижабля и мотор Длина в м Высота в м Ширина в м Объем в куб. м Подъемная сила в т Экипаж Наибольшая скорость в км/ч
Италия
№ 1 3 мотора по 250 л. с. (Дирижабль Нобиле под названием «Италия») 105 26 19,5 19000 25 20 100
Франция
Зодиак V-10 - - - 3400 - 4 95

На рис. 10 - общий вид дирижабля «Италия» в полете.

Рис. 10. Общий вид дирижабля «Италия» в полете.

3. Дирижабли жесткой системы

Главнейшее отличие дирижаблей жесткой системы это наличие жесткого каркаса (остова), благодаря которому получается возможность сохранять неизменность формы дирижабля. Каркас делается обычно из дюралюминиевых труб или полос различного вида профилей; только каркас недавно погибшего английского дирижабля R-101 был построен преимущественно из высокосортной стали. Каркас состоит из многоугольных поперечных рам, называемых шпангоутами, соединенных между собою продольными фермами, называемыми стрингерами. Пролеты, образующиеся между продольными и поперечными частями, крестообразно расчаливаются проволоками.

Металлический каркас обтягивается специальной алюминированной материей: алюминирование оболочки имеет целью уберечь ее от чрезмерного нагревания солнцем. Подъемный газ (водород или гелий) содержится в нескольких газовых баллонах с газонепроницаемой оболочкой. Таких баллонов в современных дирижаблях бывает до 20, помещаемых в специальных газовых отделениях (отсеках), на которые делится каркас дирижабля. Газовые баллоны делаются из специального материала - «бодрюша», получаемого путем обработки брюшины телят, отличающегося исключительной газонепроницаемостью и легкостью. Между шпангоутами устроена вентиляция, для того чтобы не допускать образования крайне опасного гремучего газа (смеси водорода с кислородом). На дирижабле устанавливаются 5–8 мощных многосотсильных моторов, которые помещаются в специальные гондолы, имеющие жесткую подвеску к корпусу дирижабля. Иногда один мотор устанавливается так, чтобы с его помощью дирижабль мог иметь задний ход, что бывает нужно при подходе к причальной мачте. Помещение экипажа и командирская рубка у последних типов дирижаблей находятся в передней половине внизу, ближе к носу. По всей длине дирижабля проходит внутренний коридор, в котором размещаются: бензин и масло в специальных баках, водяной баласт в мешках, запасные части для моторов, помещение для экипажа, якорные канаты и т. д. В командирской рубке сосредоточены все приборы для управления и навигации. Все рули помещаются на корме оболочки. Внешняя форма дирижаблю придается сигарообразная для того, чтобы дирижабль в полете был более удобообтекаем и тем самым вызывал меньшее сопротивление воздуха при полете. На германских военных дирижаблях в империалистическую войну 1914–1918 гг. нижняя сторона корпуса дирижабля окрашивалась в черный цвет, для того чтобы ночью дирижабль был менее заметен на фоне неба при свете прожекторов, а в верхней части дирижаблей помещались специальные кабинки для наблюдателя с пулеметом для воздушного боя с самолетами.

В носовой части дирижабля имеются люк и откидная площадка, которая при причаливании соединяется трапом со швартовой мачтой. Кроме того на носу имеется специальное причальное приспособление.

Экипаж дирижабля состоит из командира корабля, старшего и младшего помощников, вахтенных рулевых, метеоролога, навигатора (штурман), радиотелеграфистов, механиков, среднего и младшего технического персонала.

Схема устройства дирижаблей жесткой конструкции изображена (тип цеппелина) на рис. 11 и 12.

Рис. 11. Схема дирижабля жесткой системы (типа цеппелин).

Рис. 12. Поперечный разрез дирижабля жесткой системы (типа цеппелин).

В последнее время американцы построили 2 дирижабля несколько иной конструкции. Они реализовали идею, высказанную ранее ученым Циолковским и сделали жестой самую оболочку дирижабля, изготовив ее из металлических гофрированных листов. Оболочка такого дирижабля служит непосредственным газовместилищем и вместе с тем способна сохранять форму дирижабля при наличии немногих внутренних рам. Таким путем достигается жесткость и прочность конструкции. Американцы заявляют; что эти дирижабли в три раза прочнее существующих конструкций и на 30 % легче. Более подробное описание такого типа дается ниже по сведениям об одном из двух построенных американцами металлических дирижаблей ZMC-2.

Устройство американского цельнометаллического дирижабля ZMC-2 . Проект этого дирижабля принадлежит инж. Р. Эпсону. Объем дирижабля - всего 5600 куб. м. Каркас сделан из дюраля и состоит из 5 главных и 12 промежуточных трехгранных поперечных шпангоутов и 24 продольных стрингеров корытообразного сечения. Цельнометаллическая оболочка сделана из полос шириной от 15 до 45 см, толщиной в 1/4 мм, соединенных тройными заклепочными швами, промазанными изнутри особой смоляной мастикой.

Рис. 13. Американский цельнометаллический дирижабль ZMC-2 при выводе из элинга.

Рис. 14. Американский цельнометаллический дирижабль ZMC-2 при посадке

Подъемный газ (гелий) помещается непосредственно в металлической оболочке, внутри которой имеются 2 воздушных баллонета: один в передней, другой - в кормовой части. При наполнении воздухом баллонеты занимают около 25 % всего объема дирижабля. Назначение баллонетов - регулировать давление подъемного газа в оболочке. В дирижабле ZMC-2 все нагрузки, которые дирижабль испытывает, воспринимаются не только каркасом, но и оболочкой. Таким образом за счет работы по сохранению формы дирижабля, которую несет металлическая оболочка дирижабля, удалось уменьшить прочность каркаса, а тем самым и его вес. Исходя из опыта работы со своими цельнометаллическими дирижаблями, американцы считают, что металлическая оболочка значительно более газонепроницаема, чем специальные, обычно употребляемые сорта материи бодрюша (обработанная брюшина телят). Моторная установка ZMC-2 состоит из двух двигателей Райт-Уирлуинд по 220 л. с. воздушного охлаждения, помещающихся по обе стороны гондолы. Стоимость дирижабля - 600000 руб. Общий вид дирижабля - на рис. 13, 14, и 15.

Рис. 15. Кабина и моторные установки дирижабля ZMC-2.

Устройство английского дирижабля R-101 . Английский дирижабль R-101, которого постигла недавно страшная катастрофа во Франции у города Бове и при перелете из Англии в Индию, был по своему конструктивному оформлению единственным в мире. Вместо дюралюминия материалом для его каркаса была применена высокосортная сталь; таким образом это был первый и единственный в мире стальной воздушный гигант (рис. 16). R-101 вместе с R-100 был начат постройкой в 1925 г. Оба дирижабля предназначались для транспортной службы между Англией и Канадой и Англией и Индией. Одновременно с их постройкой англичанами проводилась большая работа по наземному оборудованию этих линий: строились причальные мачты, элинги, заводы, изготовляющие водород. R-101 строился на правительственной верфи; R-100 строила частная фирма «Виккерс». 17 сентября 1929 г. R-101 сделал свой пробный 5-часовой полет. Данные, полученные англичанами при первых испытаниях дирижаблей R-101, оказались малоудовлетворительными. Дирижабль был перетяжелен. Строя R-101, англичане переборщили с учетом причин гибели своего дирижабля R-38 и американского «Шенандоа». Желая гарантировать прочность дирижабля как в отношении статических нагрузок, так и вызываемых аэродинамическими усилиями при различных режимах полета, англичане получили чрезмерно тяжелый дирижабль со всеми вытекающими отсюда пилотажными и эксплоатационными недостатками. Это обстоятельство в конечном итоге принудило их переделать R-101. Было решено разрезать дирижабль пополам и вставить дополнительно еще один отсек. Операция эта удалась. После переделки на пробных полетах R-101 показал несколько лучшие качества.

Рис. 16. Английский дирижабль R-101.

В течение 1 1/2, лет англичане проводили исследование над деталями и моделями дирижабля. В результате этих работ при строительстве R-101 был применен ряд конструктивных особенностей.

Во-первых превышение длины над поперечным сечением было уменьшено; лабораторные исследования показали, что удобообтекаемость более толстого, не имеющего цилиндрической части дирижабля лучше, тем более что при этом легче сделать каркас более прочным.

Каркас R-101 состоял из 15 поперечных шпангоутов, 15 главных и 15 промежуточных стрингеров. Каждый шпангоут представлял собой жесткое решетчатое 15-угольное кольцо, состоявшее из двух внешних и одного внутреннего пояса, соединенных между собою поперечными связями. Каждый элемент пояса был сделан в виде жесткой трехгранной балки, склепанной из 3 стальных труб, соединенных между собою дюралюминиевыми полками с выштампованными в них для облегчения отверстиями. Элементы стрингера были сделаны из труб диаметром в 1 3/4 дюйма, свернутых из стальных полос с заделанным изнутри швом. При большой длине (до 22,5 м) такие трубы оказались более равномерными и прочными, чем цельнотянутые. Жесткость решетки увеличивалась тросовыми растяжками. Каркас R-101 не имел киля, что было возможно благодаря особой прочности и конструкции всего каркаса. Главной опорой каркаса R-101 являлись шпангоуты, продольные части каркаса являлись как бы вспомогательными в отличие от германских цеппелинов, у которых главные усилия воспринимаются стрингерами.

Следующей особенностью R-101 было крепление газовых мешков. Из полюса, располагавшегося в средней плоскости шпангоута, когда давления в 2 прилегающих мешках были одинаковы, расходились меридианально лучами в оба отсека тросы, охватывавшие мешки. В середине отсека эти тросы прикреплялись к цепям, которые в свою очередь сцеплялись системой спусков с узлами шпангоутов. Таким образом эти цепи образовали как бы края парашютного паруса. Этим путем большая часть подъемных усилий передавалась на нижнюю часть шпангоутов, остальная же часть их воспринималась поперечными кольцами из тросов, охватывавших мешки и передававших усилия на все панели шпангоутов тоже посредством спусков. Благодаря такой системе все усилия сосредоточивались в узлах, и таким образом стрингеры подвергались только продольному сжатию, а не испытывали поперечных нагрузок. Исчезла и поперечная нагрузка на панели шпангоутов.

Оболочка R-101 была сделана из льняного полотна, для водонепроницаемости покрытого алюминиевой краской. Оболочка имела очень гладкую поверхность, что способствовало уменьшению трения, и была очень легка: 1 кв. м ее весил 150 г. Газовые мешки были из бодрюша и покрывались особым составом для предохранения от действия солнца.

Сохранение оболочкой правильной и гладкой поверхности достигалось тем, что в носовой части оболочки по окружности был сделан ряд отверстий. Во время полета встречный поток воздуха поступал через эти отверстия внутрь оболочки, создавая давление изнутри (рис. 17).

Рис. 17. Нос дирижабля R-101; видны отверстия для поддержания внутреннего давления, трап для выхода (Платформа причальной мачты и три люка для выбрасывания причальных концов.).

Все жилые и грузовые помещения дирижабля находились внутри оболочки. Вне оболочки была устроена только пилотская рубка. Помещения для пассажиров и команды располагались двумя ярусами в нижней части 6-го и 7-го отсеков. Верхний ярус имел 25 двухместных спальных кают, салон (рис 18), столовую на 50 человек и 2 широких коридора для прогулок. В нижнем ярусе помещались: кухня, оборудованная электрическими приборами, курительная комната, помещения для экипажа и капитанская (навигаторская) рубка. В этой капитанской рубке находилось большинство инструментов и радиостанция (приемная и передающая). Все помещения соединялись телефоном. Для сообщения между отдельными частями дирижабля по всей его длине шел коридор шириной в 0,9 м, от которого шли поперечные боковые проходы. По подвесным трапам из коридора можно было попасть в моторные гондолы. В носовой части коридор заканчивался причальной каютой, в которую был пропущен причальный шпиль. В причальной каюте находились все приспособления для соединения с вращающейся частью причальной мачты, для приема воды масла, нефти и т. д.

Рис. 18. Салон на борту дирижабля R-101.

Винто-моторная группа дирижабля состояла из 5 двигателей Бирдмор «Торнадо», работавших на тяжелом горючем. Баки для нефти вмещали 44 т. Нормально они загружались только до 29 т. Емкость водяных баков была 15 т.

Дирижабль предназначался для работы на линии Лондон - Карачи (Индия). По расчетным данным он должен был брать 100 пассажиров и 10 т груза. Фактически, как потом оказалось, он мог брать в рейс примерно только 50 пассажиров и 7 т груза.

На рис. 19 показана деталь дирижабля: моторная гондола.

Рис. 19. Левая передняя моторная гондола дирижабля R-101 с реверсивным пропеллером.

Причины трагической гибели дирижабля описаны ниже в главе «Недостатки современных дирижаблей».

Американские дирижабли ZRS-4 и ZRS-5 . Оба дирижабля предназначаются для обслуживания военно-морского флота. Дирижабли ZRS-4 и ZRS-5 имеют объем почти вдвое больший, чем германский LZ-127 («Граф Цеппелин») и на 35 % больше английских дирижаблей R-100 и R-101. Сравнительная таблица (табл. 14) дает общую характеристику и размеры этих дирижаблей.

Таблица 14 (стр. 41)

Технические данные Американский дирижабль Лос-Анжелос Германский LZ-127 Американский ZRS-4
1. Объем в куб. м 70000 105000 184500
2. Длина в м 200 235 239,5
3. Диаметр миделя в м 27,6 30,5 40,6
4. Полная высота 31 37,5 49,8
5. Подъемная сила в английск. фун. 153000 258000 403000
60000 - 182 000
7. Число моторов 5 5 8
8. Общая мощность моторов в л. с. 2000 2750 4480
9. Максимальная скорость в км/ч 118 128 135
10. Дальность полета при 95 км/ч 6400 9850 17700

В отношении своего внешнего вида по сравнению с другими дирижаблями оба указанные американские дирижабля не так продолговаты, а наоборот более коротки и широки. Конструкция скелета основана на тех же принципах, что и у цеппелина, и имеет 3 элемента:

1) жесткий металлический каркас, имеющий своим назначением противодействовать силам, действующим на дирижабль (подъемная сила газа, тяжесть, силы динамические и аэродинамические);

2) газовые камеры, содержащие подъемный газ;

3) внешняя оболочка из малопроницаемой металлизированной ткани, сопротивляющейся атмосферному влиянию и отражающей, а не поглощающей тепло; оболочка эта сделана с гладкой, несколько скользкой поверхностью.

Остов составляет 36 многоугольных поперечных рам (рис. 20). Они соединяются продольными балками, идущими от носа до кормы дирижабля.

На скелет, составленный таким образом, сосредоточивается давление газовых камер. Главные поперечные рамы отстоят друг от друга на расстоянии около 24 м, а между ними помещаются газовые камеры; камер этих в дирижабле 12. Продольные балки, соединяя кольцевые рамы, создают благодаря своим размерам и конструкции коридоры, дающие возможность прохода по ним вокруг дирижабля, что облегчает обслуживание и достижение сохранности. Кольцевые промежуточные рамы состоят из отдельных балок и расставлены между главными большей частью в числе 3 штук; их назначение - поддерживать поперечные балки, соединяющие главные кольцевые рамы.

Почти через всю длину дирижабля идут 3 прохода, или коридора, которые в поперечном разрезе имеют вид равностороннего треугольника. Один из этих коридоров находится в верхней части дирижабля, а 2 другие помещаются симметрично в его нижней части. В более ранних системах помещался только 1 коридор между носом и кормой дирижабля.

Рис. 20. Остов американского дирижабля ZRS-4.

Дальнейшей особенностью, заслуживающей внимания, являются предохранительные клапаны. Роль их заключается в том, что они должны автоматически открываться, когда давление подъемного газа от расширения под влиянием высоких температуры и барометрического давления достигнет опасной величины, и выпускать часть газа наружу. Все газовые камеры имеют такие автоматические предохранительные клапаны в своей верхней части. Доступ к этим клапанам имеется из верхнего коридора, что дает возможность легко проверять их исправность. Это важное устройство в предшествующих типах дирижаблей не было предусмотрено.

В отношении оперения дирижабля заслуживает внимания то, что управление рулями возможно как из пилотской гондолы, так и - в случае внезапной порчи тросов между рулями и гондолой - при помощи устройства, имеющегося в нижнем заднем коридоре руля направления.

Гондола, в которой сосредоточено управление дирижаблем, находится в передней нижней части его, выступая несколько наружу, но составляя с корпусом дирижабля одно целое. Предназначена она для командира и ближайших его помощников и оборудована всеми новейшими приборами аэронавигационной техники. Кабина для радиотелеграфиста и команды помещается внутри дирижабля. Помещения эти очень удобны и достаточно обширны. Радиостанция дирижабля имеет 2 передатчика с отдельными антеннами на 800 км и на 8000 км, имеется радиоприемная аппаратура.

Моторы помещаются в 4 машинных кабинах, составляющих одно целое с остовом дирижабля и расположенных по обе его стороны.

Дирижабль имеет 16 пулеметов и 5–6 самолетов.

Важное усовершенствование составляет применение косых шестеренок на выступающих наружу валах моторов, благодаря которым установка может работать не только в направлении продольной оси дирижабля (вперед и назад), но также и в направлении, повернутом к оси установки на 90° (рис. 21). Приспособление это имеет большое значение при взлете и посадке. Оно позволяет также поднять большой груз и избежать потери газа при спуске.

Рис. 21. Поворотная установка винта на новых американских дирижаблях.

Другое приспособление, открывающее новые технические возможности, имеет целью устранение нежелательного явления - уменьшения веса дирижабля (и увеличения подъемной силы) по мере расхода горючего на работу моторов, что вызывало необходимость выпуска дорогостоящего подъемного газа. В германском дирижабле LZ-127 этот недостаток устранен путем использования в качестве горючего для мотора - газа такого же веса, как воздух, называемого «крафтгазом». Расход такого газообразного горючего в полете не отзывается на весе дирижабля.

В американском дирижабле ZRS-4 (рис. 22) этот вопрос разрешен другим способом, а именно путем установки на моторах конденсаторов выхлопных газов. Это стало возможным благодаря тому, что химический процесс горения газолина и поглощения кислорода из воздуха приводит к обильному насыщению водяными парами отработанного газа, тем самым значительно увеличивая его вес относительно веса сожженного в моторах газолина. Это позволяет брать водяной баласт в ограниченном количестве. Правда, такие установки будут очень громоздкими и тяжелыми.

Рис. 22. Американский дирижабль ZRS-4 (Акрон) над линейным кораблем.

Одной из наиболее интересных особенностей описываемых дирижаблей является наличие на них помещения для перевозки целиком собранных самолетов. Размеры этого помещения (ангара) - 23 м длины и 18,3 м ширины на расстоянии 1/3 длины дирижабля от его носа. Раздвижные двери на дне дирижабля закрывают отверстие в виде буквы «Т», через которое может быть опущен или поднят самолет. Самолеты могут сами подцепиться (по другим данным самолеты садятся на площадку, находящуюся с верхней стороны дирижабля) или отцепиться во время полета дирижабля. Кроме того дирижабль дооборудуется корзиной, которую можно было бы выпускать на сотни метров вниз. Что касается безопасности дирижабля, то она достигнута в значительно большей степени, чем у других дирижаблей, благодаря продуманности конструкции, применению многих дополнительных усовершенствований, обеспечивающих безопасность, малой пожарной опасности и обеспечению доступа ко всем частям дирижабля.

Увеличение конструктивной устойчивости дирижабля дает ему возможность иметь:

1) быстрые вертикальные и горизонтальные изменения направления движения;

2) полет при большом угле наклона в вертикальной плоскости;

3) полет при максимальной скорости в полосе сильных порывов ветра.

Пожарная опасность сведена к минимуму благодаря применению в качестве подъемного газа - гелия, который, как известно, не горюч.

Для предупреждения воспламенения горючего (газолин) кабины, в которых оно помещается, имеют специальное оборудование. Весь дирижабль вентилируется во избежание скапливания паров газолина, а электрическая проводка специально обеспечена от возможности коротких замыканий.

Уменьшена также опасность электрических разрядов во время грозы тем, что все металлические части соединены между собою и могут реагировать, как клетка Фарадея, сильно рассеивая электрический разряд.

Наконец благодаря существующему доступу ко всем частям дирижабля есть возможность контроля работы всех приборов и приспособлений, а в случае поломки - и производства соответствующего ремонта.

Американские дирижабли ZRS-4 и ZRS-5 являются последним словом дирижаблестроительной техники и будут самыми мощными в мире (рис. 23).

Рис. 23. Дирижабль ZRS-4 (Акрон) над Нью-Йорком.

Первый полет дирижабля состоялся 23 сентября 1931 г. На борту его находилось 112 человек, среди них морской министр САСШ. Дирижабль находился в воздухе около 4 часов. После вполне успешных испытаний он был зачислен в состав морских военновоздушных сил.

Опыт работы германского дирижабля LZ-127 «Граф Цеппелин» и его устройство . Германский дирижабль LZ-127 является лучшим типом современных дирижаблей, исключительные качества которого были проверены в течение ряда лет многочисленными перелетами, порой - в чрезвычайно неблагоприятных метеорологических условиях (рис. 24).

Рис. 24. Германский дирижабль LZ-127 при полете.

С момента постройки, 9 сентября 1928 г., до ноября 1929 г., когда дирижабль после кругосветного перелета был введен в элинг на зимнюю стоянку, им было совершено 50 полетов общей продолжительностью в 1186 часов и пройден воздушный путь в 116985 км. За это время на дирижабле было перевезено 1574 человека, считая и экипаж, почты и грузов - 4882 кг. Дирижаблю приходилось летать при температурах от -10° до +30°, при ветре силой до 30 м/сек и на высотах от 150 до 2700 м; за всю эту долгую и интенсивную эксплоатацию дирижабль имел всего три случая неисправности материальной части.

Во время первого полета из Европы в Америку дирижабль в пути над океаном был застигнут бурей. Сильным порывом ветра у него была прорвана обшивка стабилизатора. Несмотря на это дирижабль все же выдержал бурю. Исправление стабилизатора было произведено в воздухе во время продолжавшегося полета.

При вторичном полете из Европы в Америку - также над океаном, правда, недалеко от французского берега, - у дирижабля обнаружились дефекты в моторах. Все же дирижабль оказался в состоянии возвратиться во Францию где моторы были приведены в порядок, после чего дирижабль благополучно совершил перелет в Америку.

Третья авария - повреждение гондолы при переводе из элинга в Токио.

Все перечисленные поломки, имевшие место с дирижаблем LZ-127, вовсе не говорят об его конструктивной слабости, а скорее всего могут быть отнесены к нормальным поломкам при эксплоатации. И даже наоборот весь летный стаж LZ-127 и особенно его арктический полет 1931 г. совершенно определенно подтверждают, что указанный дирижабль является одним из первых образцов мощных и надежных воздушных кораблей, конструктивные особенности которого и должны лечь в основу всех последующих конструкций дирижаблей этой системы.

Таблица 15

Кругосветный перелет был начат дирижаблем из своей базы - Фридрихсгафена 15 августа 1929 г. в 4 ч. 35 мин. Через 100 час. 35 мин. бесперерывного полета дирижабль достиг Токио, где и опустился. При выводе дирижабля из элинга были помяты гондолы, что задержало его для производства ремонта.

Вторую остановку дирижабль сделал после перелета через Тихий океан, на западном побережьи Америки, в г. Лос-Анжелос.

Третья посадка была произведена после пересечения Америки, недалеко от Нью-Йорка, в г. Лекхёрсте (американской воздухоплавательной базе).

Всего в пути дирижабль был 20 суток, покрыв расстояние в 35000 км при средней скорости 117 км/ч. Кругосветным перелетом дирижабль установил 2 рекорда:

1) дальности полета по прямой - 11247 м (на маршруте Фридрихсгафен - Токио).

2) скорости полета - 127,5 км (на участке Америка - Европа).

В следующем 1930 г. дирижабль LZ-127, руководимый своим конструктором и водителем Гуго Эккенером, вновь совершил удачный полет по маршруту Европа - Южная Америка.

В июле 1931 г. Арктической комиссией был организован полет в Арктику на острова Новой земли, Земли Франца Иосифа и Северной земли.

В состав экспедиции входили и наши советские ученые: профессоры Самойлович и Молчанов и радиоспециалист Кренколь. Успешные полеты LZ-127 приобретают особо важное значение в деле дирижаблестроения, так как целый ряд аварий и гибели других дирижаблей и в частности гиганта R-101 вредно отразились на общественном мнении и не способствовали идее дирижаблепользования. LZ-127 с убедительной очевидностью показывает, что уже современная техника позволяет иметь вполне надежный воздушный корабль и что случаи мелких поломок у LZ-127 нужно отнести за счет нормальных эксплоатационных повреждений, от которых не гарантирован любой механизм и прибор, даже находящийся на земле, а не то что в атмосфере.

Характеристические данные дирижабля указаны в ниже помещаемой таблице. По опыту LZ-127 немцы строят новые дирижабли больших размеров, чем LZ-127. Эти новые гиганты LZ-128 (заканчивается в 1932 г.) и LZ-129.

По своей общей конструкции LZ-127 построен по обычной схеме германских цеппелинов. Дирижабль имеет дюралюминиевый каркас и матерчатую обтяжку. В качестве подъемного газа используется водород. Отличительной особенностью LZ-127 является использование в качестве горючего для моторов - крафтгаза.

Значение применения этого горючего описано в отделе «Пути дальнейшего технического совершенствования» в разделе «Проблема моторов и горючего». Детали устройства LZ-127 - на рис. 25 (см. на 116–117 стр.).

4. Подъемные газы, используемые в дирижаблях

Водород . Атомный вес - 1,008. Газ легче воздуха в 14,4 раз. Химический знак Н. Затвердевает при -259°. Без цвета, запаха и вкуса.

Требования к водороду, поставляемому воздушному флоту.

1. Водород должен быть совершенно бесцветным и не иметь запаха.

2. Вес 1 куб. м газа при 0° и 760-мм давлении должен быть не более 0,09 г.

Таблица 16. Данные современных жестких дирижаблей

Страны Дирижабль и моторы Длина в м Высота в м Ширина в м Объем в куб. м Подъемная сила в т Вес конструкции в т Поднимаемый груз в т Экипаж (чел.) Запас горючего в т Баласт, почта, бомбы в т Наибольшая скорость км/ч Крейсерская скорость км/ч Дальность поле а в км
Англия R-100, 6 моторов Рольс-Ройс по 700 л. с. 216,1 39,6 39,6 141 600 157 92 65 35+60 * 32 8 130 120 5 700
Англия R-101, 6 ** Рольс-Ройс *** по 700 л. с. 225,5 39,6 39,6 141 600 156 103 53 35+60 26 12 132 120 4 000
Германия Цеппелин LZ-127, 5 моторов Майбах по 530 л. с. 235 37, 5 30,5 105 000 **** 85 55 30 26+20 8 12 128 117 10 000 км при 15 т полезного груза
САСШ Лос-Анжелос ZR-3 5 Майбах по 400 л. с. 200 31 27,6 70000 83 37 43 - 17 - 119 109 -
САСШ Гудиир ZR-4, 8 Майбах по 600 л. с. 239,5 44,8 40,6 184 530 170 80 90 61 ****** 44 - 140 - 14 000 км *******
САСШ Слейт ***** паротурбинный 600 л. с. - - - 9 340 9,5 - - - - - 128 - -
САСШ ZMC-2 *****, 2 Райт Уирльуинд по 220 л. с. 45,6 16,2 16,2 5 760 5,55 4,14 1,41 3+4 0,65 0,19 600 80 от 11 000

Примечания .

* 35 чел. команды, 60 пассажиров.

** R-101 погиб во время перелета из Англии в Индию в 1930 г.

*** Фактическая мощность моторов оказалась меньше приведенной расчетной. Один из 6 моторов был установлен для обратного хода дирижабля.

**** Из них 30000 куб. м газа для питания моторов.

***** Целиком металлические.

****** Не считая весь обслуживающий персонал самолетов.

******* При скорости полета 130 км/ч - дальность полета 7 680 км, 108 км/ч - 10580 км, 90 км/ч - 14400 км, 72 км/ч - 20800 км.

Таблица 17. Современные гигантские самолеты в сравнении с дирижаблем LZ-127 «Граф Цеппелин»

Юнкерс С-38 (Германия) Фоккер Ф-32 (Америка) Белланка (САСШ) До-Х (Германия) Капрони 90-РВ (Италия) Диль и Бакалан 70 (Франция) Амфибия Сикорского (Америка) Рорбах-Бердмор «Инфлексибль» (Англия) Дирижабль LZ-127 «Граф Цеппелин»
Несущая поверхность 240 кв. м 125,4 кв. м 84,7 кв. м 467,7 кв. м 500 кв. м 200 кв. м 184 кв. м 183 кв. м Объем 105 000 куб. м. Длина 235 м.
Размах 45 м 30,2 м 25,35 м 48 м 47 м 37 м 34,7 м 47,9 м
Длина 23 м 21,1 м 13,46 м 40,050 м 28 м 21,3 м 22 м 23 м
Высота 6,5 м 5,64 м 3,89 м 6,45 м (от винтов до воды) 10,7 м 6,45 м
Наибольшая глубина крыла 10 м
Наименьшая глубина крыла
Общая мощность моторов (2 х 800, 2 х 400) 2 400 л. с. (4 х 525) 2 100 л. с. (2 х 425) 850 л. с. (12 х 525) 6 300 л. с. (6 х 1000) 6 000 л. с. (3 X 600) 1 800 л. с. (4 х 575) 2 300 л. с. (3 х 650) 1 950 л. с. (5 х 530) 2 650
Вес пустого самолета 13 000 кг 6 250 кг 3 170 кг При общем весе 25 т 7 700 кг
11 000 кг 3 950 кг 6 370 кг Пассажиров 169 (считая экипаж на дальность полета, равную 1 200 км) 5 300 кг 5 096 кг Полный вес 17 т в полет Подъемная сила 85 т
Вес 17 т 28 мест пассажирских. 41-местный 15 т на 10 000 км дальности полета
На 1000 км радиуса действия 7 800 кг Радиус действия 9 660 м (на 10-час. полет)
То же на 3500 км 3000 кг
14 000 кг 109,8 кг 70 кг
83 кг 81,2 кг 112,5 кг 84 кг
10 кг 4,86 кг 11,9 кг 8,58 л. с. 12 л. с.
Мощность на 1 кв. м 7,9 л. с. 16,6 л. с. 9,45 л. с.
Наибольшая скорость 200 км/ч 252 км/ч 226 км/ч 242 км/ч 210 км/ч 206 км/ч 128 км/ч
Наименование моторов Юнкерс Прат-Уитней Прат-Уитней Юпитер Фраскини Испано Прат-Уитней Рольс-Ройс Кондор Майбах
Потолок 5500 Горючего 1 600 л. Дальность полета 4 040 км (с нормальной нагрузкой) Дальность 2000 км с 8 8-т бомбами 3965

Примечание . Вместо моторов Юпитер на Дорнье ДХ поставлены 12 моторов в 600 л. с. каждый с водяным охлаждением, таким образом общая мощность моторов равна 7 200 л. с.

3. Подъемная сила водорода при нормальных условиях; должна быть не менее 1180 г на 1 куб. м объема.

5. Водород должен гореть несветящимся слабосиневатым пламенем, спокойно, без взрывов.

Способы добывания.

1. Абсолютно чистый водород получается гидролитическим способом путем разложения водой водородистого кальция.

2. Посредством разложения водяного пара раскаленным железом (способ Дальвина-Флейшера). Этот способ самый распространенный и дешевый.

3. Путем разложения углеводородов нефти в парообразном состоянии действием раскаленного кокса (способ Вольтер-Ринкера).

4. Электролизом хлористых солей, перерабатываемых в сухие щелочи. Водород при этом способе получается как побочный продукт в очень чистом виде. Способ этот также дешевый.

5. Действием алюминия и других металлов на растворы едких щелочей.

Гелий . Одноатомный элемент, относится к семейству так называемых «благородных» газов, стоящих в нулевой группе менделеевской таблицы; атомный вес - 3,99; плотность по отношению к воздуху - 0,137:1 куб. м химически-чистого гелия при 0° и 760 мм давления весит 0,1785 кг (гелий в 7,2 раза легче воздуха и в 2 раза тяжелее водорода); подъемная сила 1 куб. м гелия при тех же условиях - 1,114 кг (т. е. 92,6 % от подъемной силы водорода). Гелий - газ без цвета и запаха, вполне инертен в химическом отношении, не горюч и не поддерживает горения, не входит ни в одно из известных химических соединений и не принимает никакого участия в химических реакциях, мало растворим в воде, совершенно нерастворим в бензине и алкоголе. Гелий с трудом превращается в жидкое состояние (впервые жидкий гелий был получен в 1907 г. Каммерлинг-Оннесом путем охлаждения гелия до температуры -258° жидким водородом, кипевшим под пониженным давлением); в этом виде гелий подвижен, бесцветен и является самой легкой после водорода жидкостью. Поверхностное натяжение жидкого гелия слабое; наибольшая плотность - 0,1459 при температуре -270,6°. Теплопроводность гелия при 0° по опытам Шварца 0,0003386. Из всех газов после неона гелий - лучший проводник электричества; его диэлектрическая крепость - 18,3 (для неона - 5,6, для воздуха 4, - 19).

Извлечение гелия из воздуха (обычно методами фракционировки жидкого воздуха) ввиду малого процентного содержания его, а также ввиду сложности отделения гелия от других газов, например неона (неона в воздухе в 3 раза больше, чем гелия), имеет только лабораторный характер. В минералах гелий находится в окклюдированном состоянии, будучи заключен в мелких порах минерала.

Применением гелия устраняется опасность воспламенения газа в дирижаблях, а также достигается возможность помещать моторы не в подвесных гондолах, как обычно, а внутри оболочки, что значительно уменьшает лобовое сопротивление и следовательно увеличивает скорость корабля. Благодаря более медленной, чем у водорода, дифузии гелия через оболочку подъемная сила дирижабля сохраняется лучше. Большое преимущество гелия - возможность легкой очистки уже использованного газа от загрязняющих его примесей, что достигается путем пропускания его через специальные очистительные аппараты.

Помимо воздухоплавания гелий применяется в сравнительно небольших количествах и в других областях техники, а также для научных исследований, в частности для изучения различных процессов и свойств тел при очень низких температурах (испарением жидкого гелия достигнута температура -272,1°). Богатые источники гелия находятся в Америке. Главные из них - в Техасе. Запасы американских источников гелия определяются в 50 млн. куб. м при годовом выходе 1,6 млн.

Способы добывания. Чистый гелий добывается из природного газа путем отделения других газовых примесей. Это достигается снижением их при низких температурах.

Светильный газ . Получается как результат сухой перетонки каменного угля и является первым газом, который был употреблен для аэростатов.

Светильный газ чрезвычайно горюч и тяжелее водорода, почему почти не употребляется для наполнения дирижаблей и идет лишь для наполнения сферических аэростатов как наиболее дешевый из газов, употребляемых в воздухоплавании.

Из книги BIOS. Экспресс-курс автора Трасковский Антон Викторович

Глава IV Наземное оборудование стоянок дирижаблей 1. ЭлингиНаземное оборудование имеет очень большое значение в смысле своего влияния на развитие воздушных сообщений на дирижаблях. Недаром известный английский специалист по воздухоплаванию Денистуан Берней в своей

Из книги Строим дом от фундамента до кровли автора Хворостухина Светлана Александровна

Глава V Недостатки современных дирижаблей 1. Сложность постройкиСложность постройки самолетов и дирижаблей заключается в необходимости сочетать исключительную прочность конструкции с исключительной легкостью ее.Размер работ по сооружению дирижабля объемом в 100000 куб.

Из книги Шлюпка. Устройство и управление автора Иванов Л. Н.

Глава VII Перспективы военного применения дирижаблей 1. Применение на сухопутном театреНесмотря на неудачный в общем опыт боевого использования дирижаблей на сухопутном театре во время войны 1914–1918 гг., в данное время есть достаточно оснований считать положение

Из книги Гараж. Строим своими руками автора Никитко Иван

Глава VIII Воздушный бой дирижаблей Противниками дирижаблей в воздушном бою являются не только самолеты, но и дирижабли; хотя в истории минувшей войны не зарегистрирован ни один случай такого воздушного боя, но возможность его в будущей войне не исключена. Бой дирижабля с

Из книги автора

Глава 1 Назначение и устройство BIOS Зачем нужна BIOSЕсли рассматривать персональный компьютер как некий живой организм, то BIOS (Basic Input/Output System, базовая система ввода/вывода) – это подсознание компьютера. Подобно рефлексам человека, данная система «заставляет» компьютер

Из книги автора

Глава 5 Устройство окон С давних пор для освещения и придания жилому помещению уюта делали окна. А так как стекло было большой редкостью, то вместо него использовались другие материалы. счастью, в настоящее время стекло не редкость: его применяют везде и для разных целей.

01:41 am - СОВРЕМЕННОЕ РОССИЙСКОЕ ДИРИЖАБЛЕСТРОЕНИЕ: Ч.1 (ВОПЛОЩЕННОЕ)

Несмотря на то, что в РФ — в отличие от развитых мировых экономик — почти не выделяется финансирование под смелые и актуальные проекты, главные достижения отечественных разработчиков воздухоплавательной техники в конце ХХ — начале XXI веке хоть и отставали от иностранцев, но не фатально. Учитывая тот факт, что длительный исторический бойкот дирижаблестроения затронул все страны, возвращение к созданию управляемых аэростатических систем началось, примерно, с одинакового старта. И это возвращение дирижабля началось не с цеппелинов, которые когда-то транспортировали десятки тонн полезной нагрузки, а с блимпов — воздушных судов мягкой схемы, способных даже сегодня брать на борт тонну-полторы максимум.
В сегодняшнем небе властвуют преимущественно блимпы и тепловые дирижабли, работая на поприще рекламы и туризма. А лучший в мире дирижабль — германский полужесткий 14-местный аппарат Zeppelin NT — был создан почти 15 лет назад, и что? — так и катает туристов, а о прорывных технологиях в области воздухоплавания пока не слышно, проекты транспортных судов на основе германского судна даже не обсуждаются..
В ряде стран идут работы (в том числе и с участием государства) по созданию новейших дирижабельных систем двух типов. Это — беспилотные стратосферные платформы с продолжительным периодом перманентного дежурства на высоте 19-21 км и грузопассажирские воздушно-транспортные системы. По обоим этим проектным направлениям работы в РФ ведутся тоже.

ПОЗНАВШИЕ НЕБО ДИРИЖАБЛИ РФ
В РФ на еще несформированном пока рынке воздухоплавательной техники дирижабельный сегмент активно разрабатывают всего несколько отечественных команд.
Это — госпредприятие «Долгопрудненское конструкторское бюро автоматики» (ФГУП ДКБА), являющееся профильным преемником советского комбината «Дирижаблестрой», фирма «Авгуръ — РосАэроСистемы» («Воздухоплавательный центр «Авгуръ»), компания «Локомоскай» (из холдинга «Метапроцесс»), базирующаяся в МАИ фирма «Аэростатика», коллектив энтузиастов при Сибирском автодорожном институте (СибАДИ)... Вот и все «заявители» на изготовление дирижаблей.
Опираясь на сведения «Русского воздухоплавательного общества» (РВО), легко составить представление о достижениях российских дирижаблистов с 1991 г. Причем, речь идет о «живых» воздухоплавательных системах, побывавших в небе или хотя бы под небом…
Итак, с 1991 г. в РФ было построено всего 12 дирижаблей.

легендарный дирижабельный проект КБ «Термоплан» воплощался на ульяновском авиазаводе группой настоящих энтузиастов... да и Ельцин про этот проект был подробно информирован...

Термоплан. Первым управляемым аэростатом, созданным на закате перестройки, стал линзообразный комбинированный газо-тепловой дирижабль АЛА-40 «Россия», созданный КБ «Термоплан» на производственной площадке Ульяновского авиастроительного завода. Эта «летающая тарелка» имела объёмом оболочки 10 660 куб. м, диаметр диска — 40 м. Внутри жесткого корпуса были размещены два отсека для гелия и отработанных горячих выхлопных газов — от всех пяти задействованных в конструкции двигателей (М-14П /360 л. с. + 2×ГТД-350 /400 л. с. + 2×ЭДУВТ/ 50 л. с.). Созданный коллективом энтузиастов аппарат — это всего лишь прототип грядущего дирижабля, сравнимого по размерам с футбольным полем и способным брать на борт более, чем 500 тонн полезной нагрузки.
Планировалось, что после успешных испытаний АЛА-040 будет создан предсерийный образец термоплана АЛА-600, рассчитанный транспортировать груз массой 600 т (или 1500 пассажиров) на расстояние 5000 км с крейсерской скоростью 140 км/ч. Намечалось проведение первых испытаний такого «тарелочного» дирижабля уже к 1995 г. В случае успешной обкатки конструкторы предполагали разработать целую линейку термопланов с различной грузоподъемностью — 100, 300, 600 и 1500 т (или 500, 800,1200 и 2000 пассажиров соответственно) и скоростью полета до 200 км/ч. Снижать стоимость аппаратов в КБ «Термоплан» предлагали за счет использования фюзеляжей подержанных транспортных самолетов.

в 1993 г. прототипный термоплан в первый и последний раз вывели для полевых испытаний, к которым он так и не приступил, показав свою недееспособность...

В 1993 г. экспериментальную модель термоплана АЛА-040 с расчетной грузоподъемностью 3 т. вывели на аэродром авиапредприятия. Однако в воздух аппарат так и не поднялся. Тогда же от ветра и несоответствующих действий техников конструкция деформировалась, и произошел разрыв оболочки...
Вскоре проект был закрыт, а останки аппарата долгие годы грудились на ульяновском авиазаводе…

2 блимпа «Аэростатика», спроектированные конструктором из МАИ Александром Кирилиным, в итоге, — после интенсивных облетов — оказались на складе воздухоплавательного подразделения ВВС в г. Вольске (Саратовской обл.) в нерабочем состоянии... но в развитии отечественного дирижаблестроения эти дирижабли, безусловно, сыграли значимую роль...

Мяг кие дирижабли «Аэростатика-01» и «Аэростатика-02». По большому счету эра «нового» дирижаблестроения в России открылась благодаря скромным аппаратам конструктора и испытателя А. Кирилина, который в 1994 г. в рамках НИР по заказу Минобороны на базе НПФ «Аэростатика» в МАИ и КБ дирижаблестроения (при ДКБА) создал первый летающий 1-местный блимп «Аэростатика — 01». Этот аппарат строился по проверенной «гостовской» технологии «Дирижаблестроя»: прорезиненная ткань сшивалась и швы проклеивались. Оболочка, снабженная баллонетом, имела объем 370 куб. м и длину 22 метра.
Воздушное судно приводилось в движение одним 27-сильным двигателем РМЗ-640.
Следующий аппарат — «Аэростатика-02» — строился с учетом опыта, полученного при создании и испытаниях «единички». Объем оболочки «двойки» — 650 куб. м, длина 27,6 м, максимальная скорость 97 км/ч.
У обоих аппаратов было развитое 8-плановое оперение из металлических пластин. В качестве гондолы использовалась кабина 1-местного самолета «Авиатика», которая, благодаря ряду инженерных решений, стала 2-местной.
Сзади кресла пилота располагался 65-сильный двигатель «Rotax-582» (Австрия).
Первый полет этого дирижабля состоялся в 1995 г. — на аэродроме ЛИИ в г. Жуковский… Появление дирижабля «Аэростатика-02» на авиасалоне МАКС-95 стало заметным событием в мире авиации. Этот блимп впоследствии нередко появлялся над Москвой, и даже совершил несколько дальних перелетов.
Стартовав 12 сентября 2000 г. с воздухоплавательной базы ВВС в г. Вольске, воздушным судном «Аэростатика-02» был установлен рекорд продолжительности полета - 18 ч; аппарат летел по маршруту Вольск—Саратов—Волгоград—Ахтубинск, протяженность которого составила 650 км. Для малообъемной экспериментальной воздухоплавательной системы — это был просто превосходный результат
Дирижабль «Аэростатика-02» экспонировался и на следующем авиакосмическом салоне — МАКС-97, а также участвовал в авиационном параде в Тушино (Москва, 1999 г.); его снимали в 2-х фильмах киностудии «Мосфильм»…
В настоящее время принадлежащие МО РФ дирижабли «Аэростатика-01» и «Аэростатика-02» находятся в нерабочем состоянии и складированы на территории 13-го ВИЦ ВВС (г. Вольск Саратовской обл.).

Блимпы компании «Авгуръ — РосАэроСистемы». За более чем 20-летнюю практику на ниве воздухоплавания частная российская компания «Авгуръ — РосАэроСистемы» (экс - «Воздухоплавательный центр «Авгуръ») создала 8 современных газовых дирижаблей мягкой схемы (с баллонетной системой). А именно — 1-местное воздушное судно AU-11 «Аист» (2001 г.), четыре 2-местных аппарата серии AU-12 ("Voliris - 900"/2002 г., "Сыч"/2004 г., "Стерх"/2005 г., "Thai«/2006 г.) и 3 крупных блимпа серии AU-30.

первый полноценный пилотируемый российский дирижабль нового века от фирмы «Воздухоплавательный центр «Авгуръ» — AU-11 «Аист», его демонстрация на нескольких авиасалонах МАКС приводила публику в восхищение...

Компания начинала с разработки малых радиоуправляемых моделей дирижаблей, и, отталкиваясь от полученного опыта, уже в 2001 г. создала свой первый полноценный 1-местный дирижабль — AU-11 «Аист». А еще через год был создан более продвинутый аппарат — многоцелевой 2-местный дирижабль AU-12.
В 2006 уже начались испытания крупного 10-местного блимпа AU-30 с объемом оболочки 5 200 м куб.
Если объективно оценивать историческое значение аппаратов от «Воздухоплавательного центра Авгуръ» (которые заслуженно критиковались за качество исполнения и конструктивные подходы), то нужно признать, что Россия, благодаря энтузиастам-разработчикам частной фирмы была признана страной с развиваемым на научной и индустриальной базе дирижаблестроением. А это — вклад национального масштаба. Более того, появлявшиеся раз от раза в небе «AU-шки» заставили общественность обсуждать дирижабельную проблематику...

AU-11. . Объем оболочки этого 1-местного газового управляемого аэростата— 669 куб. м, длина — 27,5 м, масса полезной нагрузки — 160 кг, максимальная скорость — 80 км/ч, дальность полета с крейсерской скоростью — 300 км, практический потолок — 1500 м. Оболочка аппарата — в отличие от блимпов «Аэростатика» — сделана на основе 8-слойного синтетического материала, который сваривался токами высокой частоты (ТВЧ). «Воздухоплавательный центр «Авгуръ», таким образом, прописал в РФ новую технологию изготовления оболочек аэростатических систем.
На блимпе AU-11 10 февраля 2005 г. был установлен мировой рекорд скорости — 50,03 км/ч, который попал в регистрационные файлы FAI.
Участие в нескольких авиакосмических салонах (МАКС) этого скромного блимпа привлекло внимание властей к дирижаблестроительным технологиям... В настоящее время дирижабль «Аист» эксплуатируется в экспериментальных целях украинским НИИ Аэроупругих систем.

ничего не попишешь, 2-местный блимп AU-12 занял свое место в истории современного российского дирижаблестроения

AU-12. «Воздухоплавательный центр «Авгуръ», взявший курс на создание аппаратов большего объема и грузоподъемности, вскоре — в 2002 г. — представил 2-местный блимп.
Длина аппарата — 31 м, скорость — до 90 км/ч, максимальная продолжительность полета до 6 ч, дальность полета — около 350 км. На борт такой дирижабль способен брать полезную нагрузку массой 300 кг.
Движитель воздушного судна основан на 100-сильном моторе Rotax-912 ULS.


оболочка AU-12 для проекта «Voliris-900» была продана Франции... сборка дирижабля осуществлялась в историческом эллинге Y Шале Медон — в окрестностях Парижа...

Первая оболочка для дирижабля создавалась ЗАО «Воздухоплавательный центр «Авгуръ» в рамках совместного российско-французского проекта «Voliris-900» (специально по заказу Национального Аэроклуба Франции). Объем оболочки этого 31-метрового аппарата составлял 996 куб. м. Рабочая высота полета от 10 до 1000 м.
В соответствии с проектом, к оболочке российского производства французские мастера подвесили гондолу из переделанной кабины вертолета... и получился дирижабль «Voliris-900», который предполагалось использовать для спортивно-тренировочных мероприятий.
Второй и третий аппараты серии AU-12 фирма «Воздухоплавательный центр «Авгуръ» построила в 2004-2005 гг. по заказу столичной ГАИ — в рамках реализации проекта по профилактике дорожных заторов с помощью воздухоплавательных систем. Речь шла об интеграции аэростатических систем в действующую систему «гаишного» мониторинга «Старт». Милицейским блимпам были присвоены имена собственные: «Сыч» и «Стерх». Оболочки этих двух аппаратов — по сравнению с проданным во Францию родственником — имели большую размерность: длина 34 м, объем 1250 куб. м. А, потому, к индексу судна добавилась буква "М" — AU-12M.
...Отданные в ГАИ аппараты так и не были задействованы как элемент дорожно-мониторинговой системы «Старт». Одинокий гаишный блимп AU-12М, несколько раз был замечен над МКАД и в небе Подмосковья, однако свою прямую миссию поборника заторов на трассах этот дирижабль так никогда и не исполнил.
А еще этот дирижабль порадовал меломанов, появившись над стадионом «Лужники», где проходил концерт поп-дивы Мадонны, и тем самым придал шоу колорит.
…Четвертый блимп серии AU-12 также был выполнен в большей размерности. Аппарат AU-12M «Thai» был создан по заказу таиландской проправительственной фирмы. Доставленный в Таиланд российский блимп, эксплуатировался мало. Это объяснялось производственно-техническими недочетами российских производителей при строительстве судна, которые, например, недооценили влажный климат страны...
Аппарат сегодня находится в нерабочем состоянии, возможно, даже утилизирован...
...28 ноября 2006 г. произошел исторический прецедент — впервые в истории российский дирижабль был официально сертифицирован. Блимпу AU-12 Межгосударственным Авиационным Комитетом (МАК) был выдан Сертификат Типа. И это позволяло российским дирижаблистам актуализировать свой аппарат в действующей воздушно-транспортной системе.


на 10-местном блимпе AU-30 устанавливались рекорды... РАО ЕЭС какое-то время эксплуатировал эти аппараты для своих целей... ни одного такого дирижабля в небе сегодня не летает... два нерабочих аппарата ждут своей участи в ангаре киржачского дирижабледрома...

AU-30. 10-местный (2 чел. экипаж + 8 пассажиров) многоцелевой мягкий дирижабль AU-30, созданный «Воздухоплавательным центром «Авгуръ», — реально серьезное достижение не только отечественного а, наверное, и мирового блимпостроения. На сегодня это — один из крупнейших в мире блимпов, вставший в один ряд с лучшими зарубежными аппаратами данного класса.
Разработка и производство этого дирижабля заняли у компании 3,5 года. В создании аппарата приняли участие такие известные российские предприятия аэрокосмической отрасли как МАИ, НПО им. Лавочкина, ЭМЗ им. Мясищева, КБПА г. Саратов и многие др., обращались разработчики и к опыту разработки воздухоплавательных систем в ДКБА… Поставщиками самых современных материалов и агрегатов для создания этого воздушного судна были производители из США, Франции, Чехии, Швеции и Германии.
Объём оболочки аппарата — 5 200 куб. м, длина 54 м, масса полезной нагрузки 1500 кг, максимальная скорость 90-110 км/ч, мощность двух маршевых двигателей (Лом-Прага M332C) — по 170 л. с, максимальная продолжительность полёта 24 ч, дальность полёта с крейсерской скоростью 70 км/ч 1600 км.
Первые два аппарата в качестве воздушных лабораторий создавались по заказу РАО ЕЭС для того, чтобы энергетики могли эффективно контролировать целостность ЛЭП и обеспечивать бесперебойную работу электросетей.
Во Владимирской обл. (г. Киржач) специально для эксплуатации двух блимпов AU-30 была построена специализированная воздухоплавательная база «Киржач-Д» (сегодня этот объект находится в собственности компании «Локомоскай»).


дирижабледром в г. Киржач принадлежит компании «Локомоскай», он соответствует всем эксплуатационным нормам и, возможно, в обозримом будущем станет пристанищем для новых дирижаблей российского производства

Инфраструктура дирижабледрома состоит из ангара для двух дирижаблей AU-30 (высота здания 25 м, длина — 70 м), а также взлетной площадки, охранного и командно-диспетчерского пунктов, метеорологического комплекса и т. д. На базе также имеются мобильные и стационарные причальные мачты.
Сегодня у 2 блимпов, стоящих в эллинге, выработан ресурс, и они без капремонта пока не летают...


блимпу AU-30 была заказана арктическая миссия, но был знак свыше о невозможности исполнить ее... все к лучшему...

Дирижабль AU-30 № 3 был поставлен французскому путешественнику и полярнику Жан Луи Этьену, который готовился в 2008 г к научной экспедиции в Арктику. К сожалению, команда Этьена из-за несоблюдения правил эксплуатации разрушила аппарат. Нестандартные крепежи, на которых удерживался припаркованный на ночь блимп, не выдержали порыва ветра, и аппарат с разгона «бросило» на жилой дом неподалеку. Дело было на юге Франции.
Останки дирижабля впоследствии были доставлены в ангар МАИ, где предполагается провести его восстановление и модернизацию для использования в качестве прототипа транспортного дирижабля «Атлант».

…14 сентября 2008 г. на дирижабле AU-30 был установлен мировой рекорд дальности полета. Экипаж под руководством Л. Тюхтяева (в составе Л. Путинцева, И. Чайки, Ю. Иванченко) в беспосадочном режиме проследовали по 626-километровой воздушной трассе Санкт-Петербург — Владимир. Этот рекорд был зафиксирован FAI.

Российские тепловые дирижабли. Тепловые дирижабли — самый «молодой» класс летательных аппаратов. Первое воздухоплавательное судно такого типа отправилось в полет только в 1975 году. Небо РФ сегодня «обживает» 5-6 тепловых дирижаблей, своеобразных моторизованных монгольфьеров. Часть из них иностранного производства, однако, имеются аппараты, сделанные и в России.
…О тепловом дирижабле AV-1 «Филин» производства фирмы «Кубичек баллунз» (Чехия) в виде исключения стоит кое-что сказать.
Это воздухоплавательное судно построено в Брно по заказу «Воздухоплавательного центра «Авгуръ» — в год празднования 850-летия российской столицы.

тепловой дирижабль «Филин» уже давно считается родом из РФ, хотя был создан в Чехии... и основания для этого имеются: именно на этом аппарате российскими воздухоплавателями было установлено 4 мировых рекорда...

В качестве рекламного носителя аппарат продолжительное время использовался для рекламы торговой марки «Кока-кола».
Затем дирижабль «переключился» на спортивно-рекордную стезю.
Всего на дирижабле «Филин» было установлено четыре мировых рекорда.
— 20 февраля 2004 г. пилот Николай Галкин продержался в перманентном полете 6 час. 01 мин (рекорд продолжительности).
— 24 февраля 2005 г. представители FAI зафиксировали два женских рекорда, установленных россиянками Натальей Володичевой и Екатериной Кочетковой: продолжительности (3 час. 22 мин. 44 сек.) и скорости (16.9 км/ч).
— 25 февраля 2007 г. Николай Галкин и Юлия Светлова установили мировой рекорд дальности, — преодолев дистанцию 104,9 км.

Итак, отечественные образцы тепловых дирижаблей.

Фирма «Воздухоплавательный центр «Авгуръ» в экспериментальном порядке создала несколько тепловых дирижаблей.


тепловой дирижабль «Дятел», который почему-то сначала называли «Зябликом», летал не ахти как высоко, бывало, что от внутреннего давления лопалась оболочка, правда, обходилось без трагедий...

В 2003 году был построен 1-местный 16-метровый аппарат AU-31 «Дятел» с объемом оболочки 340 куб. м и 15-сильным движком. Испытывался зимой в полях... летал плохо, но было зрелищно. Высоко дирижабль не взлетал, а все больше у земли. Из-за недочетов конструкции оболочка дирижабля несколько раз лопалась во время испытаний. После испытаний аппарат на публике практически не появляется, хотя, по информации РВО, AU-31 до сих пор находится в эксплуатации Воздухоплавательного спортивно-технического клуба РОСТО.

«Зяблик» хороший дирижабль, внешне... на нем делались рекорды, а, бывало, пилотировавший аппарат воздухоплаватель был на волосок от гибели... даже была попытка продать этот тепловой дирижаблик за $40 000 через интернет — не купили...

Куда большую известность приобрел тепловой дирижабль AU-29 «Зяблик» , который был создан через год после AU-31 — в 2005 г. Этот 1-местный 23-метровый аппарат с объемом оболочки 855 куб. м производители изначально готовили к спортивно-рекордной карьере, а для этого оснастили аппарат мощным 50-сильным двигателем MZ-35. На данном дирижаблике было установлено три мировых рекорда.
1 марта 2006 пилот Валерий Шкуленко достиг рекордной для данного класса аппаратов (BX-02 — по классификации FAI) скорости, а Николай Галкин 20 февраля 2007 г. установил рекорды — высоты (458 м) и дальности (18,5 км).
По информации РВО (возможно, устаревшей), в настоящее время этот аппарат также эксплуатируется Воздухоплавательным спортивно-техническим клубом РОСТО.

на тепловой дирижабль «Беспощадный» у наших воздухоплавателей были большие надежды по части спортивного героизма... на этом красивом аппарате (визитной карточке объединения «Фабрика рекордов»), относящемуся к подклассу ВХ-03 (по классификации FAI), Л. Тюхтяевым был установлено 2 мировых рекорда: дальности — 99,136 км (3 февраля 2009 г.) и продолжительности полета — 05 час. 05 мин. (24 февраля 2009 г.), зарегистрированные FAI... а вот в воздухоплавательных соревнованиях данное скоростное воздушное судно первых мест почему-то не берет... может, все впереди?

Самым крупным и, наверное, наиболее конструктивно продвинутым отечественным тепловым дирижаблем является аппарат AU-37 «Беспощадный» .
Аппарат строился ЗАО «Воздухоплавательный центр «Авгуръ» по специальному заказу банкира и пилота Л. Тюхтяева, который планировал на скоростном судне участвовать в различных соревнованиях и устанавливать рекорды.
Основной объём оболочки этого 29-метрового дирижабля — 1600 куб. м. На его борту установлен 65-сильный двигатель «Rotax-582» (Австрия).

AU-35 «Полярный гусь»... идея установить абсолютный рекорд на тепловом дирижабле тесно связана с проектом «Высокий старт», предполагающего запуск ракет с аэростатической платформы на большой высоте... только в РФ умудрились предложить использовать для пусков ракет не газовый, а тепловой дирижабль, — вроде, дешево и доступно...

В 2005 г. по заказу ЗАО «Воздухоплавательный центр «Авгуръ» компания «НПП «Русбал» построила монгольфьерную спецформу с объемом оболочки 2950 куб. м, которая несколько позже была оснащена 15-сильным двигателем Raket-120 aero.
Моторизированный монгольфьер был зарегистрирован в качестве теплового дирижабля AU-35 «Полярный гусь». Этот аппарат (BX-04 — по классификации FAI), который сегодня эксплуатируется компанией «Авгуръ-Аэростатные Системы» (по информации РВО), изначально позиционировался как субстратосферный дирижабль. 17 августа 2006 г. тепловой дирижабль «Полярный гусь», пилотируемый известным воздухоплавателем Станиславом Федоровым, поднялось до отметки 8180 м, установив тем самым абсолютный рекорд высоты для дирижаблей.

незарегистрированный и нелетающий дирижабль Pantech, наверное, еще только ждет свое часа, главное, чтобы ресурс оболочки не выработался от складского хранения...

Компания «Трайнас» в 2004 г. построила 2-местный тепловой дирижабль собственной конструкции — 130ДТ «Pantech». . Аппарат c оболочкой длиной 41,5 м, объемом 3600 куб. м почти не эксплуатировался, поскольку дирижабль (и до настоящего времени) находится в стадии доработки, не имея регистрации...
Для пробных полетов создатели одалживали гондолу от дирижабля AV-1 «Филин», а свою кабину только проектировали. На сегодня данный аппарат публично не используется, а в планах навесить на переделанную оболочку более мощный, чем у AV-1, двигатель.
…Это, собственно, весь перечень летавших в небе отечественных дирижаблей.

Дирижабли возвращаются! Ну то есть не то чтобы уже можно было задирать голову и высматривать их в небе. Но скоро. Очень скоро.

Николай Поликарпов

Слово «дирижабль» воскрешает в памяти что-то смутное и давнишнее - времен Первой мировой войны. На самом деле эти воздушные корабли, наполненные разными газами (а необязательно взрывоопасным водородом), использовались и в годы Второй мировой, и после нее. А сегодня интерес к ним разгорелся, и вовсе не шуточный. Воскрешение цеппелинов - не вопрос ностальгии: людей, способных пустить слезу умиления при виде дирижабля, возможно, и в живых-то не осталось. Мегамашины будущего призваны открыть новую веху в воздухоплавании и военном деле. При этом они будут иметь мало общего с «сосисками», бомбившими Лондон в 1915 году. И уж, конечно, теперь никто не планирует использовать их в качестве бомбардировщиков.

Зачем они нужны

У жестких дирижаблей есть ряд преимуществ перед самолетами. Первое и главное - запредельная грузоподъемность. На одной летающей платформе можно размещать радиолокационные станции или даже пусковые установки систем ПРО весом в сотни тон. К тому же дирижабли еще и дешевле и могут месяцами находиться в воздухе без посадки. Например, как подсчитали в США, месяц непрерывного полета беспилотного разведывательного дирижабля обойдется налогоплательщикам в 25 тысяч долларов, в то время как только один час воздушной разведки с помощью беспилотного аппарата Predator стоит примерно 5 тысяч долларов.

Куда их пошлют

Современные дирижабли планируется запускать в стратосферу, на высоту 25–30 км. Потому что там, во-первых, дуют ветры весьма умеренной силы, порядка 10 км/ч, и можно не бояться, что даже самая громадная посудина пострадает от бурь и шквалов. Во-вторых, на такой высоте дирижабль не достанет большинство комплексов ПВО, да и радару засечь его будет трудно: аппарат почти прозрачен для радиоволн и не излучает тепла. В-третьих, в стратосфере возможности летающей платформы по дальности разведки уже соизмеримы с возможностями космического спутника, да и энергию она может получать так же - от солнечных батарей. Только, в отличие от спутника, дирижабль можно по мере надобности сажать для ремонта и модернизации оборудования.

Кто их строит

Самые футуристические проекты дирижаблей, как водится, разрабатывают в США. В июне 2010-го американская армия заключила контракт с корпорацией Northrop Grumman в сумме 517 миллионов долларов на создание трех дирижаблей LEMV. LEMV предназначен для тактической разведки и сможет находиться в стратосфере до трех недель, патрулируя обширные районы и собирая данные о различных объектах, вплоть до отдельных людей (новинка в области мании преследования!). Еще он сможет ретранслировать сигналы для управления другими беспилотными аппаратами. Дирижабль высотой с семи­этажный дом будет нести до 1100 кг различного оборудования, включая мультиспектральные датчики. В воздухе LEMV будет держать наполненная гелием мягкая оболочка, а двигаться он будет посредством четырех экономичных дизельных двигателей, для которых на борту предусмотрено 13 т топлива.

7-го августа 2012-го состоялся первый тестовый полет LEMV, а уже в феврале 2013-го армия США отменила заказ по причине дороговизны проекта. В этом году дирижабль купила компания Hybrid Air Vehicles, пересобрала и назвала его Airlander.

И всё?

Конечно нет! Конкурентом Northrop Grumman в борьбе за военные заказы выступает другая американская компания - Lockheed Martin. Точнее, ее подразделение перспективных разработок Skunk Works - «Скунсовы дела». Кстати, такое название у секретного бюро появилось в 1960-е годы после одного курьезного случая. Тогда сотрудники поголовно увлекались комиксом про самогонщиков, публиковавшимся в местной газете: самогонщики варили свой суперсекретный самогон в глухой лесной чаще, в том числе и из скунсов. Сотрудников бюро за вечные газетные страницы на столах стали в фирме звать «скунсами». Они приняли прозвище с юмором и откликались на него охотно. Ну и допрыгались, ответив однажды на звонок сотруднику министерства фразой вроде: «Сканк воркс слушает». Во избежание скандала пришлось название узаконить.

Так вот, Skunk Works получило 400-миллионный контракт на разработку дирижабля ISIS (Integrated Sensor is Structure), предназначенного для замены хорошо известных самолетов воздушного наблюдения и целеуказания, тех самых АВАКСов: Boeing E-3 AWACS и E-8 JSTARS. Планируется, что 15-этажный беспилотный дирижабль длиной 131 м и весом 89 т сможет непрерывно находиться в воздухе до десяти лет, питаясь от размещенных на оболочке сверху солнечных батарей. Крейсерская скорость 140 км/ч позволит ему в течение десяти дней перелететь практически в любую точку на карте мира, оставаясь в безопасности от наземных комплексов ПВО на своей заоблачной высоте. Чем еще будет славен ISIS, кроме того, что при переключении раскладки его имя будет звучать как «ШЫШЫ»? Ну, его антенны площадью до 6000 кв. м позволят добиться запредельного разрешения и дальности обнаружения целей: крылатые ракеты ISIS увидит на расстоянии 600 км, а одиночного бойца или замаскированный автомобиль - на расстоянии 300 км. На сегодняшний день главной задачей проекта является снижение вероятности обнаружения ISIS радарами конкурентов.

И что, хоть один готов?

Почти. Для создания таких стратосферных аппаратов пришлось решить ряд сложных задач - скажем, разработать материал для оболочки весом не более 100 г на 1 кв. м, способный сохранять герметичность и прочность при температурах до минус 90 на протяжении пяти лет. Нужны были также солнечные батареи с высокой отдачей энергии и аккумуляторы, способные запасать на темное время суток 400 Вт·ч на 1 кг.

Сегодня все необходимые технологии уже созданы, однако окончательно пригодность дирижаблей к военной службе покажет регулярная эксплуатация. Если на высоте им мало что может угрожать, то вот процесс взлета и посадки через турбулентные нижние слои атмосферы для гигантов может стать проблемой.

А мы-то как же?

Разумеется, не только США работают над военным применением кораблей легче воздуха. Так, в России относительно недавно был разработан аэростатный комплекс «Пересвет» (ФГУП «Долгопруднинское КБ автоматики»), предназначенный для подъема на высоту систем обнаружения крылатых ракет противника. В 2011-м «Пересвет» проходил этап предварительных испытаний, в ходе которых был выявлен ряд недоработок. В 2012-м испытания возобновили, но с тех пор новостей о «Пересвете» нет.

Двухместный дирижабль АU-12 предназначен для подготовки пилотов-воздухоплавателей, патрулирования и визуального контроля автодорог и городских территорий с целью экологического мониторинга, контроля за чрезвычайными ситуациями и спасательных операций, охраны и наблюдения, рекламных полетов, качественной фото-, кино-, теле- и видеосъемки в интересах рекламы, телевидения, картографии

Как правило, статьи о современных дирижаблях начинаются с воспоминаний о том, как почти 70 лет назад на американской авиабазе Лейкхерст погиб в огне гигантский немецкий цеппелин «Гинденбург», а три года спустя Герман Геринг приказал разобрать оставшиеся дирижабли на металлолом и подорвать ангары. Эпоха дирижаблей тогда закончилась, пишут обычно журналисты, но вот теперь интерес к управляемым аэростатам снова активно возрождается. Однако подавляющее большинство наших сограждан если где и видят «возродившиеся» дирижабли, то только на разного рода аэрошоу - там они обычно применяются в качестве оригинальных рекламных носителей. Неужели это все, на что способны эти удивительные воздушные корабли? Чтобы выяснить, кому и зачем нужны сегодня дирижабли, пришлось обратиться к специалистам, строящим дирижабли в России.

Плюсы и минусы


Три типа конструкции
В дирижаблестроении выделяются три основных типа конструкции: мягкая, жесткая и полужесткая. Практически все современные дирижабли относятся к мягкому типу. В англоязычной литературе их обозначают термином blimp. Во время Второй мировой войны американская армия активно использовала «блимпы» для наблюдения за прибрежными водами и конвоирования судов.

Дирижабль - это управляемый самодвижущийся аэростат. В отличие от обычного воздушного «шара, который летит» исключительно по направлению ветра и может маневрировать только по высоте в попытке поймать ветер нужного направления, дирижабль способен двигаться относительно окружающих воздушных масс в направлении, выбранном пилотом. Для этой цели летательный аппарат оснащен одним или несколькими двигателями, стабилизаторами и рулями, а также имеет аэродинамическую («сигарообразную») форму. В свое время дирижабли «убила» не столько череда ужаснувших мир катастроф, сколько авиация, развивавшаяся в первой половине ХХ века сверхбыстрыми темпами. Дирижабль тихоходен - даже самолет с поршневыми двигателями летает быстрее. Что уж говорить о турбовинтовых и реактивных машинах. Разгонять дирижабль до самолетных скоростей мешает большая парусность корпуса - сопротивление воздуха слишком велико. Правда, время от времени говорят о проектах сверхвысотных дирижаблей, которые поднимутся туда, где воздух сильно разрежен, а значит, и сопротивление его значительно меньше. Это якобы позволит развивать скорость в несколько сотен километров в час. Однако пока подобные проекты проработаны только на уровне концепции.

Проигрывая авиации в скорости, управляемые аэростаты при этом имеют ряд важных преимуществ, благодаря которым, собственно, возрождается дирижаблестроение. Во-первых, сила, которая поднимает аэростат в воздух (известная всем со школьной скамьи сила Архимеда), совершенно бесплатна и не требует затрат энергии, в отличие от подъемной силы крыла, которая напрямую зависит от скорости аппарата, а значит, от мощности двигателя. Дирижаблю же двигатели нужны в основном для перемещения в горизонтальной плоскости и маневрирования. Поэтому летательные аппараты такого типа могут обходиться моторами значительно меньшей мощности, чем потребовались бы самолету при равной величине полезной нагрузки. Отсюда, а это уже во-вторых, вытекает большая по сравнению с крылатой авиацией экологическая чистота дирижаблей, что в наше время чрезвычайно важно.

Третий плюс дирижаблей - их практически неограниченная грузоподъемность. Создание сверхгрузоподъемных самолетов и вертолетов имеет ограничения по прочностным характеристикам конструкционных материалов. Для дирижаблей же таких ограничений нет, и воздушный корабль с полезной нагрузкой, например, 1000 т - вовсе не фантастика. Добавим сюда возможность длительное время находиться в воздухе, отсутствие необходимости в аэродромах с длинными взлетно-посадочными полосами и большую безопасность полетов - и у нас получится внушительный список достоинств, которые вполне уравновешивают тихоходность. Впрочем, и тихоходность, как выяснилось, можно скорее отнести к достоинствам воздушных кораблей. Но об этом чуть позже.

Конкурент вертолета



Небесный патруль
Двухместный дирижабль АU-12 Крейсерская скорость 50-90 км/ч, мощность маршевого двигателя 100 л.с., максимальная дальность полета 350 км, максимальная высота полета 1500 м

Наша страна - один из мировых центров возрождающегося дирижаблестроения. Лидер отрасли - группа компаний «Росаэросистемы». Побеседовав с ее вице-президентом Михаилом Талесниковым, мы выяснили, как устроены современные российские дирижабли, где и как они используются и что нас ждет впереди.

Сегодня в работе находятся два типа дирижаблей, созданных конструкторами «Росаэросистем». Первый тип - это двухместный дирижабль AU-12 (длина оболочки 34 м). Аппараты такой модели существуют в трех экземплярах, и два из них время от времени используются московской милицией для патрулирования МКАД. Третий дирижабль продан в Таиланд и применяется там в качестве рекламного носителя.



Универсальная машина
Многоцелевой дирижабль Au-30 (многоцелевой патрульный дирижабль объемом более 3000 м3) предназначен для выполнения полетов в течение продолжительного времени, в том числе на малой высоте и с малой скоростью

Гораздо более интересная работа у дирижаблей системы AU-30. Аппараты этой модели отличаются более крупными габаритами (длина оболочки 54 м) и, соответственно, большей грузоподъемностью. Гондола AU-30 способна вместить десять человек (двух пилотов и восемь пассажиров). Как рассказал нам Михаил Талесников, в настоящее время ведутся переговоры с заинтересованными сторонами о возможности организации элитных воздушных туров. Полет на небольшой высоте и на малой скорости (вот оно - преимущество тихоходности!) над красивыми природными ландшафтами или памятниками архитектуры и в самом деле сможет стать незабываемым приключением. Подобные туры проходят в Германии: дирижабли возрожденной марки Zeppelin NT катают туристов над живописным озером Бодензее, в тех самых краях, где когда-то отправился в полет первый немецкий дирижабль. Однако российские дирижаблестроители уверены, что главное предназначение их аппаратов не реклама и развлечения, а выполнение серьезных задач промышленного характера.

Вот пример. Энергетические компании, имеющие в своем распоряжении линии электропередач, должны регулярно проводить мониторинг и диагностику состояния своих сетей. Удобнее всего это делать с воздуха. В большинстве стран мира для такого мониторинга применяются вертолеты, однако у винтокрылой машины есть серьезные недостатки. Помимо того что вертолет неэкономичен, у него еще и весьма скромный радиус действия - всего 150-200 км. Понятно, что для нашей страны с ее многотысячекилометровыми расстояниями и обширным энергетическим хозяйством это слишком мало. Есть и еще одна проблема: вертолет в полете испытывает сильную вибрацию, в результате чего чувствительное сканирующее оборудование дает сбои. Движущийся медленно и плавно дирижабль, способный преодолевать тысячи километров на одной заправке, напротив, идеально подходит для задач мониторинга. В настоящий момент одна из российских фирм, разработавших основанное на лазерных технологиях сканирующее оборудование, а также программное обеспечение к нему, использует два дирижабля AU-30 для оказания услуг энергетикам. Дирижабль этого типа может применяться и для разнообразных видов мониторинга земной поверхности (в том числе в военных целях), а также для картографирования.

Как они летают?

Практически все современные дирижабли, в отличие от цеппелинов довоенной эпохи, относятся к мягкому типу, то есть форма их оболочки поддерживается изнутри давлением подъемного газа (гелия).

Объясняется это просто - для аппаратов сравнительно небольших размеров жесткая конструкция неэффективна и уменьшает полезную нагрузку из-за веса каркаса. Несмотря на то что дирижабли и аэростаты относят к классу аппаратов легче воздуха, многие из них, особенно при полной загрузке, имеют так называемый перетяж, то есть превращаются в аппараты тяжелее воздуха. Это относится и к AU-12 и AU-30. Выше мы уже говорили о том, что дирижаблю, в отличие от самолета, двигатели нужны в основном для горизонтального полета и маневрирования. И вот почему «в основном». «Перетяж», то есть разница между силой земного притяжения и архимедовой силой, компенсируется за счет небольшой подъемной силы, которая появляется, когда встречный поток воздуха набегает на имеющую специальную аэродинамическую форму оболочку дирижабля - в данном случае она работает как крыло. Стоит дирижаблю остановиться - и он начнет опускаться к земле, ведь архимедова сила не полностью компенсирует силу притяжения. Дирижабли AU-12 и AU-30 имеют два режима взлета: вертикальный и с небольшим пробегом. В первом случае два винтовых двигателя с переменным вектором тяги переходят в вертикальное положение и таким образом отталкивают аппарат от земли. После набора небольшой высоты они переходят в горизонтальное положение и толкают дирижабль вперед, в результате чего возникает подъемная сила. При посадке двигатели вновь переходят в вертикальное положение и включаются на реверсивный режим. Теперь дирижабль, напротив, притягивается к земле. Такая схема позволяет преодолеть одну из главных проблем эксплуатации дирижаблей в прошлом - сложность со своевременной остановкой и точным причаливанием аппарата. Во времена могучих цеппелинов их приходилось буквально отлавливать за спущенные вниз тросы и закреплять у земли. Причаливающие команды насчитывали в те времена десятки и даже сотни человек.

При взлете с пробегом двигатели изначально работают в горизонтальном положении. Они разгоняют аппарат до возникновения достаточной подъемной силы, после чего дирижабль поднимается в воздух.

Маневрирование по высоте и управление подъемной силой пилот осуществляет, в частности, меняя тангаж (угол наклона горизонтальной оси) дирижабля. Этого можно добиться как с помощью закрепленных на стабилизаторах аэродинамических рулей, так и путем изменения центровки аппарата. Внутри оболочки, накачанной находящимся под небольшим давлением гелием, находятся два баллонета. Баллонеты - это мешки из воздухонепроницаемой материи, в которые нагнетается забортный воздух. Управляя объемом баллонета, пилот изменяет давление подъемного газа. Если баллонет раздувается, гелий сжимается и плотность его растет. При этом архимедова сила падает, что приводит к снижению дирижабля. И наоборот. При необходимости можно перекачивать воздух, например, из носового баллонета в кормовой. Тогда при изменении центровки угол тангажа примет положительное значение и дирижабль перейдет в кабрирующее положение.

Нетрудно заметить, что современный дирижабль имеет довольно сложную систему управления, предусматривающую работу рулями, варьирование режима и вектора тяги двигателей, а также изменение центровки аппарата и величины давления подъемного газа с помощью баллонетов.

Тяжелее и выше



Дирижабль «Беркут»
Внутри оболочки «Беркута» - пять тканых емкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа. В стратосфере, когда «Беркут» окажется в окружении разреженного воздуха, воздух из оболочки будет откачан и емкости под давлением гелия раздуются. В результате плотность его упадет и, соответственно, возрастет архимедова сила, которая будет удерживать аппарат на высоте. «Беркут» разработан в трех модификациях - для высоких широт (HL), для средних широт (ML), для экваториальных широт (ET). Геостационарные характеристики дирижабля позволяют осуществлять функции наблюдения, связи и передачи данных над территорией площадью более 1 млн км2.

Еще одно направление, в котором работают отечественные дирижаблестроители, - это создание тяжелых грузопассажирских дирижаблей. Как уже говорилось, для дирижаблей ограничений по грузоподъемности практически не существует, а потому в перспективе могут быть созданы настоящие «воздушные баржи», которые будут способны перевозить по воздуху почти все что угодно, включая сверхтяжелые негабаритные грузы. Задача упрощается тем, что при изменении линейных габаритов оболочки грузоподъемность дирижабля вырастает в кубической пропорции. К примеру, AU-30, имеющий оболочку длиной 54 м, может брать на борт до 1,5 т полезного груза. Дирижабль нового поколения, разрабатываемый сейчас инженерами «Росаэросистем», при длине оболочки всего на 30 м больше возьмет полезную нагрузку 16 т! В перспективных планах группы компаний - строительство дирижаблей с полезной нагрузкой 60 и 200 т. Причем именно в этом сегменте дирижаблестроения должна произойти маленькая революция. Впервые за многие десятилетия в воздух поднимется дирижабль, выполненный по жесткой схеме. Подъемный газ будет помещаться в мягких баллонах, жестко прикрепленных к каркасу, укрытому сверху аэродинамической оболочкой. Жесткий каркас добавит дирижаблю безопасности, так как даже в случае серьезной утечки гелия аппарат не утратит аэродинамическую форму.

Другой интересный проект, по которому в группе компаний «Росаэросистемы» уже проведены НИОКР, - это геостационарный стратосферный дирижабль «Беркут». В основе идеи - свойства атмосферы. Дело в том, что на высоте 20-22 км ветровой напор относительно невелик, причем ветер имеет постоянное направление - против вращения Земли. В таких условиях довольно легко с помощью тяги двигателей зафиксировать аппарат в одной точке относительно поверхности планеты. Стратосферный геостационар можно использовать практически во всех областях, в которых сейчас применяются геостационарные спутники (связь, передача теле- и радиопрограмм и т.д.). При этом дирижабль «Беркут» будет, разумеется, существенно дешевле любого космического аппарата. Кроме того, если спутник связи выходит из строя, ремонту он уже не подлежит. «Беркут» же в случае любых неполадок всегда можно будет спустить на землю, чтобы провести необходимую профилактику и ремонт. И наконец, «Беркут» - это абсолютно экологически чистый аппарат. Энергию для двигателей и ретранслирующей аппаратуры дирижабль возьмет от солнечных батарей, размещенных на верхней части оболочки. В ночное время питание будет производиться за счет аккумуляторов, накопивших электричество в течение дня.

Еще ближе к космосу

Все дирижабли, о которых шла речь в этой статье, относятся к газовому типу. Однако существуют еще и тепловые дирижабли - фактически управляемые монгольфьеры, в которых подъемным газом служит нагретый воздух. Они считаются менее функциональными, чем их газовые собратья, в основном из-за более низкой скорости и худшей управляемости. Основная сфера применения тепловых дирижаблей - аэрошоу и спорт. И именно в спорте России принадлежит высшее достижение. 17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «Полярный гусь» высоты 8180 м. Однако и спортивным дирижаблям, возможно, будет найдено практическое применение. «Полярный гусь», поднявшись на высоту 10-15 км, сможет стать своего рода первой ступенью системы космических запусков. Известно, что при космических стартах значительное количество энергии тратится именно на начальной стадии подъема. Чем дальше от центра Земли находится стартовая площадка, тем больше экономия топлива и тем большую полезную нагрузку удается вывести на орбиту. Именно поэтому космодромы стараются размещать ближе к экваториальной области, чтобы выиграть (за счет приплюснутой формы Земли) несколько километров.


Высотные полеты на дирижаблях
8180 м, 2006 г.,«Полярный гусь» (Россия) 7600 м, 1917 г.,Zeppelin L-55 (Германия) 6614 м, 2004 г.,Borland Rover A-2 (Великобритания) 6234 м, 2003 г., Colting SPS 62 (Канада) 5059 м, 1988 г., Borland Rover (США)

17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «АвгурЪ» AU-35 («Полярный гусь») высоты 8180 м. Так был побит мировой рекорд, продержавшийся 90 лет и принадлежавший немецкому дирижаблю Zeppelin L-55. Рекорд «Полярного гуся» стал первым шагом в выполнении программы «Высокий старт» - проекта Русского воздухоплавательного общества и группы компаний «Метрополь» по запуску легких космических аппаратов с высотных дирижаблей. В случае успеха этого проекта в России будет создан передовой аэростатно-космический комплекс, способный экономично выводить на орбиту частные спутники весом до 10-15 кг. Одно из предполагаемых направлений использования комплекса «Высокий старт» - запуск геофизических ракет для исследования приполярных областей Северного Ледовитого океана.

Гибридные дирижабли



Корабли будущего: «Небесная яхта» ML866 Aeroscraft и грузовой дирижабль JHL-40




Интересные проекты дирижаблей нового поколения разрабатываются на североамериканском континенте. Создать «небесную суперъяхту» ML 866 намерена в недалеком будущем корпорация Wordwide Aeros. Этот дирижабль сконструирован по гибридной схеме: в полете около 2/3 веса машины будут компенсироваться архимедовой силой, а подниматься вверх аппарат будет благодаря подъемной силе, возникающей при обтекании набегающим потоком воздуха оболочки корабля. Для этого оболочке будет придана специальная аэродинамическая форма. Официально ML 866 предназначен для VIP-туризма, однако, если учесть, что Wordwide Aeros получает финансирование в частности от государственного агентства DARPA, занимающегося оборонными технологиями, не исключено использование дирижаблей в военных целях, например для наблюдения или связи. А канадская компания Skyhook совместно с Boeing объявила о проекте JHL-40 - грузового дирижабля с полезной нагрузкой 40 т. Это тоже «гибрид», однако здесь архимедова сила будет дополняться тягой четырех роторов, создающих тягу по вертикальной оси.

Гибель гигантов



Дирижабль LZ 127 «Граф Цеппелин»

История воздушных катастроф с большим количеством жертв берет свое начало в эпохе дирижаблей. Британский дирижабль R101 отправился в свой первый полет 5 октября 1930 года. На борту он нес государственную делегацию во главе с министром воздушного сообщения Кристофером Бёрдвеллом лордом Томпсоном. Через несколько часов после старта R101 снизился до опасной высоты, врезался в холм и сгорел. Причиной катастрофы стали просчеты в проектировании. Из 54 пассажиров и членов экипажа погибли 48, включая министра. 73 американских военных моряка встретили гибель, когда попавший в бурю дирижабль «Акрон» упал в море неподалеку от побережья штата Нью-Джерси. Случилось это 3 апреля 1933 года. Людей убил не удар при падении, а ледяная вода: на дирижабле не было ни одной спасательной лодки и лишь несколько пробковых жилетов. Знаменитая катастрофа «Гинденбурга», произошедшая 6 мая 1937 года, по количеству жертв уступает этим двум. Все три погибших дирижабля были накачаны взрывоопасным водородом. Гелиевые дирижабли сегодняшнего дня значительно безопаснее.