Сравнительный анализ свойств меди и алюминия. Медный или алюминиевый провод – какой лучше? Медная токопроводящая жила

Чем отличается алюминий от меди? Проще сказать, что у них общего. А общего только то, что оба эти химических элемента являются металлами (со всеми присущими металлам свойствами) и хорошими проводниками. По другим параметрам – плотности, стоимости, распространению в природе и «стажу» использования человеком – у них больше различий.

История открытия

Медь – один из первых металлов, которые человечество научилось добывать и эксплуатировать; по мнению археологов, примерно одновременно с медью люди стали использовать золото. Дело в том, что оба эти металла встречаются в природе в самородном виде, и куску меди для применения его в качестве орудия труда или оружия надо было просто придать после нагрева нужную форму. Это случилось, скорее всего, 6-7 тысяч лет назад. Постепенно люди научились выплавлять металл из руды, и шлак, свидетельствующий о наличии медной металлургии, находят при раскопках древнего поселения Чатал-Хююк в Турции. Первоначально делали оружие и сельскохозяйственные орудия из чистого металла, но со временем люди обнаружили, что в соединении с оловом из меди получается куда более прочная бронза.

Отличие алюминия от меди в том, что дата его первого получения четко зафиксирована в истории. Это случилось в 1825 году в Дании и «отцом» алюминия стал химик Ганс Эрстед. Алюминий в природе в самородном виде не встречается, а при взаимодействии с кислородом образует стойкое соединение, поэтому его производство вначале было делом очень дорогим. Первый алюминий стоил дороже золота, а великому русскому химику Дмитрию Менделееву в знак признания его заслуг перед человечеством в 1889 году британцы подарили весы именно из золота и алюминия.

Сравнение

Электропроводность меди в полтора раза выше, чем у алюминия, но при этом плотность алюминия в 3,3 раза меньше, чем у меди. О цене и говорить не приходится – после освоения промышленной технологии производства алюминия его стоимость очень сильно упала и сейчас она значительно меньше, чем у меди. Эти обстоятельства и предопределили использование алюминия для выпуска многожильных проводов и кабелей. Обратите внимание, когда увидите ЛЭП высокого напряжения: все провода выполнены именно из алюминия. Так и дешевле, и нагрузка на опоры гораздо ниже. Ну а что электропроводность меньше – с этим приходится мириться.

Используется медь и для производства бронзы. В древности из нее изготавливали холодное оружие и орудия труда, пока не была освоена выплавка железа. Но и позже из бронзы лили пушки, причем это продолжалось довольно долго, вплоть до 19 века. Из бронзы отлиты Царь-пушка и Царь-колокол. Кроме этого, медь благодаря высокой коррозионной стойкости нашла применение при изготовлении труб для транспортировки различных жидкостей и газов, а также в некоторых других отраслях промышленности.

Алюминий называют «крылатым металлом». Это название говорит о второй масштабной области его применения (после электротехнической). При соединении алюминия (95,6 %) и меди (4,4 %) получают сплав, который называется дюралюминий, или дюраль. Обладая плотностью, близкой к плотности алюминия, он имеет значительно более высокие прочностные характеристики, поэтому широко используется для производства самолетов.

Таблица

В чем разница между алюминием и медью, видно из приведенной ниже таблицы.

Медь

Лекция 4. Материалы высокой проводимости

К группе проводниковых материалов принято относить проводники с удельным электрическим сопротивлением в нормальных условиях не более 10 -7 Ом×м. Наиболее распространенными среди этих материалов являются медь и алюминий.

Медь – элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum ). Простое вещество медь – это пластичный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Преимущества меди, обеспечивающие её широкое применение в качестве проводникового материала, следующие: 1) малое удельное сопротивление (из всех металлов только серебро имеет несколько меньшее удельное сопротивление, чем медь); 2) достаточно высокая механическая прочность; 3) удовлетворительная в большинстве случаев стойкость к коррозии (даже в условиях повышенной влажности медь окисляется на воздухе значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах; 4) хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра; 5) относительная легкость пайки и сварки.

Свойства меди. Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55 – 58 МСм/м). Плотность 8,96 г/см 3 , Т пл = 1083 о С,

Существует ряд сплавов меди: латуни – с цинком, бронзы – с оловом и другими элементами, мельхиор – с никелем, баббиты – со свинцом, и другие.

Удельная проводимость меди весьма чувствительна к наличию примесей и снижается в зависимости от вида примеси: Zn, Cd, Ag – на 5% ; Ni, Sn, Al ‒ на 25–40%; Be, As, Fe, Si, P – на 55%. В то же время присадки многих металлов повышают механическую прочность и твердость меди.

Получение меди. Медь получают путем переработки сульфидных руд, чаще других встречающихся в природе. После ряда плавок руды и обжигов с интенсивным дутьем, медь обязательно подвергают электролитической очистке. Можно получить различную по физическим свойствам медь:

– методом холодной протяжки получают твердую медь (ТМ), которая имеет высокий предел прочности при растяжении, твердость и упругость при изгибе; проволока из твердой меди несколько пружинит. Имеет малое относительное удлинение при изгибе;



– методом отжига получится мягкая медь (ММ), которая пластична, обладает малой твердостью и прочностью, более высокой удельной проводимостью. Также обладает весьма большим относительным удлинением при разрыве.

Применение меди. Медь применяют в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов в гальваностегии и гальванопластике. Медные ленты используют в качестве экранов кабелей. Твердую медь употребляют в тех случаях, когда необходимо обеспечить особенно высокую механическую прочность, твердость и сопротивляемость истиранию, например, для изготовления неизолированных проводов. Если же требуется хорошая гибкость и пластичность, а предел прочности на растяжение не имеет существенного значения, то предпочтительнее мягкая медь (например, для монтажных проводов и шнуров). Из специальных электровакуумных сортов меди изготавливают детали клистронов, магнетронов, аноды мощных генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и резонаторов. Кроме того, медь используют для изготовления фольгированного гетинакса и применяют в микроэлектронике в виде осажденных на подложки пленок, играющих роль проводящих соединений между функциональными элементами схемы. Несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяют для спаев со стеклами, поскольку она обладает рядом замечательных свойств: низким пределом текучести, мягкостью и высокой теплопроводностью. Для впаивания в стекла медному электроду придают специальную форму в виде тонкого рантика, благодаря чему такие спаи называют рантовыми.

Недостатком меди является ее подверженность атмосферной коррозии с образованием окисных и сульфидных пленок. Скорость окисления быстро возрастает при нагревании, однако прочность сцепления окисной пленки с металлом невелика. Вследствие окисления медь не пригодна для слаботочных контактов. При высокой температуре в электрической дуге окись меди диссоциирует, обнажая металлическую поверхность. Металлическое отслаивание и термическое разложение вызывает повышенный износ медных контактов при сильных токах.

Алюми́ний – элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов, с атомным номером 13. Обозначается символом Al (лат. Aluminium ). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния). Простое вещество алюминий – лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия. Плотность 2,7 г/см 3 , Т пл = 660 о С.

Алюминий – второй по значению (после меди) проводниковый материал – металл серебристо-белого цвета, важнейший из так называемых легких металлов. Удельное сопротивление алюминия в 1,6 раза больше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря малой плотности обеспечивается большая проводимость на единицу массы, т. е. при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных несмотря на большее поперечное сечение. К тому же по сравнению с медью алюминий намного больше распространен в природе и характеризуется меньшей стоимостью. Отмеченные обстоятельства обусловливают широкое применение алюминия в электротехнике. Алюминий получают электролизом глинозема Al 2 O 3 в расплаве криолита Na 3 AlF 6 .

Преимущества алюминия, которые обеспечивают ему широкое применение в качестве проводникового материала, следующие:

– малая плотность (легкий материал);

– дешевизна и доступность;

– распространенность в природе (1-е место по количеству среди металлов в земной коре).

Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Нанесение пленок на кремниевые пластинки обычно производят методом испарения и конденсации в вакууме. Требуемый рисунок межсоединений создается с помощью фотолитографии. Преимущества алюминия как контактного материала состоит в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию и плёночной изоляции из SiO 2 , широко используемой в полупроводниковых интегральных схемах, обеспечивает хорошее разрешение при фотолитографии. Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений. Последние обеспечивают связь между отдельными элементами схемы и внешние присоединения. Преимущества алюминия как контактного материала состоят в том, что этот материал легко напыляется, обладает хорошей адгезией к кремнию.

Недостатком алюминия является значительная подверженность электромиграции, что приводит к увеличению сопротивления или даже разрыву межсоединения, также у алюминия низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь.

Отдельно стоит поговорить о поверхности алюминия , так как он активно окисляется, покрываясь тонкой пленкой окиси с большим электрическим сопротивлением. Такая пленка предохраняет алюминий от коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов, что делает невозможным пайку алюминия обычными методами. Поэтому для пайки алюминия используют ультразвуковые паяльники или пасты-припои. Более толстый слой окисла, который создает надежную электрическую изоляцию на сравнительно высокие напряжения, получают с помощью электрохимической обработки алюминия. Наиболее широкое применение оксидная изоляция получила в электролитических конденсаторах. Ее используют также и в некоторых типах выпрямителей и разрядников. На практике важное значение имеет вопрос защиты от гальванической коррозии в местах контакта алюминия и меди. Если область контакта подвергается воздействию влаги, то возникает местная гальваническая пара с довольно высоким значением э. д. с., причем полярность этой пары такова, что на внешние поверхности контакта ток направлен от алюминия к меди, вследствие чего алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны быть тщательно защищены от увлажнения.

Такие металлы как алюминий и медь применяются в электропроводке гораздо чаще других металлов, поскольку являются очень хорошими и недорогими проводниками.



Но какой же конкретно материал (медь или алюминий) лучше по своим проводящим свойствам. В данной статье мы попытаемся выяснить это.


Начнем сперва с физического описания этих материалов. Медь представляет собой мягкий и ковкий металл с ярким золотисто-коричневым оттенком. Алюминий представляет собой серебристый металл, который легче и прочнее меди.


Теперь поговорим о проводимости этих материалов. Эти два металла близки по шкале проводимости, причем медь имеет более желательную характеристику. Проводимость меди составляет около 0.6 МОм/см, а алюминия – около 0.4 МОм/см.


Что же касается сопротивления проводника? Провод длиной в один метр с поперечным сечением в один квадратный миллиметр имеет сопротивление 1.7 миллиома (0,0017 Ом), если он сделан из меди, и 2.5 миллиома (0,0025 Ом), если это алюминиевый провод.


Каково же их использование в проводке? Благодаря отличным электрическим свойствам медь широко используется для электропроводки. При распределении электроэнергии иногда вместо меди используется алюминий. Впрочем, цена на алюминий несколько выше и составляет примерно одну треть от стоимости меди.


У алюминия в составе проводов есть еще один немаловажный недостаток. Алюминий когда-то очень широко использовался в домашней электропроводке, но он легко коррозировал, что могло привести к высокому сопротивлению и накоплению тепла в точках соединения. Из-за этой опасности в 1970-х годах использование алюминиевой проволоки было ограничено. Поэтому медь на сегодняшний день в электропроводке можно увидеть гораздо чаще.



.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

Что лучше - медная или алюминиевая проводка? Этот вопрос часто поднимается в среде специалистов и обычных людей, планирующих поменять старые провода в доме, квартире или офисе. Но чтобы принять правильное решение, важно знать преимущества и недостатки, правила эксплуатации, а также основные отличия между медной и алюминиевой коммутацией.

Плюсы и минусы

Алюминиевая проводка имеет следующие преимущества:

  • Небольшая масса. Эта особенность важна при монтаже линий электропередач, длина которых может достигать десятков, а то и сотен километров.
  • Доступность по цене. При выборе материала для проводки многие ориентируются на стоимость металла. Алюминий имеет меньшую соответственно, что объясняет более низкую цену изделий из этого металла.
  • Стойкость к окислительным процессам (актуальна при отсутствии контакта с открытым воздухом).
  • Наличие защитной пленки. В процессе эксплуатации на проводке из алюминия формируется тонкий налет, уберегающий металл от окислительных процессов.

Алюминий имеет и ряд недостатков, о которых необходимо знать:

  • Высокое удельное сопротивление металла и склонность к нагреву. По этой причине не допускается применение провода меньше 16 кв.мм (с учетом требований ПУЭ, 7-я редакция).
  • Ослабление контактных соединений из-за частых нагревов при прохождении большой нагрузки и последующего остывания.
  • Пленка, которая появляется на алюминиевом проводе при контакте с воздухом, имеет плохую проводимость тока, что создает дополнительные проблемы в местах соединения кабельной продукции
  • Хрупкость. Алюминиевые провода легко переламываются, что особенно актуально при частом перегреве металла. На практике ресурс алюминиевой проводки не превышает 30 лет, после чего ее необходимо менять.

Правила соединения меди и алюминия

Бывают ситуации, когда требуется заменить только часть проводки или добавить (перенести) несколько розеток в квартире. В такой ситуации возникает вопрос, . Чтобы избежать повышенного прогрева в местах объединения медной и алюминиевой проводки, стоит использовать следующие способы коммутации:


Рассмотренные способы соединения могут применяться для объединения проводов, выполненных из различных металлов (не только меди и алюминия). Такое исполнение гарантирует высокий уровень безопасности и возможность ухода от потенциально опасного скручивания. Но стоит помнить о важности периодической проверки и протяжки болтовых соединений и клеммников, ведь они имеют свойство ослабляться.

Какой материал для проводки лучше?

Теперь разберемся более подробно, какой провод лучше медный или алюминиевый. В этом отношении появилось множество стереотипов и заблуждений, о которых поговорим ниже:

  • Долговечность. Считается что срок жизни медного провода больше, чем алюминиевого. Это ошибочное мнение. Если заглянуть в специальный справочник, можно убедиться, что ресурс кабелей из обоих видов металла идентичен. Для изделий с одинарной изоляцией он составляет 15 лет, а с двойной - 30.
  • Склонность к окислению. Применяя кабель из алюминия, стоит помнить о его склонности к окислительным процессам. Еще в школе нам рассказывали что Al (алюминий) - металл, который активно взаимодействует с кислородом, из-за чего на его поверхности появляется тонкая пленка. Последняя защищает металл от дальнейшего распада, но ухудшает его проводимость. Если изолировать провод от окружающей среды, риск окислительных процессов сводится к минимуму. Оптимальный вариант - применение специальных клеммников с токопроводящей пастой. Особенность последней заключается в улучшении качества контактного соединения между двумя проводами и снятие пленки окисла с металла. Кроме того, специальная смазка исключает контакт алюминия с окружающим воздухом.
  • Прочность. Медная проводка считается более прочной и способна выдерживать многоразовые сгибания. В ГОСТе прописано, что провод, выполненный из меди, должен выдержать 80 перегибов, а из алюминия - 12. Если проводка проходит в стене, полу или спрятана под потолком, такая особенность не так важна.
  • Стоимость. Цена провода из алюминия ниже в 3-4 раза. Но при выборе важно помнить, что медный провод сечением 2,5 кв.мм рассчитан на ток 27 Ампер. Если отдавать предпочтение алюминиевой проводке, толщина провода должна составлять 4 кв. мм (номинальный ток 28 Ампер).
  • Сопротивление. Определяясь, что выбрать - алюминиевые или медные провода, стоит учесть разное удельное сопротивление. Для меди этот параметр составляет около 0,018 Ом*кв.мм/м, а для алюминия - 0,028. Но стоит учесть, что общее сопротивление (R) проводника зависит не только от упомянутого параметра, но и от длины и площади проводника. Если учесть, что для той же нагрузки применяются алюминиевые провода большего сечения, итоговое R изделий из меди и алюминия будет приблизительно идентичным. Наибольшее сопротивление возникает в местах соединения, но при следовании рассмотренным выше советам этого можно не бояться.
  • Легкость монтажа. Считается, что соединение проводов из алюминия - более сложная задача. Это актуально лишь при обычном объединении проводки, путем скрутки. В случае применения оконцевателей, клеммников или болтов такая проблема отпадает.

Отдельного внимания заслуживает ситуация, подразумевающая . При объединении меди и алюминия в месте контакта происходят различные процессы, из-за протекания которых увеличивается сопротивление. В результате место стыка двух проводов перегревается, изоляция разрушается и возрастает риск воспламенения.

Рассмотренная выше особенность характерна для всех металлов, имеющих различное удельное сопротивление. Кроме того, многие производители используют не «чистые» металлы, а их сплавы, что также приводит к изменению параметра сопротивления. Чтобы избежать проблем в будущем, лучше правильно соединять провода и отказаться от их скручивания.

В завершение приведем несколько советов, которые должны быть учтены при организации проводки:

  1. В случае самостоятельного проектирования проводки в доме или квартире, лучше выбирать медные провода. При меньшем сечении они выдерживают большее токи и более стойки к частым сгибаниям. Не менее важный момент - объем. Медные провода компактны, что упрощает процесс создания штробы. Например, при подключении приемника мощностью 7-8 кВт алюминиевый провод должен иметь сечение около 8 мм. В кабеле три жилы и плюс оплетка. В итоге общий диаметр составляет около 1,5 сантиметров. Для сравнения медь может иметь сечение 4 кв.мм, а общий диаметр - не более сантиметра.
  2. При установке розетки должен использоваться трехжильный кабель, с заземляющим проводом. Расстояние розетки от пола - 30 см. При организации осветительной цепи допускается применение кабелей с двумя жилами (заземление здесь не нужно).
  3. Запрещено вешать всю нагрузку на одну пару проводов (тем более, если они алюминиевые). Оптимальный вариант - разделение цепи на несколько линий. Например, через один автомат питается ванная, через другой - освещение, через третий - кухня и так далее. Сечение провода для кухни и ванной должно быть 4 или 6 кв.мм, а для цепи освещения - 1,5 или 2,5 мм.

Сложнее всего обстоят дела в старых квартирах, где смонтированы алюминиевые провода, которые отжили свой ресурс и требует замены. Проводка сечением 2,5 кв.мм выдерживают нагрузку не более 20 Ампер, чего недостаточно для современных электроприемников. Кроме того, изоляция проводов со временем теряет эластичность и постепенно разрушается. В такой ситуации единственным решением является полная замена проводки на медные провода.

Подробнее, почему стоит заменить алюминиевую проводку на медную в старом доме, смотрите в этом видео:

Итоги

Какой же провод лучше? С позиции эксплуатационных качеств более предпочтительной является медь. Если исходить из стоимости, алюминиевые провода обходятся дешевле. И здесь важно принять решение - экономить на своей безопасности или нет.

Токопроводящая жила (ТПЖ) из алюминия и меди, применяемые добавки, сравнительные табличные характеристики, другие материалы для кабельно-проводниковой продукции (КПП)

Для сокращения применяется аббревиатура ТПЖ - т окоп роводящая ж ила.

Токопроводящая жила для кабеля либо провода - это проволока (или скрутка проволок) изготовленная из материала с низким электрическим сопротивлением, способная свободно пропускать электрический ток и выдерживающая заданные механические нагрузки и температурные режимы.

Жёсткий проводник - это кабель либо провод выполненный на базе моножилы (одной проволоки), такие проводники применяются для стационарной (неподвижной) прокладки на долгосрочный период.

Гибкий проводник - это провод или кабель изготовленный на базе нескольких проволок, свитых в общий пучок, применяется для обеспечения подвижных присоединений различных энергопотребителей.

Требования к жилам:

  • низкое электрическое сопротивление;
  • умеренная цена и доступность добычи металла;
  • стойкость к коррозии и механическим нагрузкам (особенно к знакопеременным);
  • технологичность.

Понятно, что наиболее важными характеристиками являются низкая стоимость и высокая электропроводность. Чем меньше электрическое сопротивление, тем меньше нагревается жила при протекании номинального тока (именно нагрев имеет решающее значение для вычисления токовой нагрузки). Весь смысл в том, что диэлектрические свойства изоляции быстро теряются при высоких температурах. Например, изоляционный поливинилхлоридный пластикат выдерживает нагрев до +70°С; резиновая изоляция функциональная до +80°С; кремнийорганическая изоляция (специальный материал) работоспособна до +180°С. Неизолированные высоковольтные провода и электротехнические шины допускается нагревать до +90°С (изоляции нет, а ограничение присутствует).
Для примера, поливинилхлоридный пластикат имеет электрическое сопротивление около 10 мОм / км при температуре +20°С и всего 5 кОм / км при нагреве до +70°С (не спутать мегаомы с килоомами).

Теперь немного о цене: мировая цена 1 тонны меди более чем в 3.5 раза дороже 1 тонны алюминия. Электрическое сопротивление алюминия уступает меди в 1.64 раза, то есть именно на это значение возрастёт сечение алюминиевой жилы для проведения той же силы тока (экономический выигрыш налицо).
Механические свойства алюминия оставляют желать лучшего. Имеет низкую стойкость к постоянным изгибам (быстро ломается), поэтому проводники с такими жилами применяются только для стационарной прокладки. Алюминиевые жилы возможно изготовить с минимальным сечением 2.5 мм 2 (технологическое оборудование развивает усилия, сравнимые с механической прочностью алюминиевой проволоки малого диаметра). При контакте с атмосферным кислородом или озоном на алюминии образуется оксидная плёнка, которая имеет высокое электрическое сопротивление.
Медь имеет самое низкое сопротивление (не учитывая серебро и другие дорогие материалы), довольно технологична (поддаётся волочению и прокатке).

Материалы для токопроводящих жил

Основными материалами для создания токопроводящих жил служат медь (Cu) и алюминий (Al). Такой выбор определяется низким электрическим сопротивлением, умеренной стоимостью (по сравнению с серебром) и достаточными прочностными характеристиками.

Медная токопроводящая жила

Жилы кабелей и проводов производятся из электролитической меди М0 и М1, которая отличается определённой чистотой - 99,95% и 99,9% доля меди соответственно.
Различные добавки к меди могут снижать её проводящую способность, увеличивать прочность либо придавать определённый комплекс изменения свойств.

Кислород (O) одна из вредных примесей в меди, который приводит к ухудшению механических характеристик и способности к обработке, вызывает затруднения при сваривании или пайке. Медь, не содержащая кислорода, имеет лучшую пластичность по сравнению с марками М1 и М0. Для борьбы с негативным влиянием кислорода добавляют мышьяк, но он снижает электрическую проводимость.

Водород (H) приводит к увеличению прочности, но при наличии кислорода делает металл хрупким.
Содержание сурьмы вызывает падение теплопроводности, электропроводимости и пластичности.
Серебро защищает медь от окисления, но отличается высокой стоимостью.

Медные токоведущие жилы могут быть мягкими и твёрдыми - отожжённые и неотожжённые соответственно. Маркируются согласно с аббревиатурой ММ и МТ.
Ввиду влияния коррозии медные жилы следует обязательно покрывать слоем олова толщиной 1,5 - 4 мкм. Олово защищает медь от окисления, а также улучшает пайку. Причём предпочтительней использовать методику горячего лужения, а не гальваническую. При горячем лужении образуется переходной сплав меди с оловом, который надёжно привязывает нанесённый слой олова. Во время пайки верхняя часть олова надёжно связывается с припоем. Для тропического исполнения лужение ещё более необходимо, так как влияние высоких температур и влажности сказывается на скорости окисления.

Для получения более толстого и неравномерного защитного слоя используется свинцово-оловянистый сплав (ПОС) с различным содержанием свинца.
Для получения нагревостойкости 200⁰С применяют серебрение гальваническим путём с дальнейшим волочением и отжигом. Получаемая толщина слоя серебра 6 - 12 мкм скрывает медь от воздействия факторов приводящих к окислению при t ≤ 250⁰C.

Алюминиевая токопроводящая жила

Для электрических проводников применяют алюминий (Al) марок А1 и А2, в котором подмешаны десятые доли процента железа и кремния. Эти примеси ухудшают проводимость, к другим нежелательным элементам относят: титан, ванадий, марганец и магний.

Если первым недостатком алюминия считают низкую электропроводность, то второй - это определённая хрупкость, которая усугубляется в температурных условиях свыше 150⁰C. При упрочнении алюминиевой проволоки (например, волочением) единовременно понижается её проводимость (всё взаимосвязано).

По механическим параметрам различают несколько видов проволоки:

  • АТ (алюминий твёрдый неотожжённый);
  • АПТ (алюминий полутвёрдый с частичным отжигом);
  • АМ (алюминий мягкий отожжённый).

Характеристики алюминия АПТ занимают промежуточное положение в сравнении с АТ и АМ.
Если алюминиевый проводник сравнивать с медным, той же проводимости, то окажется, что его сечение выше на +60%, а масса меньше на -48%.
Повышенным пределом прочности при разрыве обладает алюминиевый сплав алдрей. В алюминий добавляют менее половины процента магния, до 0,7% кремния и менее 0,3% железа. Соединение Mg 2 Si упрочняет материал, но растворяется в ограниченном количестве.

Сравнительные характеристики меди и алюминия
Физико-технические свойства металлов Медь Алюминий Алдрей (сплав Al)
ММ (мягкая отожжённая медь) МТ (твёрдая неотожжённая медь) АМ (мягкий алюминий с отжигом) АТ (твёрдый алюминий без отжига)
Плотность, г/см 3 8,890 8,890 2,703 2,703 2,700
Температура плавления, °С 1083 1083 657 657
Коэффициент теплопроводности, Вт/(м·град) 385,2 385,2 945 945 188
Удельная теплоёмкость, Дж/(кг·град) 385 385 945 945 188
Температурный коэффициент линейного расширения,
град -1 х10 -6
16,4 16,4 23 23 23
Предел прочности на разрыв, Н/мм 2 197-276 246-492 79-108 148-246 314-364
Удлинение, % 40-50 1-6 32-40 4-8 6-9
Предел пропорциональности, Н/мм 2 21,6
Предел текучести, Н/мм 2 69-90 230-280 49-79 118-216 286-324
Модуль упругости, Н/мм 2 106 200 128 000 59 000 68 800 68 800
Предел упругости, Н/мм 2 25 295 30-39 118-138
Предел усталости при переменном изгибе, Н/мм 2 28-42 88-118 40 50 95
Предел ползучести, Н/мм 2 50 70 27 50 260
Ударная вязкость, Н/мм 2 56 53
Сопротивление срезу, Н/мм 2 190 430 60 100
Удельное сопротивление, Ом·мм 2 /м 0,017241 0,01752 0,02828 0,0283 0,03-0,33
Температурный коэффициент удельного сопротивления, град -1 0,00393 0,00393 0,00403 0,00403 0,0036

Токопроводящие жилы из других материалов

В кабельно-проводниковой продукции могут применяться другие материалы, которые берут за основу из-за меньшей стоимости или соответствия другим необходимым свойствам. Для получения общего видения приведём таблицу, в которой электропроводность Cu (меди) принимается равной 100%, а остальные характеристики указаны в числовых значениях.


Параметры металлов для сравнения
Металл Температура плавления,
°С
Плотность,
г/см 3
Электрическое сопротивление Электропроводность Температурный коэффициент электросопротивления,
х10 -3 °С
объёмное,
мкОм/см 2
массы,
мкОм/см 2
объёмная, % массы, %
Серебро 961 10,490 1,59 16,69 108,5 92,0 4,10
Медь 1083 8,890 1,724 15,33 100,0 100,0 3,93
Золото 1063 19,320 2,22 42,90 77,7 35,8 3,94
Алюминий 660 2,700 2,80 7,62 61,2 201,5 4,03
Кальций 850 1,550 3,74 5,80 46,1 264,0 4,57
Бериллий 1280 1,816 4,20 7,63 41,1 201,1 6,70
Натрий 98 0,970 4,30 4,17 40,1 368,0 5,50
Магний 650 1,740 4,46 7,75 38,7 198,0 4,20
Цинк 420 7,140 5,91 42,20 29,2 36,4 4,19
Калий 63 0,860 6,70 5,76 25,7 266,0 52,00
Никель 1455 8,900 6,84 60,90 25,2 25,2 6,70
Кадмий 321 8,650 7,00 60,50 24,6 25,35 4,20
Литий 186 0,536 8,50 4,55 20,3 337,0 4,50
Железо 1539 7,870 9,71 76,30 17,75 20,1 6,51
Платина 3224 21,450 10,61 227,50 16,25 6,8 3,93
Олово 232 7,300 11,50 84,00 15,00 18,25 4,40
Хром 1890 7,120 13,10 93,20 16,45 8,5 3,50
Свинец 327 11,340 20,65 234,00 8,36 6,6 3,90

Одними из интересных направлений могут стать натрий, малоуглеродистая сталь, комбинирование нескольких материалов в одной жиле.

Список использованной литературы
Белоруссов Н. И. Электрические кабели и провода. - М.: Энергия, 1971 - 512с.