Многоканальные смо с отказами. Математические модели простейших систем массового обслуживания

11.08.2019 Виды
операции или эффективности системы массового обслуживания являются следующие.

Для СМО с отказами :

Для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способности теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными показателями являются:

Для СМО смешанного типа используются обе группы показателей: как относительная и абсолютная пропускная способности , так и характеристики ожидания.

В зависимости от цели операции массового обслуживания любой из приведенных показателей (или совокупность показателей) может быть выбран в качестве критерия эффективности.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и рассчитывать показатели эффективности по известным характеристикам входящего потока и каналов обслуживания.

Всеобщей аналитической модели для произвольной СМО не существует . Аналитические модели разработаны для ограниченного числа частных случаев СМО. Аналитические модели, более или менее точно отображающие реальные системы, как правило, сложны и труднообозримы.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае, для стационарных состояний - линейными алгебраическими уравнениями и, решив их, определить выбранные показатели эффективности.

Рассмотрим примеры некоторых СМО.

2.5.1. Многоканальная СМО с отказами

Пример 2.5 . Три автоинспектора проверяют путевые листы у водителей грузовых автомобилей. Если хотя бы один инспектор свободен, проезжающий грузовик останавливают. Если все инспекторы заняты, грузовик, не задерживаясь, проезжает мимо. Поток грузовиков простейший, время проверки случайное с экспоненциальным распределением.

Такую ситуацию можно моделировать трехканальной СМО с отказами (без очереди). Система разомкнутая, с однородными заявками, однофазная, с абсолютно надежными каналами.

Описание состояний:

Все инспекторы свободны;

Занят один инспектор;

Заняты два инспектора;

Заняты три инспектора.

Граф состояний системы приведен на рис. 2.11 .


Рис. 2.11.

На графе: - интенсивность потока грузовых автомобилей; - интенсивность проверок документов одним автоинспектором.

Моделирование проводится с целью определения части автомобилей, которые не будут проверены.

Решение

Искомая часть вероятности - вероятности занятости всех трех инспекторов. Поскольку граф состояний представляет типовую схему "гибели и размножения", то найдем , используя зависимости (2.2).

Пропускную способность этого поста автоинспекторов можно характеризовать относительной пропускной способностью :

Пример 2.6 . Для приема и обработки донесений от разведгруппы в разведотделе объединения назначена группа в составе трех офицеров. Ожидаемая интенсивность потока донесений - 15 донесений в час. Среднее время обработки одного донесения одним офицером - . Каждый офицер может принимать донесения от любой разведгруппы. Освободившийся офицер обрабатывает последнее из поступивших донесений. Поступающие донесения должны обрабатываться с вероятностью не менее 95 %.

Определить, достаточно ли назначенной группы из трех офицеров для выполнения поставленной задачи.

Решение

Группа офицеров работает как СМО с отказами, состоящая из трех каналов.

Поток донесений с интенсивностью можно считать простейшим, так как он суммарный от нескольких разведгрупп. Интенсивность обслуживания . Закон распределения неизвестен, но это несущественно, так как показано, что для систем с отказами он может быть произвольным.

Описание состояний и граф состояний СМО будут аналогичны приведенным в примере 2.5.

Поскольку граф состояний - это схема "гибели и размножения", то для нее имеются готовые выражения для предельных вероятностей состояния:

Отношение называют приведенной интенсивностью потока заявок . Физический смысл ее следующий: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

В примере .

В рассматриваемой СМО отказ наступает при занятости всех трех каналов, то есть . Тогда:

Так как вероятность отказа в обработке донесений составляет более 34 % (), то необходимо увеличить личный состав группы. Увеличим состав группы в два раза, то есть СМО будет иметь теперь шесть каналов, и рассчитаем :

Таким образом, только группа из шести офицеров сможет обрабатывать поступающие донесения с вероятностью 95 %.

2.5.2. Многоканальная СМО с ожиданием

Пример 2.7 . На участке форсирования реки имеются 15 однотипных переправочных средств. Поток поступления техники на переправу в среднем составляет 1 ед./мин, среднее время переправы одной единицы техники - 10 мин (с учетом возвращения назад переправочного средства).

Оценить основные характеристики переправы, в том числе вероятность в немедленной переправе сразу по прибытии единицы техники.

Решение

Абсолютная пропускная способность , т. е. все, что подходит к переправе, тут же практически переправляется.

Среднее число работающих переправочных средств:

Коэффициенты использования и простоя переправы:

Для решения примера была также разработана программа. Интервалы времени поступления техники на переправу, время переправы приняты распределенными по экспоненциальному закону.

Коэффициенты использования переправы после 50 прогонов практически совпадают: .

В качестве показателей эффективности СМО с отказами будем рассматривать:

А - абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;

Q - относительную пропускную способность, т.е.

Среднюю долю пришедших заявок, обслуживаемых системой;

/’отк. - вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

к - среднее число занятых каналов (для многоканальной системы). Одноканальная система с отказами. Рассмотрим задачу.

Имеется один канал, на который поступает поток заявок с ин­тенсивностью X. Поток обслуживании имеет интенсивность р. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет два состояния: 6о - канал свободен, iS) - канал занят. Размеченный граф состояний представлен на рис. 15.6.

кро - Ц/>1, V-P\ - kp0,

т.е. система вырождается в одно уравнение. Учитывая нормиро­вочное условие ра + />1=1, найдем из (15.18) предельные вероятно­сти состояний


15.5. Известно, что заявки на телефонные переговоры в телевизи­онном ателье поступают с интенсивностью X, равной 90 заявок в час, а средняя продолжительность разговора по телефону / 0б.=2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем Х=90 (1/ч), ґ 0б=2 мин. Интенсивность по­тока обслуживании |д.=1/Г об.” 1/2=0,5 (1/мин)=30 (1/ч). По (15.20) относительная пропускная способность СМО 0=ЗО/(9О+ЗО)=О,25, т.е. в среднем только 25% поступающих заявок осуществят пере­говоры по телефону. Соответственно вероятность отказа в обслу­живании составит /отк=0,75 (см. (15.21)). Абсолютная пропускная способность СМО по (15.29) Л=900,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система с отказами. Рассмотрим классическую задачу Эрланга.

Имеется п каналов, на которые поступает поток заявок с ин­тенсивностью X. Поток обслуживании имеет интенсивность ц. Найти предельные вероятности состояний системы и показатели № эффективности.

Система 5 (СМО) имеет следующие состояния (нумеруем их то числу заявок, находящихся в системе): 5о, і’г, -, ... Эп,

Где Э/с - состояние системы, когда в ней находится к заявок, т.е. іанято к каналов.

Граф состояний СМО соответствует процессу гибели и раз­множения и показан на рис. 15.7.

А _ А. __
* *5| *$!
ц * 2ц
я.

X ... А.

"зіг

Рис. 15.7

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсив­ностью X. Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости ОТ СОСТОЯНИЯ. Действительно*! если СМО находится в состоянии 5г (два канала заняты), то ощ может перейти в состояние 5) (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2ц. Аналогично суммарный поток обслуживании, переводящий СМО из состоя­ния 5з (три канала заняты) в 52, будет иметь интенсивность Зц, т.е. может освободиться любой из трех каналов и т.д.

В формуле (15.16) для схемы гибели и размножения получим для предельной вероятности состояния







Р\=РРо, Р2=^Ро, > Рк=^Ро, Рп~Ро- (15.26)

Формулы (15.25) и (15.26) для предельных вероятностей полу­чили названия формул Эрланга в честь основателя теории массо­вого обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все п каналов системы будут заняты, т.е.

0 = 1-Р07К = 1-£Ро.

Абсолютная пропускная способность:

Среднее число занятых каналов к есть математическое ожи­дание числа занятых каналов:

где рк - предельные вероятности состояний, определяемых по формулам (15.25), (15.26).

(15.31)

^ 15.6. В условиях задачи 15.5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оп­тимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле

(15.25) р=90/30=3, т.е. за время среднего (по продолжительности) телефонного разговора I „б=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) л=2, 3, 4, ... и определим по формулам (15.25), (15.28),

(15.29) для получаемой л-канальной СМО характеристики обслу­живания. Например, при п = 2 р0=^1 + 3 + 32/2!) = 0,118 » 0,12;

б = 1 - (з2/2!)- 0,118 = 0.471 * 0,47 ; Л=900,471=42,4 и т.д. Значение характеристик СМО сведем в табл. 15.1.

Таблица 15.1

По условию оптимальности 0 £ 0,9, следовательно, в телевизи­онном ателье необходимо установить 5 телефонных номеров (в этом случае 0 = 0,90 - см. табл. 15.1). При этом в час будут об­служиваться в среднем 80 заявок (А = 80,1), а среднее число заня­тых телефонных номеров (каналов) по формуле (15.30) к = = 80,1/30 = 2,б7>

1> 15.7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ

не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию п=3* А,=0,25 (1/ч), Г0б=3 (ч). Интен­сивность потока обслуживаний ц= 1/ 0б.=1 /3=0,33. Интенсив­ность нагрузки ЭВМ по формуле (15.24) р=0,25/0,33=0,75. Найдем предельные вероятности состояний:

по формуле (15.25) р0=(1+0,75+0,752/2!+0,753/3!)"*=0,476;

по формуле (15.26) ^1=0,750,476=0,357; /?2=(0»752/2!) 0,47б= =0,134; рз=(0,753/3!) 0,476=0,033, т.е. в стационарном режиме ра­боты вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким обра­зом, Яотк=рз=0,033.

По формуле (15.28) относительная пропускная способность центра 0 = 1-0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (15.29) абсолютная пропускная способность цен­тра А = 0,25-0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.

По формуле (15.30) среднее число занятых ЭВМ к = = 0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслу­живанием заявок в среднем лишь на 72,5/3 = 24,2%.

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потеря­ми от простоя дорогостоящих ЭВМ (с одной стороны, у нас вы­сокая пропускная способность СМО, а с другой стороны - зна­чительный простой каналов обслуживания) и выбрать компро­миссное решение.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Рассмотрим многоканальную систему массового обслуживания (всего каналов n), в которую поступают заявки с интенсивностью λ и обслуживаются с интенсивностью μ. Заявка, прибывшая в систему, обслуживается, если хотя бы один канал свободен. Если все каналы заняты, то очередная заявка, поступившая в систему, получает отказ и покидает СМО. Пронумеруем состояния системы по числу занятых каналов:

  • S 0 – все каналы свободны;
  • S 1 – занят один канал;
  • S 2 – занято два канала;
  • S k – занято k каналов;
  • S n – все каналы заняты.
Очевидно, что система переходит из состояния в состояние под действием входного потока заявок. Построим граф состояния для данной системы массового обслуживания.

Рис. 7.24
На рисунке 6.24 изображен граф состояний, в котором S i – номер канала; λ – интенсивность поступления заявок; μ – соответственно интенсивность обслуживания заявок. Заявки поступают в систему массового обслуживания с постоянной интенсивностью и постепенно занимают один за другим каналы; когда все каналы будут заняты, то очередная заявка, прибывшая в СМО, получит отказ и покинет систему.
Определим интенсивности потоков событий, которые переводят систему из состояния в состояние при движении как слева направо, так и справа налево по графу состояний.
Например, пусть система находится в состоянии S 1 , т. е. один канал занят, поскольку на его входе стоит заявка. Как только обслуживание заявки закончится, система перейдет в состояние S 0 .
Например, если заняты два канала, то поток обслуживания, переводящий систему из состояния S 2 в состояние S 1 будет вдвое интенсивнее: 2-μ; соответственно, если занято k каналов, интенсивность равна k-μ.

Процесс обслуживания является процессом гибели и размножения. Уравнения Колмогорова для этого частного случая будут иметь следующий вид:

(7.25)
Уравнения (7.25) называются уравнениями Эрланга .
Для того, чтобы найти значения вероятностей состояний Р 0 , Р 1 , …, Р n , необходимо определить начальные условия:
Р 0 (0) = 1, т. е. на входе системы стоит заявка;
Р 1 (0) = Р 2 (0) = … = Р n (0) = 0, т. е. в начальный момент времени система свободна.
Проинтегрировав систему дифференциальных уравнений (7.25), получим значения вероятностей состояний Р 0 (t ), Р 1 (t ), … Р n (t ).
Но гораздо больше нас интересуют предельные вероятности состояний. При t → ∞ и по формуле, полученной при рассмотрении процесса гибели и размножения, получим решение системы уравнений (7.25):

(7.26)
В этих формулах отношение интенсивности λ / μ к потоку заявок удобно обозначить ρ .Эту величину называют приведенной интенсивностью потока заявок, то есть среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом сделанных обозначений система уравнений (7.26) примет следующий вид:

(7.27)
Эти формулы для вычисления предельных вероятностей называются формулами Эрланга .
Зная все вероятности состояний СМО, найдем характеристики эффективности СМО, т. е. абсолютную пропускную способность А , относительную пропускную способность Q и вероятность отказа Р отк.
Заявка, поступившая в систему, получит отказ, если она застанет все каналы занятыми:

.
Вероятность того, что заявка будет принята к обслуживанию:

Q = 1 – Р отк,
где Q – средняя доля поступивших заявок, обслуживаемых системой, или среднее число заявок обслуженных СМО в единицу времени, отнесенное к среднему числу поступивших за это время заявок:

A=λ·Q=λ·(1-P отк)
Кроме того, одной из важнейших характеристик СМО с отказами является среднее число занятых каналов . В n -канальной СМО с отказами это число совпадает со средним числом заявок, находящихся в СМО.
Среднее число заявок k можно вычислить непосредственно через вероятности состояний Р 0 , Р 1 , … , Р n:

,
т. е. находим математическое ожидание дискретной случайной величины, которая принимает значение от 0 до n с вероятностями Р 0 , Р 1 , …, Р n .
Еще проще выразить величину k через абсолютную пропускную способность СМО, т.е. А. Величина А – среднее число заявок, которые обслуживаются системой в единицу времени. Один занятый канал обслуживает за единицу времени μ заявок, тогда среднее число занятых каналов