Функции потерь тагути. Статистические методы анализа и управления качеством

Статистические методы анализа и управления качеством

3 Экономико-математические статистические методы

3.3 Методы Тагути

Главная целевая направленность концепции или, как ее часто называют философии Тагути – это повышение качества с одновременным снижением его стоимости.

Традиционно в статистических методах качество и стоимость рассматривались раздельно, причем качество считалось главным фактором. Вначале, на этапе проектирования, определялись вредные характеристики качества, исследовался их разброс, и, если он не выходил за установленные пределы, характеристики принимались. Затем на основании полученных характеристик рассчитывалась стоимость изделия. Если она оказывалась выше заданной величины, то методом последовательных приближений уровень качества и стоимость подстраивались так, чтобы стоимость приближалась к расчетной величине.

В отличие от этого при расчетах по методике Тагути главным считается экономический фактор (стоимость). Тагути предлагает измерять качество теми потерями, которые вынуждено нести общество после того, как некоторый товар произведен и отправлен потребителю. Стоимость и качество связаны общей характеристикой, называемой функцией потерь качества, причем одновременно рассматриваются потери как со стороны потребителя (вероятность аварий, травм, отказов, невыполнения своих функций и т.д.) так и со стороны производителя (затраты времени, сил, энергии, токсичность и др.). Проектирование осуществляется таким образом, чтобы были удовлетворены обе стороны.

Согласно концепции Тогучи (рисунок 7.5), качество изделия с параметром, попадающим внутрь поля допуска, зависит от его близости к номинальному значению: когда значение параметра совпадает с номиналом, то потери не только для предприятия-потребителя, но и для всего общества равны нулю; при движении дальше по кривой они начинают возрастать.

Таким образом, потери возникают всегда, когда характеристики изделия отличаются от заданных, даже если они при этом не выходят за границы поля допуска. Чем выше качество, по концепции Тагучи, тем меньше потери общества.

Этот тезис он поясняет следующим примером. Предположим, что производитель выпускает некоторый товар, использование которого в течение всего срока службы обходится потребителю в определенную сумму. Эта сумма в результате улучшения товара может быть уменьшена, что будет стоить производителю 30 % суммы потерь от недостатка качества. В этом случае, оставшиеся 70 % - это потери, которых избегает потребитель, а, следовательно, и общество в целом. Таким образом, Тагути демонстрирует более глубокое, чем при традиционном подходе понимание меры связи между качеством и общественными потерями от его снижения.

В большинстве случаев потери от низкого качества, можно определить в виде квадратичной функции-потери, причиненные такой продукцией, возрастают как квадрат отклонения характеристики от номинального значения.

Функция потерь качества, выраженная в денежных единицах, определяется по формуле:

L = L(y) = K(y-m) 2 , (7.3)

где L – потери;

у – значение функциональной характеристики;

К – постоянная потерь, которая вычисляется с учетом расходов, которые имеет изготовитель при браковке продукции (затраты на восстановление или замену);

m – номинальное значение.

Вариация изменяется отклонением от цели или идеального значения. Поэтому ее можно найти даже для одного изделия. Если же нас интересуют потери, возникающие при выпуске партии изделий, то надо усреднить потери для всех изделий, входящих в эту партию. А такое среднее будет ничем иным, как дисперсией ( δ 2 ), или точнее средней квадратичной ошибкой, которая вычисляется по формуле:

δ 2 = , (7.4)

где n – объем партии изделий;

Среднее арифметическое значение.


= (7.5)

Тогда, δ 2 = среднее (у-m) 2 (7.6)

Следовательно, функция потерь в таком случае примет вид:

L = K δ 2 (7.7)

Очевидно, что если значение функциональной характеристики совпадает с номиналами, то потери равны 0.

Концепция Тагути разделяет жизненный цикл продукции на два этапа. К первому относится все, что предшествует началу серийного производства (научно-исследовательские и опытно-конструкторские работы, проектирование, опытное производство и отладка). Второй этап – собственно серийное производство и эксплуатация. В отличие от принятого подхода, предусматривающего контроль качества главным образом на втором этапе, а точнее - в условиях серийного производства. Тагути, считает, что основы качества закладываются в начале жизненного цикла продукции (и чем раньше, тем лучше). В связи с этим главное в исследовании проблем качества переносится на первый этап жизненного цикла продукции. Подобный подход позволяет построить работы на данном этапе таким образом, чтобы значения характеристики продукции были в наименьшей степени подвержены разбросу за счет несовершенства технологии, неоднородности сырья, вариации условий окружающей среды и других помех, неизбежных в производстве и эксплуатации.

В качестве критерия робастности, т.е. устойчивости к внешним воздействиям проектируемых объектов, Тагути предложил отношение «сигнал/шум», принятое в электросвязи. Целью разработки, которой добивался Тагути, является продукт, параметры или факторы которого установлены таким образом, что параметры качества этого продукта по возможности нечувствительны по отношению к шумам.

Под шумом понимают с одной стороны рассеяние компонентов продукта и влияний процесса, а с другой стороны, рассеяния влияния окружения и окружающей среды. Соответственно говорят о «внутреннем» и «внешнем» шуме. Отношение «сигнал/шум» – некоторая количественная мера изменчивости процесса при заданном наборе управляемых факторов. Как показал Тагути, все переменные можно разделить на два типа: управляемые факторы, т.е. переменные, которыми можно управлять и практически и экономически (сюда относятся, например, управляемые размерные параметры), и шумовые факторы, т.е. переменные, которыми на практике управлять трудно и дорого, хотя их можно сделать управляемыми в условиях планируемого эксперимента (например, вариация внутри диапазона допусков). Цель такого разделения состоит в том, чтобы найти такую комбинацию значений управляемых факторов (например, переменных конструкции или процесса), которые обеспечат проектируемому объекту максимальную устойчивость к ожидаемой вариации в шумовых факторах.

Чтобы обеспечить робастность производства надо начинать программу работ по качеству уже на стадии предварительного проекта. В ходе проектирования можно позаботится обо всех видах шумовых факторов. Если же заняться этим только на стадии конструирования или в самом ходе технологического процесса, то останется возможность воздействия лишь на те шумы, которые обусловлены неполадками технологического процесса.

Эксперименты в отношении управляемых факторов планируются и проводятся аналогично традиционным экспериментам. К примеру, используются фракционные факторные эксперименты. Отличие от традиционных экспериментов состоит в том, что каждый частный эксперимент проводится не при единых окружающих условиях, а несколько раз при различных окружающих условиях.

Основное отличие концепции Тагути от общепринятых – нацеленность не на устранение причин дисперсии значений, а на выявление контролируемых факторов и обеспечение нечувствительности продукции к влиянию шумов.

В своей простейшей форме отношение сигнал/шум – это отношение среднего значения (сигнал) к среднему квадратичному отклонению (шум), что является противоположностью известному коэффициенту вариации.

Основная формула для расчета отношения сигнал/шум имеет вид:

C/ Ш = -10 log (Q), (7.8)

где Q – параметр, который меняется в зависимости от типа характеристики.

Существует три общеупотребительных типа характеристик:

- первый тип – «лучше всего номинал», т.е. оптимальны номинальные характеристики (размеры, входное напряжение и т.п.);

- второй тип – «лучше меньше», т.е. оптимальны минимальные характеристики (например, содержание примеси в продукте);

- третий тип – «лучше больше», т.е. оптимальны максимальные характеристики (прочность, мощность и т.п.).

Независимо от типа характеристики отношение С/Ш всегда определяется следующим образом: чем больше значение С/Ш, тем лучше.

Отношение С/Ш позволяет найти оптимальный режим, который обладает наибольшей устойчивостью к воздействию неуправляемых факторов.

Процесс проектирования (разработки) по методам Тагути складывается из трех этапов:

а) Контроль качества на стадии НИР и ОКР;

Процесс проектирования изделия удобно разделить на три этапа:

1) проектирование системы, направленное на создание базового прототипа, обеспечивающего выполнение желаемых или требуемых функций. На этом этапе выбираются материалы, узлы, блоки и общая компоновка изделия;

2) выбор параметров. Этот этап введен Тагути. Задача заключается в том, чтобы выбрать значения (их часто называют уровнями) переменных, задающих как можно более близкое к желаемому поведение узлов, блоков и все системы. Выбор производится по критерию робастности при условии обеспечения номинала. Ключевую роль на этой стадии играют методы планирования эксперимента;

3) разработка допусков на готовую продукцию. Необходимо найти такие допуски, которые были бы наиболее экономически оправданными. При этом важно учитывать как потери, обусловленные отклонениями от номинала, так и потери, связанные с введением большого числа типоразмеров комплектующих узлов.

б) Контроль качества при конструировании и изготовлении технологического оборудования и оснастки;

Цель производства – экономное получение однородной продукции. На этом этапе проявляются те же три момента, но применительно к новой проблеме:

1) проектирование системы, выбор отдельных процессов и их объединение в технологическую цепочку;

2) выбор параметров, оптимизация всех переменных технологического процесса для сглаживания шумовых эффектов, появляющихся в ходе производства;

3) разработка допусков, устранение причин несоответствий.

в) Текущий контроль качества в ходе производственного процесса;

Это повседневная работа обслуживающего персонала, которая включает:

1) управление процессом – это управление условиями ведения технологического процесса;

2) управление качеством, измерение качества продукции и корректировку процесса, если это необходимо;

3) приемку – проведение, если это возможно, 100 %-ной проверки, на основании которой выбрасывают или исправляют бракованные изделия и отгружают потребителю годную продукцию.

Особенно эффективна система Тагути на этапе параметрического проектирования. Ключевую роль здесь играет использование нелинейных зависимостей, существующих между уровнями переменных и значений факторов шума.

Выбор параметров по Тагути осуществляется методами планирования эксперимента.

Методы Тагути – это целая совокупность методов, направленных на то, чтобы при разработке изделия обеспечить выпуск продукции не только с заданным номиналом, но и с минимальным разбросом вокруг этого номинала, причем разброс этот должен быть минимально нечувствительным к неизбежным колебаниям различных внешних воздействий.

    Подход Тагучи позволяет ранжироватьприоритеты в программе управления качеством

    Количественно оценить улучшение качества

Японский ученый Г. Тагучи в 1960 г. высказал мысль, что качество не может более рассматриваться как мера соответствия требованиям проектной/конструкторской документации. Соблюдения качества в терминах границ допусков недостаточно. Необходимо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

Г. Тагучи предложил, что удовлетворение требований допусков - отнюдь не достаточный критерий, чтобы судить о качестве. В конце концов, минимальными оказываются затраты на обслуживание продукта после его получения потребителем, т.е. минимизируются переделки, наладки и расходы по гарантийному обслуживанию. Управление, нацеленное лишь на достижение соответствия требованиям допусков, приводит в своим специфичным проблемам. Вместе с тем, нельзя не ометить, что допуски служили верную службу на протяжении многих лет: они позволяли производить предметы, которые были достаточно хороши в свою эпоху.

Разберем некоторые из проблем, которые могут возникнуть, если соответствие валов и отверстий не идеально. Если их сочленение соответствует более плотной посадке, в процессе работы машины возникнет избыточное трение. Для его преодоления потребуется большая мощность или расход топлива. При этом возможно возникновения локального перегрева, могущего привести к некоторым деформациям и плохой работе. Если посадка слишком свободная, то может происходить утечка смазки, которая может вызвать повреждение в других местах. Самое малое - замена смазки - может оказаться дорогостоящей процедурой как из-за стоимости самого смазывающего состава, так из-за необходимости более частой остановки машины для проведения техобслуживания. Слабая посадка может также привести к вибрациям, вызывающим шум, пульсирующие нагрузки, которые, весьма вероятно, приведут к уменьшению срока службы из-за отказов, вызванных напряжениями.

Очевидно необходим другой, качественно другой подход, который не требует искусственного определения годного и негодного, хорошего и плохого, дефектного и бездефектного. Такой подход, в свою очередь, предполагает, что существует наилучшее значение, и что любое отклонение от этого номинального значения вызывает некоторого вида потери или сложности в соответствии с типом зависимости, который был рассмотрен на примерах для диаметра валов и отверстий.

Функция потерь Тагучи как раз и предназначена для этого. Графически функция потерь Тагучи обычно представляется в форме:

Значение показателя качества откладывается на горизонтальной оси, а вертикальная ось показывает потери, или вред, или значимость, относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика качества достигает своего номинального значения. Математический вид функции Тагучи представлен в заголовке графика, где x - измеряемое значение показателя качества; x0 - ее номинальное значение; L(x) - значение функции потерь Тагучи в точке х; с - коэффициент масштаба.

График функции потерь Тагути, показанный на рисунке 34, - это парабола, вытянутая вдоль вертикальной оси и имеющая минимальное значение, равное нулю, в точке номинального значения показателя качества.

Уравнение такой параболы имеет вид:

L(х) = с(х - х0)2,

где: х - измеряемое значение показателя качества; x0 - его номинальное значение; L(х) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь). Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11*. Конечно, это не означает, что такой ее вид - наилучший выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы рассматривали конкретный случай, когда это предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие значительные отклонения.

* Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов. - Прим. авт.

Рис. 36. Представления подхода к управлению качества на основе границ допусков с помощью функции потерь Тагути

Но даже если наша параболическая модель и не вполне корректна, она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рисунке 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они скачкообразно возникают на границах поля допуска. С учетом проведенного в предшествующей главе обсуждения здесь не нет нужды в детальном рассмотрении данного вопроса, за исключением одного аспекта. Припомните сделанное нами в главе 11 наблюдение об осознании важности допусков. В любой системе, механической или бюрократической, которая спохватывается, только когда что-либо выходит за границы допусков, скоропалительные действия оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеется резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, конкретные числа, получаемые в ходе расчетов, не так уж важны. Поэтому незначительные отличия в числах не будут рассматриваться как что-то значимое. Стратегия, дающая несколько большие потери, чем другая стратегия в предположении применимости этой модели, при замене этой модели на другую может оказаться более предпочтительной для функции потерь. Но когда мы обнаруживаем различия на целые порядки (например, когда потери от одной стратегии в 10, 50 или даже 100 раз превышают потери от другой), мы можем с полной уверенностью сказать, что различия в стратегиях весьма значительны, даже с учетом того, что параболическая модель - всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Приведенный в главе 4 термин «абсолютно стабильный» предполагает, что ста

Организация как система

тистическое распределение процесса неизменно, не колеблется. В частности, это означает, что мы можем говорить в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (но только в

данной главе) символами

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(х) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок ({...}) представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение*.

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. В разных компаниях она определяется раз- личным образом, но мы будем полагать ее равной разности между верхней и нижней границами допуска деленной на разность между верхней и ниж- ней естественными пределами процесса, где для естественных пределов

процесса мы используем «истинные» границы

* Важное следствие этого - отсутствие каких-либо предположений относительно вида функции, например ее соответствия, близости нормальному (Гауссовому) распределению. Мы, однако, использовали нормальное распределение для иллюстрации на рисунках 37-40, а также в некоторых тонких деталях, вычислений в двух последних примерах данной главы. - Прим. авт.

** Это не определение Демингом воспроизводимости. Не удивительно, что он определяет воспроизводимость (стабильного) процесса просто как определение естественных пределов процесса, без ссылки на допуски. - Прим. авт.

соответственно. (Хотя это противоречит

важному замечанию Деминга касательно реальных процессов; см.: «Выход из кризиса», стр. 293.)

Далее мы будем использовать понятие средних потерь Тагути. Средние потери Тагути, применительно к выборке или партии из п изделий, для которых значения X1, х2,..., хn рассматриваемого показателя качества х равны:

для индивидуальных

наблюдений, так что знаменатель можно представить просто как

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Воспроизводимость, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва укладывается в границы допусков*. Процесс иногда называют воспроизводимым или невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значения 12/3 - уже, возможно, слишком экстравагантным, поскольку вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой**. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости от 3 до 5. И чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), надо предположить, что процесс точно настроен (центрирован), т.е. среднее процесса совпадает с номинальным значением х0. Ниже мы рассмотрим, что происходит, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути, равные 100 единицам. Вначале рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение Ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно стабильный процесс, точно настроенный

Мы видим, что повышение воспроизводимости от 1 1/3 до 12/3 уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромный эффект, описываемый в терминах порядков величин, как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рисунке 41.

* Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска, и при этом - на весьма незначительную величину. - Прим. авт.

** Модные ныне «шесть сигм» соответствуют воспроизводимости, равной 2. - Прим. авт. Воспроизводимость 1/2 3/4 1 1 1/3 12/з 2 3 5 Средние потери Тагути 400 178 100 56 36 25 11 4 174

Организация как система

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные таблиц 1 и 2.

Данные таблицы 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно стабильный процесс, центрированный посередине между номиналом и одной из границ допуска

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, прак- тически не будет давать изделий, выходящих за границы допусков. Поэто- му, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, - рассмотренный с по- зиций функции потерь Тагути он, безусловно, намного хуже, чем точно настроенный процесс; например, для эффективности, равной 2, потери в таблице 2 в десять раз превышают потери, приводимые в таблице 1.

Теперь мы рассмотрим два примера, описанные в конце предшествую- щей главы. Сначала обратимся к проблеме износа инструмента. Припомним детали: первоначально процесс настроен так, чтобы результаты измерений были близки к верхней границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к нижней границе допуска (НГД), процесс останав- ливается и инструмент заменяется. Отметим, что воспроизводимость рассмат- риваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было реализовать, иначе возможность для ма- неврирования просто отсутствовала бы. Для полноты картины ниже мы рас- смотрели также случай, соответствующий единичной воспроизводимости.

На рисунке 37 показан случай, когда воспроизводимость процесса рав- на 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16

соответственно, а стандартное отклонение Воспроизводимость 1/2 1/3 1 1 1/3 12/з 2 3 Средние потери Тагути 625 403 325 281 261 250 236 - равным 1/3 (если бы

ла равна 1, то воспроизводимость процесса также была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что рас- пределение попадает как раз ниже ВГД. Предположим, что среднее процес- са с постоянной скоростью смещается вниз, к значению 11, и в этот самый момент мы останавливаем процесс, меняем инструмент и вновь настраи- ваем его на 15. (Если бы эффективность процесса была 2 вместо 3, т.е.

0,5, тогда мы были бы должны первоначально установить центр про-

цесса на 14,5 и позволить ему затем смещаться вниз, до 11,5, когда пора

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Рис. 37. Процесс с дрейфом. Воспроизводимость равна 3

Рис. 38. Процесс с дрейфом. Воспроизводимость равна 2

заменять инструмент. Этот случай представлен на рисунке 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми «управляют» таким образом, представлены в таблице За. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Таблица За. Процесс с постоянной скоростью дрейфа.

Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска

Но что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в два раза большими, чем для процесса с воспроизводимостью, равной 1! По Воспроизводимость 1 11/3 12/з 2 3 5 Средние потери Тагути 100 75 84 100 144 196 176

Организация как система

здравом размышлении причина такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, таким образом, он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели соответствия требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы допусков. Увеличение показателя воспроизводимости процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает потребность в замене инструмента. Однако, как мы теперь видим, эта выгода ложна с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаще. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44 вместо 144, хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае, в соответствии с таблицей 1, средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до возможного предела, прежде чем сменить инструмент. Таблица ЗБ показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в таблице За.

Таблица ЗБ. Процесс с постоянной скоростью дрейфа.

Замена инструмента происходит в два раза чаще, чем в таблице За, при этом процесс настраивается как можно ближе к номиналу

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими в таблице За, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой. Воспроизводимость 1 1 1/3 12/з 2 3 5 Средние потери Тагути 100 61 48 44 44 52 Глава 12. Функция потерь Тагути: более подробное рассмотрение

И наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал, в силу той очевидной логики, что легче укоротить длинный пруток, чем удлинить короткий. Давайте смоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезок, равный интервалу допуска (т.е. разности между ВГД и НГД). Конечно, это тоже весьма упрощенная модель, но результат очень интересный и достаточно хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рисунке 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рисунке 40.

Отсюда становится понятно, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины

Рис. 40. Операция обрубки. Распределение после переделки

Организация как система

оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеет длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Таблица 4. Операция обрубки центрирована на ВГД.

Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД

Как мы видим, система, которая вполне приемлема с точки зрения удовлетворения требованиям допусков, дает плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, на рисунке 41 показаны графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия, которые, однако, скрыты от нас, если мы удовлетворяемся лишь требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути Воспроизводимость 1/2 3/4 1 1 1/3 1 2/3 2 3 5 Средние потери Тагути 343 439 521 597 649 686 752 808

График функции потерь Тагути, показанный на рис. 34, - это парабола, имеющая вертикальную ось и минимальное значение, равное нулю, в точке номинального значения показателя качества. Уравнение такой параболы имеет вид:

где х - измеряемое значение показателя качества, Х0 - ее номинальное значение, L(x) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11 (Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов.). Конечно, это не означает, что такой ее вид - "наилучший" выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы как раз рассмотрели конкретный случай, когда данное предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие большие отклонения.

Рис. 36. Представления с помощью функции потерь Тагути подхода к управлению качества на основе границ допусков

Но даже если наша параболическая модель и не вполне "корректна", она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рис. 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они возникают скачками на границах поля допуска. С учетом обсуждения, проведенного в предшествующей главе, нет необходимости детализировать здесь далее рассмотрение этого вопроса, за исключением следующего аспекта. Припомните наблюдение, сделанное нами в главе 11, об осознании важности допусков, и само собой приходит толкование. В любой системе, будь то механической или бюрократической, которая "спохватывается" только тогда, когда что-либо выходит за границы допусков, - сами такие скоропалительные действия впопыхах оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеет место резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, сами конкретные числа, получаемые в ходе расчетов, не так уж важны. Незначительные отличия в числах не будут поэтому рассматриваться как что-то значимое; стратегия, которая дает несколько большие потери, чем какая-то другая стратегия в предположении применимости этой модели, для функции потерь вполне может оказаться более предпочтительной при замене этой модели на другую. Но когда мы обнаруживаем различия на целые порядки, когда, например, потери от одной стратегии в 10, 50 или даже 100 раз больше, чем от другой, то тогда мы можем с полной уверенностью сказать, что различия в стратегиях действительно весьма значительны, даже с учетом того, что параболическая модель всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Припомните, в главе 4 термин "абсолютно стабильный" предполагает, что статистическое распределение процесса неизменно, не "колеблется", в частности, это означает, что мы можем говорить тогда в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (только в данной главе) символами и и о соответственно. (Это, конечно, противоречит важному замечанию Деминга касательно реальных процессов, сделанному им на 334 стр. в "Выходе из кризиса".)

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(x) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок {...} представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что таким образом средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение. (Важным следствием этого является то, что не надо делать какие-либо предположения относительно вида функции, например, о ее соответствии, близости нормальному (Гауссовому) распределению. Мы, однако, исследовали нормальное распределение для иллюстрации на рис. 37-40, а также в деталях процесса, вычисленных в последних двух примерах данной главы.)

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. Она определяется в разных компаниях различным образом, но мы будем ее полагать равной: разность между Верхней и Нижней Границами допуска / разность между Верхней и Нижней естественными Границами процесса, где для "Естественных Границ Процесса" мы используем "истинные" границы 3 о для индивидуальных наблюдений, так что знаменатель можно представить просто как 6 о.

Эффективность, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва-едва укладывается в границы допусков (Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска и при этом на весьма незначительную величину.). Процесс иногда называют воспроизводимым и невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значение 1 1/3 уже, возможно, слишком экстравагантным, т. к. вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости равными от 3 до 5. И для того, чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), необходимо предположить, что процесс точно настроен (центрирован), т. е. среднее процесса совпадает с номинальным значением х. Мы рассмотрим ниже, что случается, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути равные 100 единицам. Вначале давайте рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно Стабильный Процесс, Точно Настроенный

Воспроизводимость

Средние потери Тагути

Мы видим, что повышение воспроизводимости от 1/3 до 1 1/3 в самом деле уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромные снижения, описываемые в терминах "порядков величин", как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рис. 41.

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные табл. 1 и табл. 2, приводимой ниже. Данные в табл. 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно Стабильный Процесс, центрироваанный посередине между номиналом и одной из границ допуска

Воспроизводимость

Средние потери Тагути

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, практически не будет давать изделий, выходящих за границы допусков. Поэтому, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, то рассмотренный с позиций функции потерь Тагути он, безусловно, намного хуже по сравнению с точно настроенным процессом, например, для эффективности равной 2, потери в табл. 2 в десять раз превышают потери, приводимые в табл. 1.

Сейчас мы приступаем к рассмотрению двух примеров, описанных в конце предшествующей главы. Сначала обратимся к проблеме износа инструмента. Давайте припомним детали. Процесс первоначально настроен так, чтобы результаты измерений были близки к Верхней Границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к Нижней Границе допуска (НГД), процесс останавливается и инструмент меняется. Отметим здесь, что воспроизводимость рассматриваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было бы реализовать, иначе возможность для маневрирования вообще бы отсутствовала. Для полноты картины ниже мы рассмотрели также случай, соответствующий единичной воспроизводимости.

Рис. 37. Процесс с дрейфом. Воспроизводимость = 3

На рис. 37 показан случай, когда воспроизводимость процесса равна 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16 соответственно, а стандартное отклонение о равным 1/3 (если бы о была равна 1, то воспроизводимость процесса тоже была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что распределение попадает как раз ниже ВГД. Предположим, что среднее процесса с постоянной скоростью смещается вниз, к значению 1, и в этот самый момент мы останавливаем процесс, меняем инструмент и настраиваем его вновь на 15. (Если бы эффективность процесса была 2 вместо 3, т. е. о = 0,5, тогда мы были бы должны первоначально установить центр процесса на 14,5 и позволить ему затем смещаться вниз до 11,5, когда пора заменять инструмент. Этот случай представлен на рис. 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми "управляют" таким образом, представлены в табл. 3А. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Рис. 38. Процесс с дрейфом. Воспроизводимость = 2

Таблица 3A. Процесс с постоянной скоростью дрейфа. Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска.

Воспроизводимость

Средние потери Тагути

Однако что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в 2 раза большими, чем для процесса с воспроизводимостью, равной 1! По здравому размышлению причина для такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, и таким образом он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же самое справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели удовлетворения требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы технических требований. Увеличение показателя эффективности процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает необходимость замены инструмента; однако, как мы теперь видим, эта выгода является ложной с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаше. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44, вместо 144 - хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае в соответствии с табл. 1 средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до предела возможного, прежде чем сменить инструмент. Таблица 3В показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в табл. 3А.

Таблица 3B. Процесс с постоянной скоростью дрейфа. Замена инструмента происходит в два раза чаще, чем в табл. 3A, при этом процесс настраивается как можно ближе к номиналу.

Воспроизводимость

Средние потери Тагути

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими табл. 3A, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой.

И, наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал в силу той очевидной логики, что легче сделать длинный пруток короче, чем удлинить короткий! Давайте промоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезочек, равный интервалу допуска (т. е. разности между ВГД и НГД). Конечно же, это опять весьма упрощенная модель, но результат очень интересный и очень хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Рис. 40. Операция обрубки. Распределение после переделки

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рис. 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рис. 40.

Таблица 4. Операция обрубки, центрирована на ВГД. Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД.

Воспроизводимость

Средние потери Тагути

Отсюда немедленно становится очевидным, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеют длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Как мы видим, система, которая вполне имеет смысл с точки зрения удовлетворения требованиям допусков, дает абсолютно плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, рисунок 41 показывает нам графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия - различия, которые, однако, скрыты от нас, если мы удовлетворяемся только требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути

Белгородский государственный технологический

университет им. В.Г. Шухова

УПРАВЛЕНИЕ КАЧЕСТВОМ ПРОДУКЦИИ

МЕТОДОМ ТАГУТИ

Известный японский статистик Гэнити Тагути, лауреат самых престижных наград в области качества (премия им. Деминга присуждалась ему 4 раза), изучал вопросы совершенствования промышленных процессов и продукции. Он развил идеи математической статистики, относящиеся, в частности, к статистическим методам планирования эксперимента и контроля качества.

Гэнити Тагути в свое время разработал собственную систему, сочетающую инженерные и статистические методы, нацеленную на быстрое повышение экономических показателей компании и качества продукции путем оптимизации конструкции изделий и процессов их изготовления. Эта методология, включающая и общую философию, и набор практических инструментов управления качеством, получила название "Методы Тагути".

Тагути не согласен с общепризнанным определением качества: "нахождение параметров изделий в установленных пределах". Такое определение позволяет считать, что два изделия мало отличаются друг от друга, если параметры одного находятся вблизи границы допуска, а параметры другого - немного выходят за эти границы. Тем не менее первое из них считается "хорошим", а второе - "плохим". В отличие от традиционного подхода, методы Тагути нацелены на обеспечение минимальных отклонений параметров изделий от заданных, при которых не происходит роста затрат, обусловленных качеством. Тагути предлагает оценивать качество величиной ущерба, наносимого обществу, с момента поставки продукции - чем меньше этот ущерб, тем выше качество. Основу его концепции обеспечения качества составляет теория потерь или ущерба от ненадлежащего качества.

Рис. 1 Допусковое мышление

Тагути доказал, что стоимость отклонения от целевого значения (номинала) возрастает по квадратичному закону по мере удаления от цели и предусматривает наличие потерь за пределами допуска (рис. 1).

Тагути предложил характеризовать производимые изделия устойчивостью технических характеристик и объединил стоимостные и качественные показатели в так называемую функцию потерь, по которой качественными считаются только такие изделия, показатели качества которых полностью совпадают с их номинальными значениями, а всякое отклонение от номинала сопряжено с той или иной потерей качества продукции. Функция одновременно учитывает потери, как со стороны потребителя, так и со стороны производителя.

Функция потерь имеет следующий вид:

, (1)

где

L - потери для общества (величина, учитывающая потери потребителя и производителя от бракованной продукции);

K - постоянная потерь, определяемая с учетом расходов производителя изделий; y -значение измеряемой функциональной характеристики;

m -номинальное значение соответствующей функциональной характеристики;

(y - m ) - отклонение от номинала.

Практическое применение функции потерь заключается в том, что она позволяет определить эффективность любого мероприятия, направленного на увеличение качества (рис. 2).

Рис. 2 Мышление через функцию потерь

Функция потерь качества является параболой с вершиной (потери равны нулю) в точке наилучшего значения (номинала), при удалении от номинала потери возрастают и на границе поля достигают своего максимального значения - потери от замены изделия.

Если производится продукция, соответствующая целевым значениям, это приводит к снижению затрат на качество, уменьшению возможных затрат, связанных с приемочными испытаниями, а также к снижению вероятности того, что в будущем компания утратит свою репутацию.

Важный аспект методологии Тагути состоит в том, что он не предполагает управлять каждым фактором, учитываемым в технологическом процессе или при изготовлении продукта. Идея состоит в том, чтобы влиять только на те факторы, которые способны привести к снижению затрат.