Симферопольской тэц. Альтернативная энергетика Крыма


Технологические и производственные возможности ЗАО«Опытное машиностроительное производство» , а также накопленный опыт изготовления теплообменного оборудования, позволяют нам производить качественные теплообменные аппараты с широким спектром применения в различных отраслях промышленности.

Возможности производства по изготовлению теплообменных аппаратов:

  • изготовление теплообменников как по чертежам заказчика, так и по различным стандартам, ГОСТам и ТУ, в том числе производство кожухотрубных, кожухотрубчатых теплообменников
  • изготовление теплообменников, как из материала Исполнителя, так и из материала заказчика, с проведением входного контроля материалов
  • проведение предусмотренных технической документацией гидравлических испытаний до 10 МПа (100 кг/см2)
  • неразрушающий контроль сварных соединений (капиллярный, ультразвуковой (УЗК), рентгенографический) проводимый квалифицированными специалистами собственной аттестованной лаборатории
  • наличие грузоподъемного оборудования в сочетании с железнодорожными путями прямо в цехе, позволяющими производить и отгружать теплообменные аппараты и конденсационные установки весом свыше 100 тонн
  • нанесение (по желанию заказчика) защитных антикоррозионных покрытий для защиты от химически агрессивных сред и т.п.
  • выполнение эффективной теплоизоляции теплообменных аппаратов и конденсационных установок (по желанию заказчика)
  • наличие квалифицированного персонала



Наши преимущества:

  • Изделие отвечает техническим требованиям заказчика
  • Использование всего накопленного опыта компании
  • Гибкое взаимодействие с заказчиком
  • Отсутствие трудностей согласования
  • Гарантия качества изготовления
  • Непрерывное совершенствование технологии изготовления и производственных возможностей


Теплообменный аппарат (или теплообменник) - это устройство, в котором осуществляется передача тепла от одной рабочей среды к другой.

В качестве теплоносителей могут быть жидкости, газы, пары. В теплообменниках в зависимости от назначения протекают процессы нагревания или охлаждения, кипения, конденсации и многие другие технологические используемые в металлургической, нефтехимической, нефтеперерабатывающей, газовой, химической и других отраслях промышленности (в т. ч. в энергетике) и коммунальном хозяйстве.

По способу передачи тепла теплообменники подразделяются на смесительные и поверхностные .

Теплообменные аппараты со смешиванием теплоносителей, в таких смесительных теплообменниках теплоносители контактируют непосредственно и смешиваются, при этом теплообмен сопровождается массообменном.

В поверхностных теплообменниках передача тепла происходит через разделительную твердую стенку и между теплоносителями отсутствует непосредственный контакт.

Различают также рекуперативные и регенеративные теплообменные аппараты.

Рекуперативные теплообменники - это теплообменники, в которых холодный и горячий теплоносители движутся в разных каналах, а теплообмен происходит через стенку между ними.

В регенеративных теплообменных аппаратах теплоносители контактируют с твердой стенкой поочередно.

Теплота накапливается в стенке при контакте с горячим теплоносителем и отдается при контакте с холодным/

Смесительные теплообменники

Смесительные (контактные) теплообменники - это теплообменники со смешением сред, предназначенные для осуществления теплообменных и массообменных процессов путем прямого смешения.

В этом заключается их главное отличие от поверхностных теплообменников. Пароводяные струйные аппараты (ПСА) , использующие в своей основе струйный инжектор, являются наиболее распространенными смесительными теплообменниками струйного типа. Конструкция смесительных теплообменных аппаратов проще поверхностных, тепло используется более полно вследствие прямого контакта теплоносителей.

Однако следует заметить, что смесительные теплообменники со смешением сред пригодны, только если технологический процесс допускает такое смешение. В настоящее время тепловые схемы крупных энергоблоков мощностью от 300 до 1200 МВТ для ТЭЦ и АЭС содержат подогреватели конденсата смешивающего типа. Применение таких аппаратов повышает общий КПД турбоустановки. Однако, дополнительное число насосов для перекачки конденсата, требования к защите от заброса воды, сложности размещения подогревателей ограничивают широкое распространение смешивающих подогревателей. Широкое применение данный тип теплообменников находит также в установках утилизации тепла дымовых газов, отработанного пара и т.п.

В промышленности наиболее распространены поверхностные рекуперативные теплообменники:

  • кожухотрубные теплообменники
  • пластинчато-ребристые теплообменники
  • пластинчатые теплообменники
  • ребристые теплообменники
  • объемные и погружные теплообменники
  • витые теплообменники
  • змеевиковые
  • спиральные теплообменники
  • двухтрубные (типа «труба в трубе») теплообменники
Кожухотрубные теплообменники являются наиболее распространенными аппаратами. Они используются в различных технологических процессах, сопровождающихся теплообменом между жидкостями, парами и газами, в том числе при изменении агрегатного состояния. Теплообменные аппараты кожухотрубчатые состоят из трубных пучков, закрепленных в трубных досках с промежуточными перегородками, корпусов (кожухов), крышек, камер, патрубков и опор. Поверхность теплопередачи таких теплообменных кожухотрубчатых аппаратов может достигать нескольких десятков тысяч квадратных метров и состоять из десятков тысяч труб. В конструктивной схеме кожухотрубных теплообменников обеспечивается разобщение внутритрубного и межтрубного пространства, причем каждое из них может быть разделено на несколько ходов рабочей среды (теплоносителя).

По своей конструктивной схеме кожухотрубные подогреватели могут быть:

  • кожухотрубчатые теплообменники с жестким прикреплением концов труб в основных (концевых) трубных досках;
  • кожухотрубчатые теплообменники с промежуточными поперечными перегородками по длине труб (между основными трубными досками);
  • кожухотрубчатые теплообменники с линзовым компенсатором на корпусе;
  • кожухотрубчатые теплообменники с U-образными трубками;
  • кожухотрубчатые теплообменники с плавающей камерой;
  • кожухотрубчатые теплообменники с сильфонным компенсатором на подводящем патрубке;
  • кожухотрубчатые теплообменники с поперечным расположением пучков трубок относительно корпуса.
Достоинства кожухотрубных теплообменников:
  • простота конструкции, технологии изготовления монтажа и ремонта
  • бóльшая тепловая мощность аппаратов по сравнению с пластинчатыми
  • лучше приспособлены для очистки, что заметно облегчает обслуживание и повышает срок их службы (процесс очистки особенно эффективен с применением систем шариковой очистки (сшо))
  • ремонтопригодность и его экономическая целесообразность замены отдельных частей аппаратов
  • как следствие всего перечисленного, меньшая стоимость эксплуатации кожухотрубных теплообменников
В настоящее время стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, что рост гидравлического сопротивления ненамного превышает рост теплоотдачи вследствие применения завихрителей потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, повышающие теплоотдачу в трубках. Эта технология, в дополнение к таким важным показателям как высокая надежность и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами .

Ребристые теплообменники применяются с целью увеличения теплопередачи через металлические стенки ребер в случаях, когда коэффициенты теплоотдачи по обеим сторонам стенки сильно различаются: например, при передаче тепла от конденсирующегося пара к стенке и от стенки к нагреваемому воздуху. Оребрение поверхности теплообмена вводится со стороны стенки с более низким коэффициентом теплоотдачи. В промышленности используются теплообменные аппараты с различными видами оребрения: шайбовое, пластинчатое, спиральное, проволочное, плавниковое, поперечное и продольное разрезное и т.д. Для оребрения теплообменных аппаратов выбирают тонкостенный, теплопроводный материал, прикрепляемый к стенке сваркой, пайкой, накаткой и т.п.

Пластинчатые теплообменники используются для осуществления теплообмена между газами и другими теплоносителями обычно с низкими значениями коэффициентов теплоотдачи. Конструктивно эти аппараты набирают из штампованных пластин, образующих между собой с одной стороны пластины каналы для одного теплоносителя, а с другой - для другого.

Пластины разделяются прокладками между ними, могут свариваться попарно и составлять необходимую поверхность теплообмена.

Достоинствами пластинчатых теплообменников является их компактность, значительная, удельная к объему поверхность нагрева. Хорошая тепловая эффективность для ряда сочетаний параметров теплоносителей.

К недостаткам пластинчатой конструкции можно отнести невозможность использования при высоких давлениях сред, небольшую тепловую мощность, ограниченный срок службы, трудности эксплуатации, очистки, герметичность и ремонт. Повышенные требования к качеству теплоносителей.

Пластинчато-ребристые теплообменники состоят из системы разделительных пластин, между которыми находятся ребристые поверхности - насадки, присоединенные к пластинам. Пластинчато-ребристые теплообменники,как правило, неразборные и различаются по типу ребер (гладкие, волнистые, прерывистые и др.), а также по направлению рабочих сред (прямоточные, противоточные, перекрестные).

В объемных теплообменниках (кожухотрубчатые теплообменники с U-образными трубками) одна из сред сосредоточена в незамкнутом объеме или в сосуде большого объема, а вторая протекает через трубный пучок прямых, U-образных или спиральных труб. Используются объемные теплообменники с погруженным трубчатым змеевиком или пучком прямых труб.

Витые теплообменники распространены в холодильной и химической промышленности. В таких аппаратах удается разместить большую поверхность теплообмена, чем в прямотрубных аппаратах. Витой теплообменник состоит из центральной трубы (сердечника) на которую навивают по спирали пучки труб. Шаг навивки и расстояние между трубами выбирается из условия равной длины труб. В разных рядах труб разное направление навивки (левое и правое). Дистанционные прокладки устанавливают зазор между трубами. Витые трубные пучки обеспечивают температурную компенсацию и плотность в местах их заделки. Как правило, витые трубные системы выполняются многозаходными.

Змеевиковые теплообменники являются кожухотрубными аппаратами, содержащими змеевиковые трубы, витки которых располагаются по винтовой линии. Змеевиков присоединяемых к коллектору подвода теплоносителя может быть несколько. В пароводяных теплообменниках греющая среда-пар обычно подводится сверху, а охлажденная среда-вода во внутритрубное пространство снизу. Также аппараты широко применяются в системах подогрева конденсата и питательной воды паротурбинных установок, к примеру кожухотрубный теплообменник конденсатор, однако в настоящее время все больше вытесняются «камерными» теплообменниками, содержащими камеры для подвода теплоносителя. Одновременно появляются проектно-конструкторские разработки современных коллекторно-спиральных пароводяных теплообменников для использования в системе подогрева питательной воды турбоустановок ТЭС и АЭС. По мнению разработчиков, применение таких аппаратов может дать весьма значительное снижение металлоемкости всего теплообменного оборудования паротурбинных установок.

Спиральные теплообменники являются одними из простых по конструкции аппаратов и состоят из двух стальных лент, навитых по спирали вокруг центральной разделительной перегородки и образующих два параллельных спиральных канала для рабочих сред. Спиральные каналы прямоугольного сечения ограничены с торцов крышками, в которых имеются патрубки для подвода или отвода среды. Также аппараты обычно применяют при небольших расходах, а также разностях давлений и температур рабочих сред. В последние годы также аппараты вытесняются пластинчатыми теплообменниками.

Двухтрубные теплообменники типа «труба в трубе» давно применяются в промышленности. Также аппараты удобны для нагрева и охлаждения рабочих сред, находящихся под высоким давлением. В этих теплообменниках достигаются хорошие коэффициенты теплопередачи. В изготовлении, при монтаже и эксплуатации они довольно просты, причем при отсутствии необходимости чистки они изготавливаются сварными. Однако, несмотря на простоту конструкции, такие теплообменники довольно громоздки, их удельная металлоемкость по сравнению с другими аппаратами высока. По этой причине область применения таких теплообменников непрерывно сокращается.

Наш производственный опыт показывает, что важным фактором, влияющим на качество изготовления такого сложного оборудования, как теплообменные аппараты, работающие под давлением, является не только наличие технической документации, но и технически грамотно разработанная технология изготовления . Хотим обратить внимание на то, что в отличие от технической документации и производственного оборудования, технология изготовления - это не тиражируемая категория; она привязана к конкретному производству, что дает последнему серьезные преимущества перед конкурентами, не имеющими собственной, проверенной временем технологии. Очевидно, что уже освоенная и хорошо себя зарекомендовавшая производственная технология позволяет в кратчайшие сроки начинать изготовление серийных и малосерийных изделий, а так же быстро осваивать производство опытных единичных образцов продукции.

Главные конденсаторы турбин

Служат для создания вакуума в выхлопном патрубке турбины, сохранения, первичной деаэрации и возврата в цикл конденсата пара, поступающего из турбины. Одновременно конденсатор является частью системы котельной установки станции. Вакуум в конденсаторе создается при помощи конденсации отработавшего в турбине пара, в результате резкого уменьшения удельного объема при превращении пара в конденсат и отсоса неконденсирующихся газов из конденсатора.
В современных мощных паротурбинных установках применяются почти исключительно конденсаторы поверхностного типа , в которых охлаждающая вода прокачивается внутри труб трубных пучков, расположенных в паровом пространстве конденсаторов. Пар, поступающий из турбины, соприкасается с холодной поверхностью труб и конденсируется на них, отдавая теплоту парообразования протекающей внутри труб охлаждающей воде. Конденсат стекает в нижнюю часть конденсатора и откачивается из конденсатосборника конденсатными насосами. Воздух и неконденсирующиеся газы, проникающие через неплотности установки, удаляются из конденсатора эжекторами . Конденсат пара используется для питания котлов и представляет большую ценность, т.к. подвергается высокой степени очистки. Конденсатор не должен допускать переохлаждения конденсата и должен иметь минимальное сопротивление по охлаждающей воде. Теоретически возможный вакуум в конденсаторе зависит только от температуры и располагаемого количества охлаждающей воды. Практический вакуум в эксплуатации зависит от совершенства конструкции конденсатора, вакуумной плотности части турбоустановки, находящейся под вакуумом и чистоты трубок конденсатора.




Конструкция конденсаторов , для турбин различной мощности от 25 до 1200 МВт, определяется расположением в установке и конструкцией фундамента, например, если поверхность теплопередачи конденсатора достигает 8800 м2 и содержит до 84000 трубок, то масса такого конденсатора достигает 2000 т.
Все конденсаторы представляют собой сложную пространственную конструкцию, находящуюся под глубоким вакуумом. Корпуса конденсаторов выполняются из листовой углеродистой стали и имеют внутреннее оребрение, а также усилены продольными и поперечными связями из круглой стали. Охлаждающие трубки концами закрепляются в основных трубных досках и имеют опоры в промежуточных трубных перегородках. Расстановка перегородок в корпусе выполняется по расчету на вибрацию, чтобы исключить опасные формы колебаний трубок. Водяные камеры, как правило, привариваются и имеют открывающие крышки для замены трубок. Для доступа внутрь водяных камер для мелких работ крышки имеют люки. В верхней части конденсатор могут быть встроены один или два регенеративных подогревателя низкого давления . Конденсаторы имеют, как правило, целый ряд приспособлений для приема пара и воды из различного оборудования турбоустановки, необходимых для осуществления цикла.

ЗАО «Опытное машиностроительное производство» предлагает своим клиентам не просто изготовление технологического оборудования, не только услуги собственной производственной базы, но и многолетний опыт, проверенные производственные технологии и готовность квалифицированного персонала решать именно Ваши задачи.

Проще всего понять, как работает теплообменник кожухотрубного типа, можно, изучив его принципиальную схему:

Рисунок 1. Принцип работы кожухотрубного теплообменника. Однако, данная схема иллюстрирует лишь уже сказанное: два раздельных, не смешивающихся теплообменных потока, проходящих внутри кожуха и сквозь трубный пучок. Куда нагляднее будет, если схему сделать анимированной.

Рисунок 2. Анимация работы кожухотрубчатого теплообменника. Данная иллюстрация демонстрирует не только принцип работы и устройство теплообменного аппарата, но и то, как выглядит теплообменник снаружи и внутри. Он состоит из цилиндрического кожуха с двумя штуцерами, в нём и двух распределительных камер по обе стороны кожуха.

Трубы собраны вместе и удерживаются внутри кожуха посредством двух трубных решёток – цельнометаллических дисков с просверленными в них отверстиями; трубные решётки отделяют распределительные камеры от корпуса теплообменника. Трубы на трубной решётке могут крепиться методами сварки, развальцовки или сочетанием этих двух методов.

Рисунок 3. Трубная решётка с развальцованными трубами пучка. Первый теплоноситель попадает сразу в кожух через впускной штуцер и покидает его через штуцер выпуска. Второй теплоноситель вначале подаётся в распределительную камеру, откуда направляется в трубный пучок. Попадая во вторую распределительную камеру, поток «разворачивается» и вновь проходит сквозь трубы к первой распределительной камере, откуда выходит через собственный выпускной штуцер. При этом, обратный поток направляется через другую часть трубного пучка, чтобы не препятствовать прохождению «прямого» потока.

Технические нюансы

1. Следует подчеркнуть, что на схемах 1 и 2 представлена работа двухходового теплообменника (теплоноситель проходит по пучку труб в два хода – прямым и обратным потоком). Таким образом, достигается улучшенная теплоотдача при той же длине труб и корпуса обменника; правда, при этом увеличивается его диаметр за счёт увеличения количества труб в трубном пучке. Есть более простые модели, у которых теплоноситель проходит сквозь трубный пучок лишь в одном направлении:

Рисунок 4. Принципиальная схема одноходового теплообменника. Кроме одно- и двухходовых теплообменников, существуют также четырёх- шести- и восьмиходовые, которые используются в зависимости от специфики конкретных задач.

2. На анимированной схеме 2 представлена работа теплообменника с установленными внутри кожуха перегородками, направляющими поток теплоносителя по зигзагообразной траектории. Таким образом, обеспечивается перекрёстный ход теплоносителей, при котором «внешний» теплоноситель омывает трубы пучка перпендикулярно их направленности, что также повышает теплоотдачу. Существуют модели с более простой конструкцией, у которых теплоноситель проходит в кожухе параллельно трубам (см. схемы 1 и 4).

3. Поскольку коэффициент теплопередачи зависит не только от траектории потоков рабочих сред, но и от площади их взаимодействия (в данном случае – от совокупной площади всех труб трубного пучка), а также от скоростей теплоносителей, можно увеличить теплоотдачу за счёт применения труб со специальными устройствами – турбулизаторами.


Рисунок 5. Трубы для кожухотрубчатого теплообменника с волнообразной накаткой. Применение таких труб с турбулизаторами в сравнении с традиционными цилиндрическими трубами позволяет увеличить тепловую мощность агрегата на 15 – 25 процентов; кроме того, за счёт возникновения в них вихревых процессов, происходит самоочистка внутренней поверхности труб от минеральных отложений.

Следует заметить, что характеристики теплоотдачи в значительно мере зависит от материала труб, который должен обладать хорошей теплопроводностью, способностью выдерживать высокое давление рабочей среды и быть коррозионно стойким. По совокупности этих требований для пресной воды, пара и масла наилучшим выбором являются современные марки высококачественной нержавеющей стали; для морской или хлорированной воды – латунь, медь, мельхиор и т.д.

Производит стандартные и модернизированные кожухотрубные теплообменники по современным технологиям для новых устанавливаемых линий, а также выпускает агрегаты, предназначенные для замены выработавших свой ресурс теплообменников. и его изготовление производятся по индивидуальным заказам, с учётом всех параметров и требований конкретной технологической ситуации.

Техническое описание

Кожухо-трубные теплообменники производства Геоклима – достаточно сложное устройство, и существует множество его разновидностей. Относятся к виду рекуперативных. Деление теплообменников на виды производится в зависимости от направления движения теплоносителя.

Виды кожухотрубных теплообменников:

  • перекрестноточными;
  • противоточными;
  • прямоточными.

Кожухотрубные теплообменники получили такое название потому, что тонкие трубки, по которым движется теплоноситель, находятся в середине основного кожуха. От того, какое количество трубок находится в середине кожуха, зависит то, с какой скоростью будет двигаться вещество. От скорости движения вещества будет зависеть, в свою очередь, коэффициент теплопередачи. Кожухотрубные теплообменные аппараты CROM / GEOCLIMA служат для нагревания/охлаждения, конденсации/испарения разных жидких и парообразных сред в разных процессах производства.

Производство кожухо-трубных теплообменников в России, делает следующие типы аппаратов:

  • Теплообменники кожухотрубные Геоклима для сжатых газов
  • Теплообменники кожухотрубные Геоклима для рекуперации тепла выхлопных газов
  • Теплообменники кожухотрубные Геоклима для охлаждения биогаза
  • Теплообменники кожухотрубные Геоклима – пар/вода
  • Теплообменники кожухотрубные Геоклима для CO 2
  • Теплообменники кожухотрубные Геоклима из специальных материалов (inox 304, 316, 316L, 316Ti, 321, 90Cu10NiFe, 70Cu30NiFe, углеродная сталь, титан)
  • Теплообменники кожухотрубные Геоклима с коаксиальными трубками. (используются для нагрева охлаждения газов, масел, агрессивных сред, рекуперации тепла отходящих дымовых газов. Рабочие условия кожухотрубных теплообменников с коаксиальными трубками CROM; давление -300АТМ, температура +600*С.
  • Теплообменники кожухотрубные Геоклима затопленного типа (циркуляция хладогента происходит в межтрубном пространстве, а циркуляция воды происходит по трубам).

Особенности

Применение передовых разработок и технологий при создании кожухотрубных теплообменников обеспечивают предельную эффективность теплообмена при одинаковых размерах.

Для изготовления кожухотрубных теплообменников используются легированные и высокопрочные стали. Такие виды сталей используется потому, что данные устройства, как правило, работают в крайне агрессивной среде, которая способна вызывать коррозию.

Теплообменники разделяются также на типы. Производят следующие типы данных устройств:

  • c температурным кожуховым компенсатором;
  • c неподвижными трубками;
  • c U-образными трубками;
  • c плавающей головкой;
  • возможно также комплексное применение различных конструкционных решений, например, в одной конструкции могут быть использованы плавающая головка и термокомпенсатор.

Кожухотрубные аппараты по функциям классифицируются:

  • Теплообменники универсальные;
  • Испарители;
  • Конденсаторы;
  • Холодильники;

По расположению теплообменники бывают:

  • Горизонтальные;
  • Вертикальные

Отличительные свойства оборудования:
Основным, и наиболее весомым достоинством является высокая стойкость данного типа агрегатов к гидроударам. Большинство производимых сегодня видов теплообменников таким качеством не обладают.

Вторым преимуществом является то, что кожухотрубные агрегаты не нуждаются в чистой среде. Большинство приборов в агрессивных средах работают нестабильно. Например, пластинчатые теплообменники таким свойством не обладают, и способны работать исключительно в чистых средах.

Третьим весомым преимуществом кожухотрубных теплообменников является их высокая эффективность. По уровню эффективности его можно сравнить с пластинчатым теплообменником, который по большинству параметров является наиболее эффективным.

Таким образом, можно с уверенностью говорить о том, что кожухотрубные теплообменники являются одними из самых надежных, долговечных и высокоэффективных агрегатов:

  • большая производительность
  • компактность
  • надежность
  • универсальность в использовании.