Мультипликативная модель рентабельности основных средств пример. Пример построения мультипликативной модели. Метод сетевого планирования

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.

Детерминированный факторный анализ в качестве цели выдвигает изучение влияния факторов на результативный показатель в случаях его функциональной зависимости от ряда факторных признаков.

Функциональную зависимость можно выразить различными моделями - аддитивной; мультипликативной; кратной; комбинированной (смешанной).

Аддитивную взаимосвязь можно представить как математическое управление, отражающее тот случай, когда результативный показатель (у) - это алгебраическая сумма нескольких факторных признаков:

Мультипликативная взаимосвязь отражает прямую пропорциональную зависимость исследуемого обобщающего показателя от факторов:

где П - общепринятый знак произведения нескольких сомножителей.

Кратная зависимость результативного показателя (у) от факторов математически отражается как частное от их деления:

Комбинированная (смешанная) взаимосвязь результативного и факторных показателей представляет собой сочетание в различных комбинациях аддитивной, мультипликативной и кратной зависимости:

где а, в, с и т.д. - переменные.

Известен ряд приемов моделирования факторных систем: прием расчленения; прием удлинения; прием расширения и прием сокращения исходных кратных двухфакторных систем типа: -. В результате процесса моделирования из двухфакторной кратной модели формируются аддитивно-кратные, мультипликативные и мультипликативно-кратные многофакторные системы типа:

Способы измерения влияния факторов в детерминированных моделях

Широкое распространение в аналитических расчетах получил способ цепной подстановки ввиду возможности использовать его в детерминированных моделях всех типов. Суть этого приема состоит в том, что для измерения влияния одного из факторов осуществляется замена его базового значения на фактическое, при этом остаются неизменными значения всех других факторов. Последующее сопоставление результативных показателей до и после замены анализируемого фактора дает возможность рассчитать его влияние на изменение результативного показателя. Математическое описание способа цепных подстановок при использовании его, например, в трехфакторных мультипликативных моделях выглядит следующим образом.

Трехфакторная мультипликативная система:

Последовательные подстановки:

Тогда для расчета влияния каждого из факторов надо выполнить такие действия:

Баланс отклонений:

Последовательность расчетов способом цепных подстановок рассмотрим на конкретном числовом примере, когда зависимость результативного показателя от факторных может быть представлена четырехфакторной мультипликативной моделью.

В качестве результативного показателя избрана стоимость реализованной продукции. Ставится цель исследовать изменение этого показателя под воздействием отклонений от базы сравнения ряда трудовых факторов - численности рабочих, целодневных и внут- рисменных потерь рабочего времени и среднечасовой выработки. Исходная информация приведена в табл. 15.1.

Таблица 15.1

Информация для факторного анализа изменения стоимости реализованной

продукции

Показатель

Обозначение

сравнения

Абсолютное

отклонение

Темп роста, %

Относительное отклонение, %-ных пунктов

1.Реализованная продукция, тыс. руб.

РП = N

2. Среднегодовая численность рабочих, чел.

3.Общее число отработанных рабочими чел./дней, тыс.

4.Общее число отработанных рабочими чел./ч, тыс.

5.Отработано за год одним рабочим днем (стр.З: стр.2)

6.Средняя продолжительность рабочего дня, ч (стр.4: стр.З)

7.Среднечасовая выработка, руб. (стр.1: стр.4)

8.Среднегодовая выработка одного рабочего, тыс. руб. (стр.1: стр.2)

Исходная четырехфакторная мультипликативная модель:

Цепные подстановки:

Расчеты влияния изменения факторных показателей приводятся ниже.

1. Изменение среднегодовой численности рабочих:

2. Изменение числа дней, отработанных одним рабочим:

3. Изменение средней продолжительности рабочего дня:

4. Изменение среднечасовой выработки:

Баланс отклонений:

Результаты расчетов способом цепных подстановок зависят от правильности определения соподчиненности факторов, от их классификации на количественные и качественные. Изменение количественных мультипликаторов должно проводиться раньше, чем качественных.

В мультипликативных и комбинированных (смешанных) моделях широко применяется способ абсолютных разниц, также основанный на приеме элиминирования и отличающийся простотой аналитических расчетов. Правило расчетов этим способом в мультипликативных моделях состоит в том, что отклонение (дельту) по анализируемому факторному показателю надо умножить на фактические значения мультипликаторов (сомножителей), расположенных слева от него, и на базовые значения тех, которые расположены справа от анализируемого фактора.

Порядок факторного анализа способом абсолютных разниц для комбинированных (смешанных) моделей рассмотрим с помощью математического описания. Исходная базисная и фактическая модели:

Алгоритм расчета влияния факторов способом абсолютных разниц:

Баланс отклонений:

Способ относительных разниц используется, так же как и способ абсолютных разниц, только в мультипликативных и комбинированных (смешанных) моделях.

Для мультипликативных моделей математическое описание названного приема будет следующим. Исходные базовая и фактическая четырехфакторные мультипликативные системы:

Для факторного анализа способом относительных разниц вначале надо определить относительные отклонения по каждому факторному показателю. Например, по первому фактору это будет процентное отношение его изменения к базе:

Затем для определения влияния изменения каждого фактора производятся такие расчеты.

Рассмотрим последовательность действий на числовом примере, исходная информация для которого содержится в табл. 15.1.

В гр. 7 табл. 15.1 отражены относительные отклонения по каждому факторному показателю.

Результаты влияния изменения каждого из факторов на отклонение результативного показателя от сравнения будут следующими:

Баланс отклонений: РП, -РП 0 =432 012-417 000 = +15 012 тыс. руб. (-9811,76) + 3854,62+ (-10 673,21) + 31 642,36 = 15 012,01 тыс. руб. Индексы представляют собой обобщающие показатели сравнения во времени и в пространстве. Они отражают процентное изменение изучаемого явления за какой-то период времени по сравнению с базисным периодом. Такая информация дает возможность сравнить изменения различных факторов и проанализировать их поведение.

В факторном анализе индексный метод используется в мультипликативных и кратных моделях.

Обратимся к его использованию для анализа кратных моделей. Так, агрегатный индекс физического объема продаж (J g) имеет вид:

где q - индексируемая величина количества; р 0 - соизмеритель (вес), цена, зафиксированная на уровне базисного периода.

Разница между числителем и знаменателем в этом индексе отражает изменение товарооборота за счет изменения его физического объема.

Агрегатный индекс цен (формула) Пааше записывается таким образом:

Используя информацию, содержащуюся в табл. 15.1, рассчитаем влияние изменения индекса среднесписочной численности рабочих и индекса среднегодовой выработки одного рабочего на темп роста реализованной продукции.

Производительность труда (ПТ) одного рабочего в базовом году равна 245,29 млн руб., а в отчетном - 260,25 млн руб. Индекс роста (/ пт) составит 1,0610 (260,25: 245,29).

Индексы роста реализованной продукции (/ рп) и среднегодовой численности рабочих (/ сч) по данным табл. 15.1- соответственно:

Взаимосвязь трех указанных индексов можно представить в виде двухфакторной мультипликативной модели:

Факторный анализ способом абсолютных разниц дает такие итоги.

1. Влияние изменения индекса среднесписочной численности рабочих:

2. Влияние изменения индекса производительности труда:

Баланс отклонений: 1,0360 - 1,0 = +0,0360 или (-0,0235) + 0,0596= + 0,0361 100 = 3,61%.

Интегральный способ применяется в детерминированном факторном анализе в мультипликативных, кратных и комбинированных моделях.

Этот метод позволяет разложить дополнительный прирост результативного показателя в связи с взаимодействием факторов между ними.

Практическое использование интегрального метода базируется на специально разработанных рабочих алгоритмах для соответствующих факторных моделей. Например, для двухфакторной мультипликативной модели = а в) алгоритм будет таким:

В качестве примера используем двухфакторную зависимость реализованной продукции (РП) от изменения среднегодовой численности рабочих (СЧ) и их среднегодовой выработки (ПТ):

Исходная информация имеется в табл. 15.1.

Влияние изменения среднегодовой численности:

Влияние изменения производительности труда (среднегодовой выработки одного рабочего):

Баланс отклонений:

В факторном анализе в аддитивных моделях комбинированного (смешанного) типа может использования способ пропорционального деления. Алгоритм расчета влияния факторов на изменение результативного показателя для аддитивной системы типа у = а + в + с будет таким:

В комбинированных моделях расчет влияния факторов второго уровня может быть выполнен способом долевого участия. Вначале рассчитывается доля каждого фактора в общей сумме их изменений, а затем эта доля умножается на общее отклонение результативного показателя. Алгоритм расчета такой:

Систематизируем рассмотренные способы расчетов влияния отдельных факторов в детерминированном факторном анализе с использованием схемы (рис. 15.4).


Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или .
Общий вид мультипликативной модели выглядит так:

Где T - трендовая компонента, S - сезонная компонента и E - случайная компонента.
Назначение . С помощью данного сервиса производится построение мультипликативной модели временного ряда.

Алгоритм построения мультипликативной модели

Построение мультипликативной моделей сводится к расчету значений T , S и E для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты S .
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T x E).
  4. Аналитическое выравнивание уровней (T x E) с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений (T x E).
  6. Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Пример . Построить аддитивную и мультипликативную модель временного ряда, характеризующую зависимость уровней ряда от времени.
Решение . Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 898 - - -
2 794 1183.25 - -
3 1441 1200.5 1191.88 1.21
4 1600 1313.5 1257 1.27
5 967 1317.75 1315.63 0.74
6 1246 1270.75 1294.25 0.96
7 1458 1251.75 1261.25 1.16
8 1412 1205.5 1228.63 1.15
9 891 1162.75 1184.13 0.75
10 1061 1218.5 1190.63 0.89
11 1287 - - -
12 1635 - - -
Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.21 1.27
2 0.74 0.96 1.16 1.15
3 0.75 0.89 - -
Всего за период 1.49 1.85 2.37 2.42
Средняя оценка сезонной компоненты 0.74 0.93 1.18 1.21
Скорректированная сезонная компонента, S i 0.73 0.91 1.16 1.19
Для данной модели имеем:
0.744 + 0.927 + 1.183 + 1.211 = 4.064
Корректирующий коэффициент: k=4/4.064 = 0.984
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
12a 0 + 78a 1 = 14659.84
78a 0 + 650a 1 = 96308.75
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 1 = 7.13, a 0 = 1175.3
Среднее значения
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 1226.81 1 1505062.02 1226.81 1182.43 26.59 1969.62
2 870.35 4 757510.32 1740.7 1189.56 123413.31 101895.13
3 1238.16 9 1533048.66 3714.49 1196.69 272.59 1719.84
4 1342.37 16 1801951.56 5369.47 1203.82 14572.09 19194.4
5 1321.07 25 1745238.05 6605.37 1210.96 9884.65 12126.19
6 1365.81 36 1865450.09 8194.89 1218.09 20782.63 21823.45
7 1252.77 49 1569433.89 8769.39 1225.22 968.3 759.1
8 1184.64 64 1403371.14 9477.12 1232.35 1369.99 2276.31
9 1217.25 81 1481689.26 10955.22 1239.48 19.42 494.41
10 1163.03 100 1352627.82 11630.25 1246.61 3437.21 6987
11 1105.84 121 1222883.47 12164.25 1253.75 13412.51 21875.75
12 1371.73 144 1881649.21 16460.79 1260.88 22523.77 12288.93
78 14659.84 650 18119915.49 96308.75 14659.84 210683.05 203410.13
Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 1175.298 + 7.132t
Подставляя в это уравнение значения t = 1,...,12, найдем уровни T для каждого момента времени (гр. 5 табл.).
t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 898 0.73 1226.81 1182.43 865.51 1.04 1055.31
2 794 0.91 870.35 1189.56 1085.21 0.73 84801.95
3 1441 1.16 1238.16 1196.69 1392.74 1.03 2329.49
4 1600 1.19 1342.37 1203.82 1434.87 1.12 27269.14
5 967 0.73 1321.07 1210.96 886.4 1.09 6497.14
6 1246 0.91 1365.81 1218.09 1111.23 1.12 18162.51
7 1458 1.16 1252.77 1225.22 1425.93 1.02 1028.18
8 1412 1.19 1184.64 1232.35 1468.87 0.96 3233.92
9 891 0.73 1217.25 1239.48 907.28 0.98 264.9
10 1061 0.91 1163.03 1246.61 1137.26 0.93 5814.91
11 1287 1.16 1105.84 1253.75 1459.13 0.88 29630.23
12 1635 1.19 1371.73 1260.88 1502.87 1.09 17458.67
Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 12
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
t y (y-y cp) 2
1 898 106384.69
2 794 185043.36
3 1441 47016.69
4 1600 141250.69
5 967 66134.69
6 1246 476.69
7 1458 54678.03
8 1412 35281.36
9 891 111000.03
10 1061 26623.36
11 1287 3948.03
12 1635 168784.03
78 14690 946621.67


Следовательно, можно сказать, что мультипликативная модель объясняет 79% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.

где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.96
Поскольку F> Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 1175.298 + 7.132t
Получим
T 13 = 1175.298 + 7.132*13 = 1268.008
Значение сезонного компонента за соответствующий период равно: S 1 = 0.732
Таким образом, F 13 = T 13 + S 1 = 1268.008 + 0.732 = 1268.74
T 14 = 1175.298 + 7.132*14 = 1275.14
Значение сезонного компонента за соответствующий период равно: S 2 = 0.912
Таким образом, F 14 = T 14 + S 2 = 1275.14 + 0.912 = 1276.052
T 15 = 1175.298 + 7.132*15 = 1282.271
Значение сезонного компонента за соответствующий период равно: S 3 = 1.164
Таким образом, F 15 = T 15 + S 3 = 1282.271 + 1.164 = 1283.435
T 16 = 1175.298 + 7.132*16 = 1289.403
Значение сезонного компонента за соответствующий период равно: S 4 = 1.192
Таким образом, F 16 = T 16 + S 4 = 1289.403 + 1.192 = 1290.595

Детерминированный факторный анализ – это методика исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. когда результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Факторы, включаемые в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями.

3. Каждые показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это означает, что в ней должна учитываться соразмерность измерений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

Типы факторных моделей встречающихся в детерминированном анализе:

Аддитивные модели, используются в случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей;

Мультипликативные модели, применяются, когда результативный показатель представляет собой произведение нескольких факторов;

Кратные модели, применяются, когда результативный показатель получают делением одного факторного показателя на величину другого;

Смешанные (комбинированные) модели – сочетание в различных комбинациях предыдущих моделей.

Основные приемы детерминированного факторного анализа и сфера их применения систематизированы в виде таблице 2.1.

Таблица 2.1 – Область применения основных приемов детерминированного факторного анализа

Методы элиминирования

Элиминировать– значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности. К методам элиминирования относятся способ цепной подстановки, индексный метод, способ абсолютных и способ относительных разниц.

Способ цепной подстановки. Данный способ является универсальным, так как используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет элиминироваться от влияния всех факторов, кроме одного, и определить взаимодействие последнего на прирост результативного показателя.

Рассмотрим алгоритм расчета способом цепной подстановки для различных моделей:

Мультипликативная модель

Двухфакторная мультипликативная модель (Y = a ´ b):

; ; .

.

Трехфакторная мультипликативная модель(Y = a ´ b ´ с):

; .

; ; ; .

Кратная модель

В кратных моделях (Y = a ÷ b) алгоритм расчета факторов на величину результативного показателя следующий:

; ;

.

Смешанные модели

Мультипликативно-аддитивного типа (Y = a ´ (b – c)):

; ;

; ;

; ;

; .

Кратно-аддитивного типа ():

;

; ;

; .

Используя способ цепной подстановки, рекомендуется придерживаться определенной последовательности расчетов: в первую очередь нужно учитывать изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого.

Индексный метод. Индексный метод основан на относительных показателях динамики, пространственных сравнений, выполнения плана, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в базисном периоде.

С помощью агрегатных индексов можно выявить влияние различных факторов на изменение уровня результативных показателей в мультипликативных и кратных моделях.

Рассмотрим алгоритм расчета индексного метода для мультипликативной модели.

; ; ; .

Способ абсолютных разниц. Как и способ цепной подстановки, данный способ применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: и . Особенно эффективно применяется данный способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Мультипликативная модель

Алгоритм расчета для мультипликативной факторной модели типа . Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Изменение величины результативного показателя за счет каждого фактора:

; .

Смешанные модели

Алгоритм расчета факторов этим способом в смешанных моделях типа :

; ; .

Способ относительных разниц применяется для изменения влияния факторов на прирост результативного показателя только в мультипликативных моделях и мультипликативно-аддитивных моделях: . Он значительно проще цепных подстановок, что при определенных обстоятельствах делает его очень эффективным. Это касается тех случаев, когда исходные данные содержат уже определенные ранее относительные приросты факторных показателей в процентах или коэффициентах.

Мультипликативная модель

Алгоритм расчета влияния факторов на величину результативного показателя для мультипликативных моделей типа (Y = a ´ b ´ с).

Сначала рассчитываются относительные отклонения факторных показателей:

; ; .

Изменение результативного показателя за счет каждого фактора определяется следующим образом:


к.э.н., директор по науке и развитию ЗАО "КИС"

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов - анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация - это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации - это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Для мультипликативной модели фактическое значение рассчитывается по формуле:

Расчет фактического значения в мультипликативной модели

Т - трендовое значение

S - сезонная вариация

Е - ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) - это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n - период усреднения,

Р(i) - усредняемый объем (i - 1) период тому назад (i-е измерение или отсчет),

P(1) - объем продаж за последний период,

P(n) - самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов - восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей - это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных - провести десезонализация данных. Но это уже в следующем выпуске.