Методы имитационного моделирования. Реферат: Имитационные модели. Применение имитационного моделирования


Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

Вид модели производственного процесса зависит в значительной степени от того, является ли он дискретным или непрерывным. В дискретных моделях переменные изменяются дискретно в определенные моменты имитационного времени. Время может приниматься как непрерывным, так и дискретным в зависимости от того, могут ли дискретные изменения переменных происходить в любой момент имитационного времени или только в определенные моменты. В непрерывных моделях переменные процесса являются непрерывными, а время может быть как непрерывным, так и дискретным в зависимости от того, являются непрерывные переменные доступными в любой момент имитационного времени или только в определенные моменты. В обоих случаях в модели предусматривают блок задания времени, который имитирует продвижение модельного времени, обычно ускоренного относительно реального.

Разработка имитационной модели и проведение моделирующих экспериментов в общем случае могут быть представлены в виде нескольких основных этапов, приведенных на рис. 1.


Компонента модели, отображающая определенный элемент моделируемой системы, описывает набором характеристик количественного или логического типа. В зависимости от длительности существования различают компоненты условно-постоянные и временные. Условно-постоянные компоненты существуют в течение всего времени эксперимента с моделью, а временные – генерируются и уничтожаются в ходе эксперимента. Компоненты имитационной модели делят на классы, внутри которых они имеют одинаковый набор характеристик, но отличаются их значениями.

Состояние компоненты определяется значениями ее характеристик в данный момент модельного времени, а совокупность значений характеристик всех компонент определяет состояние модели в целом.

Изменение значений характеристик, являющееся результатом отображения в модели взаимодействия между элементами моделируемой системы, приводит к изменению состояния модели. Характеристика, значение которой в ходе моделирующего эксперимента изменяется, является переменной, в противном случае это параметр. Значения дискретных переменных не изменяются в течение интервала времени между двумя последовательными особыми состояниями и меняются скачком при переходе от одного состояния к другому.

Моделирующий алгоритм представляет собой описание функциональных взаимодействий между компонентами модели. Для его составления процесс функционирования моделируемой системы разбивается на ряд последовательных событий, каждое из которых отражает изменение состояния системы в результате взаимодействия ее элементов или воздействия на системы внешней среды в виде входных сигналов. Особые состояния возникают в определенные моменты времени, которые планируются заранее, либо определяются в ходе эксперимента с моделью. Наступление событий в модели планируется путем составления расписания событий по временам их свершения либо проводится анализ, выявляющий достижение переменными характеристиками установленных значений.

Для этой цели наиболее удобно использовать СИВС. Представленные на них материальные и информационные потоки легко анализировать для выявления особых состояний. Такими состояниями являются отражаемые на СИВС моменты окончания обработки изделия на каждом рабочем месте или его транспортировки; приема и выдачи на постоянное или временное хранение; сборки деталей в узлы, узлов в изделие и т.п. Для дискретного производства изменение характеристик между особыми состояниями можно также считать дискретным, имея в виду переход условным скачком от исходного материала к заготовке, от заготовки к полуфабрикату, от полуфабриката к детали и т.д.

Таким образом, каждая производственная операция рассматривается как оператор, изменяющий значение характеристик изделия. Для простых моделей последовательность состояний можно принимать детерминированной. Лучше отражают действительность случайные последовательности, которые можно формализовать в виде случайных приращений времени, имеющих заданное распределение, либо случайного потока однородных событий, аналогично потокам заявок в теории массового, обслуживания. Аналогичным образом можно проанализировать и выявить с помощью СИВС особые состояния при движении и обработке информации.

На рис. 2 представлена структура обобщенной имитационной модели.

При моделировании непрерывных производственных процессов по принципу ∆t датчик временных интервалов выдает тактовые импульсы для работы моделирующего алгоритма. Блоки случайных и управляющих воздействий, а также начальных условий служат для ручного ввода условий проведения очередного модельного эксперимента.

Комплекс имитационных функциональных программ по каждому моделируемому объекту определяет условное распределение вероятностей состояний объекта к окончанию каждого момента ДЛ При случайном выборе одного из возможных состояний это осуществляется функциональной подпрограммой; при выборе экспериментатором – программой, заложенной в блоке управляющих воздействий, или, при желании осуществлять этот выбор вручную на каждом такте, вводом новых начальных условий исходя из текущего состояния, определяемого с помощью блока индикации.

Функциональная программа определяет параметры технологической установки на каждом такте в зависимости от заданных начальных условий – характеристик сырья, заданного режима, свойств и условий работы установки. Из модели технологической части программным путем могут быть добавлены соотношения весового и объемного баланса.

Координацию и взаимодействие всех блоков и программ осуществляет программа-диспетчер.

При моделировании дискретных процессов, при котором обычно используют принцип особых состояний, структура имитационной модели изменяется незначительно. Вместо датчика временных интервалов вводится блок, определяющий наличие особого состояния и выдающий команду на переход к следующему. Функциональная программа имитирует на каждом переходе одну операцию на каждом рабочем месте. Характеристики таких операций могут быть детерминированными во времени, например при работе станка-автомата, либо случайными с заданными распределениями. Кроме времени могут имитироваться и другие характеристики – наличие или отсутствие брака, отнесение к некоторому сорту или классу и т.п. Аналогично имитируются сборочные операции, с той разницей, что на каждой операции изменяются не характеристики обрабатываемого материала, а вместо одних наименований – детали, узлы – появляются другие – узлы, изделия – с новыми характеристиками. Однако принципиально операции сборки имитируются аналогично операциям обработки – определяются случайные или детерминированные затраты времени на операцию, значения физических и производственных характеристик.

Для имитации сложных производственных систем требуется создание логико-математической модели исследуемой системы, позволяющей проведение с нею экспериментов на ЭВМ. Модель реализуют в виде комплекса программ, написанных на одном из универсальных языков программирования высокого уровня либо на специальном языке моделирования. С развитием имитационного моделирования появились системы и языки, сочетающие возможности имитации как непрерывных, так и дискретных систем, что позволяет моделировать сложные системы типа предприятий и производственных объединений.

При построении модели, прежде всего, следует определить ее назначение. В модели должны быть отражены все существенные с точки зрения цели ее построения функции моделируемого объекта и в то же время в ней не должно быть ничего лишнего, иначе она будет слишком громоздкой и мало эффективной.

Основным назначением моделей предприятий и объединений является их исследование с целью совершенствования системы управления либо обучения и повышения квалификации управленческого персонала. При этом моделируется не само производство, а отображение производственного процесса в системе управления.

Для построения модели используется укрупненная СИВС. Методом единичной нити выявляют те функции и задачи, в результате которых может быть получен искомый результат в соответствии с назначением модели. На основании логико-функционального анализа строят структурную схему модели. Построение структурной схемы позволяет выделить ряд самостоятельных моделей, входящих в виде составных частей в модель предприятия. На рис. 3 приведен пример построения структурной схемы моделирования финансово-экономических показателей предприятия. Модель учитывает как внешние факторы – спрос на продукцию, план поставок, так и внутренние – затраты на производство, существующие и планируемые производственные возможности.


Некоторые из моделей являются детерминированными – расчет планируемого полного дохода по номенклатуре и количествам в соответствии с планом производства при известных ценах и стоимости упаковки. Модель плана производства является оптимизационной, настраиваемой на один из возможных критериев – максимизацию дохода или использования производственных мощностей; наиболее полное удовлетворение спроса; минимизацию потерь поставляемых материалов и комплектующих изделий и пр. В свою очередь модели спроса на продукцию, планируемых производственных мощностей и плана поставок являются вероятностными с различными законами распределения.

Взаимосвязь между моделями, координация их работы и связь с пользователями осуществляется с помощью специальной программы, которая на рис. 3 не показана. Эффективная работа пользователей с моделью достигается в режиме диалога.

Построение структурной схемы модели не формализовано и во многом зависит от опыта и интуиции ее разработчика. Здесь важно соблюдать общее правило – лучше на первых этапах составления схемы включить в нее большее число элементов с последующим их постепенным сокращением, чем начать с некоторых, кажущихся основными, блоков, намереваясь в последующем их дополнять и детализировать.

После построения схемы, обсуждения ее с заказчиком и корректировки переходят к построению отдельных моделей. Необходимая для этого информация содержится в системных спецификациях – перечень и характеристики задач, необходимые для их решения исходные данные и выходные результаты и т д. Если системные спецификации не составлялись, эти сведения берут из материалов обследования, а иногда прибегают к дополнительным обследованиям.

Важнейшими условиями эффективного использования моделей являются проверка их адекватности и достоверность исходных данных. Если проверка адекватности осуществляется известными методами, то достоверность имеет некоторые особенности. Они заключаются в том, что во многих случаях исследование модели и работу с нею лучше проводить не с реальными данными, а со специально подготовленным их набором. При подготовке набора данных руководствуются целью использования модели, выделяя ту ситуацию, которую хотят промоделировать и исследовать.

Еще одним примером существенно машинных моделей являются имитационные модели. Несмотря на то что имитационное моделирование становится все более популярным методом исследования сложных систем и процессов, на сегодняшний день нет единого, признаваемого всеми исследователями определения имитационной модели.

В большинстве используемых определений подразумевается, что имитационная модель создается и реализуется с помощью набора математических и инструментальных средств, позволяющих с использованием компьютера провести целенаправленные расчеты характеристик моделируемого процесса и оптимизацию некоторых его параметров.

Существуют и крайние точки зрения. Одна из них связана с утверждением, что имитационной моделью можно признать любое логико-математическое описание системы, которое может быть использовано в ходе проведения вычислительных экспериментов. С этих позиций расчеты, связанные с варьированием параметров в чисто детерминированных задачах, признаются имитационным моделированием.

Сторонники другой крайней точки зрения считают, что имитационная модель - это обязательно специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта. «Метод имитационного моделирования является экспериментальным методом исследования реальной системы по ее компьютерной модели, который сочетает особенности экспериментального подхода и специфические условия использования вычислительной техники. Имитационное моделирование является машинным методом моделирования, собственно без ЭВМ никогда не существовало, и только развитие информационных технологий привело к становлению этого вида компьютерного моделирования» . Такой подход отрицает возможность создания простейших имитационных моделей без применения компьютера.

Определение 1.9. Имитационная модель - особая разновидность информационных моделей, сочетающая элементы аналитических, компьютерных и аналоговых моделей, которая позволяет с помощью последовательности вычислений и графического отображения результатов ее работы воспроизводить (имитировать) процессы функционирования изучаемого объекта при воздействии на него различных (как правило, случайных) факторов.

Имитационное моделирование применяется сегодня для моделирования бизнес-процессов, цепочек поставок, боевых действий, динамики населения, исторических процессов, конкуренции и других процессов, для прогнозирования последствий управленческих решений в самых разных областях. Имитационное моделирование позволяет исследовать системы любой природы, сложности и назначения и практически с любой степенью детализации, ограниченной лишь трудоемкостью разработки имитационной модели и техническими возможностями используемых для проведения экспериментов вычислительных средств.

Имитационные модели, которые разрабатываются для решения современных практических задач, обычно содержат большое число сложно взаимодействующих стохастических элементов, каждый из которых описывается большим числом параметров и подвергается стохастическим воздействиям. В этих случаях, как правило, натурное моделирование нежелательно или невозможно, а аналитическое решение затруднено или также невозможно. Часто реализация имитационной модели требует организации распределенных вычислений . По этим причинам имитационные модели относятся к существенно машинным моделям.

Имитационная модель предполагает представление модели в виде некоторого алгоритма, реализуемого компьютерной программой, выполнение которого имитирует последовательность смены состояний в системе и таким образом отображает поведение моделируемой системы или процесса.

Обратите внимание!

При наличии случайных факторов необходимые характеристики моделируемых процессов получаются в результате многократных прогонов имитационной модели и последующей статистической обработки накопленной информации.

Заметим, что с точки зрения сиециалиста-нрикладника правомерно трактовать имитационное моделирование как информационную технологию: «Имитационное моделирование контролируемого процесса или управляемого объекта - это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

  • 1) работы по созданию или модификации имитационной модели;
  • 2) эксплуатацию имитационной модели и интерпретацию результатов» .

Модульный принцип построения имитационной модели. Итак, имитационное моделирование предполагает наличие построенных логикоматематических моделей, описывающих изучаемую систему во взаимосвязи с внешней средой, воспроизведение протекающих в ней процессов с сохранением их логической структуры и последовательности во времени при помощи средств вычислительной техники. Наиболее рационально строить имитационную модель функционирования системы по модульному принципу. При этом могут быть выделены три взаимосвязанных блока модулей такой модели (рис. 1.7).

Рис. 1.7.

Основная часть алгоритмической модели реализуется в блоке имитации процессов функционирования объекта (блок 2). Здесь организуется отсчет модельного времени, воспроизводится логика и динамика взаимодействия элементов модели, обеспечивается проведение экспериментов для накопления данных, необходимых для расчета оценок характеристик функционирования объекта. Блок имитации случайных воздействий (блок 1) служит для генерирования значений случайных величин и процессов. В его состав входят генераторы стандартных распределений и средства реализации алгоритмов моделирования случайных воздействий с требуемыми свойствами. В блоке обработки результатов имитации (блок 3) рассчитываются текущие и итоговые значения характеристик, составляющие результаты экспериментов с моделью. Такие эксперименты могут состоять в решении сопутствующих задач, в том числе оптимизационных или обратных.

  • Лычкина II. II. Указ. соч.
  • Распределенные вычисления - способ решения трудоемких вычислительных задачс использованием нескольких компьютеров, чаще всего объединенных в параллельнуювычислительную систему.
  • Емельянов А. А, Власова Е. А., Дума Р. В. Имитационное моделирование экономическихпроцессов. М. : Финансы и статистика, 2006. С. 6.

Введение

Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.

В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.

Цели проведения подобных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.

Как следует из определения, имитация - это компьютерный эксперимент. Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Однако проведение реальных экспериментов с экономическими системами, по крайней мере, неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация является единственным способом исследования систем без осуществления реальных экспериментов.

Часто практически невыполним или требует значительных затрат сбор необходимой информации для принятия решений. Например, при оценке риска инвестиционных проектов, как правило, используют прогнозные данные об объемах продаж, затратах, ценах и т.д.

Однако чтобы адекватно оценить риск необходимо иметь достаточное количество информации для формулировки правдоподобных гипотез о вероятностных распределениях ключевых параметров проекта. В подобных случаях отсутствующие фактические данные заменяются величинами, полученными в процессе имитационного эксперимента (т.е. сгенерированными компьютером).

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло. Существуют и другие преимущества имитации.

Мы же рассмотрим технологию применения имитационного моделирования для анализа рисков инвестиционных проектов в среде MS Excel.

Имитационное моделирование

Имитационное моделирование (ситуационное моделирование) -- метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно "проиграть" во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование -- это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация -- это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование -- это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов.

Имитационная модель -- логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

К имитационному моделированию прибегают, когда:

· дорого или невозможно экспериментировать на реальном объекте;

· невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;

· необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами -- разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х--1960-х годах.

Можно выделить две разновидности имитации:

· Метод Монте-Карло (метод статистических испытаний);

· Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования:

· Агентное моделирование -- относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей -- получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент -- некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

· Дискретно-событийное моделирование -- подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: "ожидание", "обработка заказа", "движение с грузом", "разгрузка" и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений -- от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

· Системная динамика -- парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Определим в общем виде как экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь­ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро­вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

  • реальная система;
  • ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

логико - или логико-математических моделей, описываемых изучаемый процесс.

Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени.

< A , S , T > , где

А

S

Т

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

:

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимо применять структурный анализ моделируемых процессов.
  • функциональной модели

.

состояний набором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле­ние динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделирование есть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени

t 0 , которую называют

t 0 :

  • пошаговый
  • по-событийный

В случае пошагового метода (принцип t ).

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

В

В

непрерывно-дискретные модели

Моделирующий алгоритм

Имитационный характер исследования предполагает наличие

алгоритмической , так и неалгоритмической.

моделирующий алгоритм

Имита­ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро­вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Общая технологическая схема имитационного моделирования

В общем виде технологическая схема имитационного моделирования представлена на рис.2.5.

Рис. 2.5. Технологическая схема имитационного моделирования

  1. реальная система;
  2. построение логико-математической модели;
  3. разработка моделирующего алгоритма;
  4. построение имитационной (машинной) модели;
  5. планирование и проведение имитационных экспериментов;
  6. обработка и анализ результатов;
  7. выводы о поведении реальной системы (принятие решений)

Имитационная модель содержит элементы непрерывного и дискрет­ного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест , исследование динамики функционирования,

Имитационное моделирование – эффективный аппарат исследова­ния стохастических систем, в условиях неопределенности, .

Что будет, если?

В имитационной модели может быть обеспечен различный, в том числе и высокий, уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно .

Определимметод имитационного моделирования в общем виде какэкспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности эксперименталь ного подхода и специфические условия использования вычислительной техники.

В этом определении подчеркивается, что имитационное моделиро вание является машинным методом моделирования благодаря развитию информационных технологий, что привело к появлению этого вида компьютерного моделирования. В определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется эксперимент с моделью). В имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. Ответим на вопрос, в чем же состоит сущность имитационного моделирования?

В процессе имитационного моделирования (рис. 2.1) исследователь имеет дело с четырьмя основными элементами:

  • реальная система;
  • логико-математическая модель моделируемого объекта;
  • имитационная (машинная) модель;
  • ЭВМ,накоторойосуществляетсяимитация–направленный

вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы.

Выше,реальнаясистемаопределяласькаксовокупность взаимодействующих элементов, функционирующих во времени.

Составной характер сложной системы описывает представление ее модели в виде трех множеств:

< A , S , T > , где

А – множество элементов (в их число включается и внешняя среда);

S – множество допустимых связей между элементами (структура модели);

Т – множество рассматриваемых моментов времени.

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

  • с сохранением их логической структуры;
  • с сохранением поведенческих свойств(последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.В описании имитационной модели выделяют две составляющие :

  • статическое описание системы , которое по-существу является описанием ее структуры. При разработке имитационной модели необходимоприменятьструктурныйанализмоделируемых процессов.
  • динамическое описание системы , или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построениефункциональной модели моделируемых динамических процессов.

Идея метода, с точки зрения его программной реализации, состоит в следующем. Что, если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния. Элементы, по определению, взаимодействуют (или обмениваются информацией), значит, может быть реализован алгоритм функционирования отдельных элементов, т.е., моделирующий алгоритм. Кроме того, элементы существуют во времени, значит надо задать алгоритм изменения переменных состояний. Динамика в имитационных моделях реализуется с помощьюмеханизма продвижения модельного времени .

Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, надо:

  • представить реальную систему (процесс), как совокупность взаимодействующих элементов;
  • алгоритмически описать функционирование отдельных элементов;
  • описать процесс взаимодействия различных элементов между собой и с внешней средой.

Ключевым моментом в имитационном моделировании является выделение и описаниесостояний системы. Система характеризуетсянабором переменных состояний , каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представле ниединамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с определенными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени. Имитационное моделированиеесть динамическое отражение изменений состояния системы с течением времени.

При имитационном моделировании логическая структура реальной системы отображается в модели, а такжеимитируетсядинамика взаимодействий подсистем в моделируемой системе.

Понятие о модельном времени. Дискретные и непрерывные имитационные модели

Для описания динамики моделируемых процессов в имитационном моделировании реализованмеханизм задания модельного времени. Этот механизм встроен в управляющие программы системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты.

Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе)t 0 , которую называютмодельным (или системным) временем.

Существуют два основных способа измененияt 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • по-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случаепошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага(принцип t ). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

Способ фиксированного шага применяется в случаях:

  • если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. Динамика модели является дискретным приближением реальных непрерывных процессов;
  • когда события распределены равномерно и можно подобрать шаг изменения временной координаты;
  • когда сложно предсказать появление определенных событий;
  • когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод, например, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

По-событийный метод (принцип “особых состояний”). В нем координаты времени меняются тогда, когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительнее в том случае, если частота наступления событий невелика. Тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

  • непрерывные;
  • дискретные;
  • непрерывно-дискретные.

Внепрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

Вдискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработанынепрерывно-дискретные модели , в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Моделирующий алгоритм. Имитационная модель

Имитационный характер исследования предполагает наличиелогико, или логико-математических моделей, описываемых изучаемый процесс (систему).

Логико-математическая модель сложной системы может быть какалгоритмической , так инеалгоритмической.

Чтобы быть машинно-реализуемой, на основе логико-математической модели сложной системы строитсямоделирующий алгоритм , который описывает структуру и логику взаимодействия элементов в системе.

Имита ционная модель – это программная реализация моделирующего алгоритма. Она составляется с применением средств автоматизации моделирования. Подробнее технология имитационного моделирования, инструментальные средства моделирования, языки и системы моделиро вания, с помощью которых реализуются имитационные модели, будут рассмотрены ниже.

Возможности метода имитационного моделирования

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем.

Имитационная модель содержит элементы непрерывного и дискрет ного действия, поэтому применяется для исследования динамических систем, когда требуетсяанализ узких мест , исследованиединамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование – эффективный аппарат исследова ниястохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследованиев условиях неопределенности, при неполных и неточных данных.

Имитационное моделирование является важным фактором всистемах поддержки принятия решений , т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных. Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если? ...”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует).

В имитационной модели может быть обеспечен различный, в том числе и высокий,уровень детализациимоделируемых процессов. При этом модель создается поэтапно, эволюционно.

Имитационное моделирование

Имитационное моделирование (ситуационное моделирование) - метод, позволяющий строить модели , описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику .

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование - это частный случай математического моделирования . Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов .

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Применение имитационного моделирования

К имитационному моделированию прибегают, когда:

  • дорого или невозможно экспериментировать на реальном объекте;
  • невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  • необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора (англ. simulation modeling ) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х - 1960-х годах.

Можно выделить две разновидности имитации:

  • Метод Монте-Карло (метод статистических испытаний);
  • Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования

Три подхода имитационного моделирования

Подходы имитационного моделирования на шкале абстракции

  • Агентное моделирование - относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  • Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
  • Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Области применения

  • Динамика населения
  • ИТ-инфраструктура
  • Математическое моделирование исторических процессов
  • Пешеходная динамика
  • Рынок и конкуренция
  • Сервисные центры
  • Цепочки поставок
  • Уличное движение
  • Экономика здравоохранения

Свободные системы имитационного моделирования

См. также

  • Сетевое моделирование

Примечания

Литература

  • Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. - 7-е изд. - М .: «Вильямс», 2007. - С. 697-737. - ISBN 0-13-032374-8
  • Строгалев В. П., Толкачева И. О. Имитационное моделирование. - МГТУ им. Баумана, 2008. - С. 697-737. - ISBN 978-5-7038-3021-5

Ссылки

  • Компьютерное и статическое имитационное моделирование на Интуит.ру
  • Имитационное моделирование в задачах технологического инжиниринга Макаров В. М., Лукина С. В., Лебедь П. А.

Wikimedia Foundation . 2010 .

Смотреть что такое "Имитационное моделирование" в других словарях:

    имитационное моделирование - (ITIL Continual Service Improvement) (ITIL Service Design) Методика, создающая детальную модель с целью предсказания поведение конфигурационной единицы или ИТ услуги. Имитационные модели могут быть реализованы с очень высокой точностью, но это… … Справочник технического переводчика

    Имитационное моделирование - Имитационное моделирование: моделирование (знаковое, предметное) технических объектов, основанное на воспроизведении процессов, сопровождающих их существование... Источник: ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ТЕХНИКИ И ОПЕРАТОРСКОЙ ДЕЯТЕЛЬНОСТИ. ЯЗЫК… … Официальная терминология

    Имитационное моделирование - см. Машинная имитация, Стендовое экспериментирование … Экономико-математический словарь

    Разработка, конструирование модели некоторого объекта для его исследования Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    имитационное моделирование - 3.9 имитационное моделирование: Моделирование (знаковое, предметное) технических объектов, основанное на воспроизведении процессов, сопровождающих их существование. Источник … Словарь-справочник терминов нормативно-технической документации

    ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ - (...от франц. modele образец) метод исследования каких либо явлений и процессов методом статистических испытаний (метод Монте Карло) с помощью ЭВМ. Метод основан на розыгрыше (имитации) воздействия случайных факторов на изучаемое явление или… … Энциклопедический словарь по психологии и педагогике

    Имитационное моделирование - это воспроизведение на модели той или иной реальной ситуации, ее исследование и, в конечном счете, нахождение наиболее удачного решения. Собственно И. м. сотоит из конструирования математической модели реальной системы и постановки на ней… … Терминологический словарь библиотекаря по социально-экономической тематике

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Имитационные модели связаны не с аналитическим представлением, а с принципом имитации с помощью информационных и программ … Википедия

    Имитационное моделирование Монте Карло - (метод Монте Карло) Аналитический метод решения проблемы посредством выполнения большого числа тестовых операций, называемых имитационным моделированием, и получения необходимого решения из объединенных результатов тестов. Метод вычисления… … Инвестиционный словарь