Industrial craft 2 experimental урановый стержень. Атомные электрические станции. Затраты на производственные процессы в %

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран - самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% - на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские - с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 - с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива - ТВЭЛ - способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС - отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента - это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого - на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Производители ядерного топлива: рейтинг

  1. Французская компания Areva до недавнего времени обеспечивала 31% мирового рынка тепловыделяющих сборок. Фирма занимается производством ядерного топлива и сборкой комплектующих для АЭС. В 2017 году Areva пережила качественное обновление, в компанию пришли новые инвесторы, а колоссальный убыток 2015 года удалось сократить в 3 раза.
  2. Westinghouse - американское подразделение японской компании Toshiba. Активно развивает рынок в восточной Европе, поставляет тепловыделяющие сборки на украинские АЭС. Вместе с Toshiba обеспечивает 26% мирового рынка производства ядерного топлива.
  3. Топливная компания ТВЭЛ госкорпорации «Росатом» (Россия) расположилась на третьем месте. ТВЭЛ обеспечивает 17% мирового рынка, имеет десятилетний портфель контрактов на 30 млрд долларов и поставляет топливо на более чем 70 реакторов. ТВЭЛ разрабатывает ТВС для реакторов ВВЭР, а также выходит на рынок ядерных установок западного дизайна.
  4. Japan Nuclear Fuel Limited , по последним данным, обеспечивает 16% мирового рынка, поставляет ТВС на большую часть ядерных реакторов в самой Японии.
  5. Mitsubishi Heavy Industries - японский гигант, который производит турбины, танкеры, кондиционеры, а с недавних пор и ядерное топливо для реакторов западного образца. Mitsubishi Heavy Industries (подразделение головной компании) занимается строительством ядерных реакторов APWR, исследовательской деятельностью вместе с Areva. Именно эта компания выбрана японским правительством для разработки новых реакторов.

Которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой . Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления - это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления . Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечетным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с четным атомным числом). Такие ядра называют сырьевым материалом, т. к. при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235 U между различными продуктами деления (в МэВ):

Природный уран состоит из трех изотопов: 238 U (99,282%), 235 U (0,712%) и 234 U (0,006%). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и интенсивно поглощают . В этом случае ядерное топливо приготовляют на основе обогащённого урана. В энергетических используют уран с обогащением менее 10%, а в реакторах на и нейтронах обогащение урана превышает 20%. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное , содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать 239 Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами 232 Th.

По химическому составу, ядерное топливо может быть:

  • , включая ;
  • (например, );
  • (например, )
  • Смешанным (PuO 2 + UO 2)

Применение

Ядерное топливо используется в , где оно обычно располагается в герметично закрытых тепловыделяющих элементах () в виде таблеток размером в несколько сантиметров.

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая , небольшое увеличение объёма при облучении, технологичность производства.

Получение

Урановое топливо

Ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений : В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские месторождения несогласия, где концентрация урана доходит до 30% и австралийских с содержанеим урана до 3%) используется способ подземного вышелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные трубы под землю над месторождением закачивается , иногда с добавлением солей трёхвалентного железа (для окисления урана U(IV) до U(VI)), хотя руды часто содеражат железо и пиролюзит, которые облегчают окисение. Через откачные трубы специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное концентрирование урана.
  • Для рудных месторождений : используют и .
  • Гидрометаллургическая переработка - дробление, выщелачивание, или извлечение урана с получением очищенной закиси-окиси урана U 3 O 8 или диураната натрия Na 2 U 2 O 7 или диураната аммония.
  • Перевод урана из оксида в тетрафторид , или из оксидов непосредственно для получения гексафторида , который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием (См. )
  • UF 6 , обогащенный по 235

Новосибирский завод химконцентратов в 2011 году произвел и реализовал 70% мирового потребления изотопа лития-7 (1300 кг), поставив новый рекорд в истории завода. Однако основным продуктом производства НЗХК является ядерное топливо.

Это словосочетание действует на сознание новосибирцев впечатляюще и пугающе, заставляя воображать о предприятии все, что угодно: начиная от трехногих рабочих и отдельного подземного города и заканчивая радиоактивным ветром.

Так что же на самом деле скрывается за заборами самого таинственного завода Новосибирска, производящего ядерное топливо в черте города?

ОАО «Новосибирский завод химконцентратов» - один из ведущих мировых производителей ядерного топлива для АЭС и исследовательских реакторов России и зарубежных стран. Единственный российский производитель металлического лития и его солей. Входит в состав Топливной компании «ТВЭЛ» Госкорпорации «Росатом».

Мы пришли в цех, где изготавливают тепловыделяющие сборки - ТВС, которые загружаются в ядерные энергетические реакторы. Это и есть ядерное топливо для АЭС. Для входа на производство нужно надеть халат, шапочку, бахилы из ткани, на лицо - «Лепесток».

В цехе сосредоточены все работы, связанные с урансодержащими материалами. Этот технологический комплекс является одним из основных для НЗХК (ТВС для АЭС занимают приблизительно 50 % в структуре реализованной продукции ОАО «НЗХК»).

Операторская, откуда идет управление процессом производства порошка диоксида урана, из которого затем изготавливают топливные таблетки.

Рабочие проводят регламентные работы: через определенные промежутки времени даже самое новое оборудование останавливают и проверяют. В самом цехе всегда достаточно много воздуха - постоянно работает вытяжная вентиляция.

В таких биконусах хранится порошок диоксида урана. В них происходит перемешивание порошка и пластификатора, который позволяет таблетке лучше спрессоваться.

Установка, которая производит прессование топливных таблеток. Как из песка дети делают куличики, надавливая на формочку, так и здесь: урановая таблетка прессуется под давлением.

Молибденовая лодочка с таблетками, которые ждут отправления в печь на отжиг. До отжига у таблеток зеленоватый оттенок и другой размер.

Контакт порошка, таблетки и окружающей среды сведен к минимуму: все работы ведутся в боксах. Для того чтобы что-то поправлять внутри, в боксы встроены специальные перчатки.

Факелы сверху - это догорающий водород. Таблетки отжигаются в печах при температуре не менее 1750 градусов в водородной восстановительной среде в течение 20 с лишним часов.

Черные шкафы - это водородные высокотемпературные печи, в которых молибденовая лодочка проходит различные температурные зоны. Открывается заслонка, и в печь, откуда вырываются языки пламени, заходит молибденовая лодочка.

Готовые таблетки шлифуются, поскольку они должны быть строго определенного размера. И на выходе контролеры проверяют каждую таблетку, чтобы не было ни сколов, ни трещин, никаких дефектов.

Одна таблетка весом 4,5 г по энерговыделению эквивалентна 640 кг дров, 400 кг каменного угля, 360 куб. м газа, 350 кг нефти.

Таблетки диоксида урана после отжига в водородной печи.

Здесь циркониевые трубки заполняют таблетками диоксида урана. На выходе имеем готовые твэлы (около 4 м в длину) - тепловыделяющие элементы. Из твэлов уже собирают ТВС, иначе говоря, ядерное топливо.

Таких автоматов с газировкой на улицах города уже не встретить, пожалуй, только на НЗХК. Хотя в советские времена они были очень распространены.

В этом автомате стакан можно помыть, а затем наполнить газированной, негазированной или охлажденной водой.

По оценке департамента природных ресурсов и охраны окружающей среды, высказанной в 2010 году, НЗХК не оказывает значимого влияния на загрязнение окружающей среды.

Пара таких породистых куриц постоянно проживает и откладывает яйца в добротном деревянном вольере, который находится на территории цеха.

Рабочие сваривают каркас для тепловыделяющей сборки. Каркасы бывают разные, в зависимости от модификации ТВС.

На заводе работают 2277 человек, средний возраст персонала - 44,3 года, 58 % - мужчины. Средняя заработная плата превышает 38 000 руб.

Большие трубки - это каналы для системы управления защиты реактора. В этот каркас затем установят 312 твэлов.

По соседству с НЗХК расположилась ТЭЦ-4. Со ссылкой на экологов представители завода сообщили: в год одна ТЭЦ выбрасывает радиоактивных веществ в 7,5 раз больше, чем НЗХК.

Слесарь-сборщик Виктор Пустозеров, ветеран завода и атомной энергетики, имеет 2 ордена Трудовой Славы

Головка и хвостовик для ТВС. Их устанавливают в самом конце, когда в каркасе уже стоят все 312 твэлов.

Финальный контроль: готовые ТВС проверяют специальными щупами, чтобы расстояние между твэлами было одинаковое. Контролеры чаще всего женщины, это очень кропотливая работа.

В таких контейнерах ТВС отправляются потребителю - по 2 кассеты в каждом. Внутри у них свое уютное войлочное ложе.

Топливо для атомных станций, произведенное в ОАО «НЗХК», используется на российских АЭС, а также поставляется в Украину, в Болгарию, Китай, Индию и Иран. Стоимость ТВС является коммерческой тайной.

Работа на НЗХК ничуть не опаснее работы на любом промышленном предприятии. За состоянием здоровья работников ведется постоянный контроль. За последние годы не выявлено ни одного случая профзаболеваний среди работников.

ТВС (тепловыделяющая сборка)

Я́дерное то́пливо - материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива , используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала , имеющего с ним дело.

Общая информация

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления , с одновременным выделением нескольких (2-3) нейтронов , которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией . Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления - это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления . Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235 U между различными продуктами деления (в МэВ):

Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения , сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%
Полная энергия деления ~200 100%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом) .

Природный уран состоит из трёх изотопов: 238 U (99,282 %), 235 U (0,712 %) и 234 U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны . В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное урановое , содержащее делящиеся ядра 235 U , а также сырьё 238 U , способное при захвате нейтрона образовывать плутоний 239 Pu ;
  • Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U , образующиеся при захвате нейтронов ядрами тория 232 Th .

По химическому составу, ядерное топливо может быть:

  • Металлическим , включая сплавы ;
  • Оксидным (например, UO 2);
  • Карбидным (например, PuC 1-x)
  • Смешанным (PuO 2 + UO 2)

Теоретические аспекты применения

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность , небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона , ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов . Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа . Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена , алюминия и других металлов . Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы , карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика - диоксид урана UO 2 . Её температура плавления равна 2800 °C, плотность - 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием , ниобием , нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики - низкая теплопроводность - 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4⋅10 3 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Практическое применение

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений : В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия , в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота , иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит , которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений : используют обогащение руды и радиометрическое обогащение руды .
  • Гидрометаллургическая переработка - дробление, выщелачивание , сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U 3 O 8), диураната натрия (Na 2 U 2 O 7) или диураната аммония ((NH 4) 2 U 2 O 7).
  • Перевод урана из оксида в тетрафторид UF 4 , или из оксидов непосредственно для получения гексафторида UF 6 , который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF 6 , обогащенный по 235 изотопу переводят в диоксид UO 2 , из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.