Стационарный поток пуассона. Смотреть страницы где упоминается термин пуассоновский поток. Неоднородные пуассоновские процессы

24.06.2019 Снилс
Эффективность работы АЗС в значительной мере определяется степенью исправности топливораздаточных колонок (ТРК). Предположим, что на ТРК действует пуассоновский поток  


Рассмотрим особенности построения каждого из уровней. Практически наиболее часто входящие потоки требований предполагаются пуассоновскими /47, 70, 74, 80/. Пуассоновские потоки характеризуются стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства.  

В рассматриваемой макромодели входящие потоки требований в общем обладают свойствами стационарности, ординарности и отсутствия последействия. Пуассоновский поток полностью описывается одним параметром - интенсивностью потока Я. Приближенная формула для Я имеет вид  

В простейшем случае (пуассоновский поток) вероятность появления требования в любой малый промежуток времени пропорциональна длине этого промежутка и не зависит от того, возникали или нет требования в предшествующие промежутки времени.  

Так как мы рассматриваем однородный пуассоновский поток судов с интенсивностью ц, то совместное выполнение равенств  

Y(t) = k и Y(T-t)= q-k (это следует из отсутствия последействия в пуассоновском потоке). Поэтому  

Поток, получаемый в результате случайного разрежения или объединения пуассоновских потоков, также является пуассоновским.  

Например, при аналитическом описании потока данных это может быть пуассоновский поток требований, обладающий ординарностью, стационарностью и отсутствием последействия. Это может быть поток с равномерным распределением требований. Если распределение задается эмпирическими данными, значения 7i1 7i2,. .., щ могут быть элементами гистограмм и т.п.  

Часто встречаются преобразования, требующие объединения потоков, поступающих по различным входам. В этом случае выходной сигнал может представлять объединение этих потоков в один с другими характеристиками. Например, если по двум входам в блок С поступают пуассоновские требования, то выходной сигнал может представлять собой также пуассоновский поток с параметром, равным сумме параметров исходных потоков.  

Пусть единичные платежи следуют друг за другом через случайные промежутки времени, распределенные по показательному закону с параметром Я > 0 (пуассоновский поток платежей), дифференциальная функция распределения которого имеет вид  

Для нестационарного пуассоновского потока закон распределения промежутка / уже не является показательным, так как зависит от положения на оси Ot и вида зависимости Я(7). Однако для некоторых задач при сравнительно небольших изменениях Я(0 его можно приближенно считать показательным с интенсивностью Я, равной среднему значению Я(0-  

Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

В рассматриваемой модели емкость следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин (N - k), которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из (N - k) находится в эксплуатации. Генерирует пуассоновский поток требований с интенсив-  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий 53  

Заметим, что, в то время как сам пуассоновский поток k (t) наступлений обстоятельств, влекущих ликвидацию счета вкладчиком, является в рамках нашей модели ненаблюдаемым, вероятность q (tu,t) сохранения счета и ожидаемая продолжительность XI1 = Mt - 10 существования счета могут быть оценены, в принципе, по наблюдаемым статистическим данным. Имея же статистические оценки т - 10 и 4-(tu,t) для величин Мт - 0 и q (t0,t), легко получить оценки Л. =(т. -)" и Х =-(i-t0) ln (0 0 для параметра Л ненаблюдаемого пуассоновского процесса. Оцениваемый таким образом параметр Х имеет смысл ожидаемого числа появлений в единицу времени обстоятельств, влекущих закрытие счета.  

Процесс рождения популяции предпринимателей или новых предпринимателей таким образом можно рассматривать как простейший пуассоновский поток.  

Для простейшего пуассоновского потока вероятность того, что за время г произойдет ровно т событий, равна  

Определение 5.8. Стационарный пуассоновский поток называется простейшим.  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Следствие 6.1. В нестационарном пуассоновском потоке с интенсивностью A(t) вероятность того, что за промежуток времени от t0 до t0+r  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Интенсивность нестационарного пуассоновского потока A(t)  

Однако в последние года доказано, "что если на систему обслуживания, состоящую из /7 приборов поступает пуассоновский поток интенсивности /I и длительность обслуживания подчинена совершенно произвольному закону распределения Ц (ЭС), математическое овдание которого I/ с, то для предельных вероятностей Р, сохраняет свою силу формула (36), . Следовательно в стационарном режиме вероятности /. зависят не от особенностей распределения вероятностей длительности обслуживания, а только от средней длительности обслуживания... як  

Рассмотрим решение такой задачи в условиях Нефтекум-ского УБР. Анализ работы службы испытания позволил составить статистические ряды интенсивности сдачи скважин на испытание и продолжительности испытания. Изучение рядов позволило сделать вывод, что поток скважин, поступающих в испытание, является одинарным стационарным потоком без последствия, т. е. обладает свойствами пуассоновского потока. С достаточной степенью точности можно допустить, что время обслуживания распределяется по показательному закону . На основании статистических рядов составлены таблицы распределения интенсивности сдачи скважин на испытание (табл. 36)  

Задача эта формулируется следующим образом поток требований - пуассоновский с интенсивностью Я длительность обслуживания распределена но показательному закону , причем средняя длительность обслуживания iAy. Если число обслуживающих устройств равно п, то при стационарном пуассоновском потоке требований вероятности Pt (t) (вероятности того, что в момент t обслуживанием, заняты I прибороь) близки к их предельным значениям (формула Эрлаша)  

Если объединяются несколько независимых ординарных потоков с сопоставимыми интенсивностями, то с ростом числа слагаемых потоков объединенный поток приближается к простейшему с возможной нестационарностью. Если слагаемые потоки стационарны , то в пределе получается пуассоновский поток. Интенсивность объединенного потока равна сумме интенсивностей каждого из них.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых) ординарных потоков событий сводится к пуассоновскому распределению числа отказов агрегата на заданном промежутке времени т. Условия состоят в том, что складываемые потоки должны оказывать приблизительно одинаковое влияние на суммарный поток. В инженерной практике рекомендуется считать сумму более 5-7 потоков за пуассоновскии поток, если интенсивности этих потоков имеют одинаковый порядок. Данное утверждение основано на многократных исследованиях, проведенных методом статистических испытаний. Исходя из вышеизложенного, число отказов т каждого агрегата блока КЭС, возникающих за промежуток (/, М-т), имеет распределение вида  

В период нормальной эксплуатации агрегата (на центральном участке) при решении практических задач часто полагают Я,(/)= Я = onst, т.е. принимают модель стационарного пуассоновского потока отказов. При этом формула (2.8.1) принимает вид  

Согласно показателем безотказности блока КЭС принимается средняя наработка на отказ ТНБ, а показателем ремонтопригодности - среднее время восстановления работоспособного состояния после отказа ТВБ- Чтобы получить формулы для расчета этих показателей воспользуемся свойством

Под потоком событий в теории вероятностей понимается последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток включений приборов в бытовой электросети; поток заказных писем, поступающих в почтовое отделение; поток сбоев (неисправностей) электронной вычислительной машины; поток выстрелов, направляемых на цель во время обстрела, и т. п. События, образующие поток, в общем случае могут быть различными, но здесь мы будем рассматривать лишь поток однородных событий, различающихся только моментами появления. Такой поток можно изобразить как последовательность точек на числовой оси (рис. 19.3.1), соответствующих моментам появления событий.

Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени. Такой поток сравнительно редко встречается в реальных системах, но представляет интерес как предельный случай. Типичным для системы массового обслуживания является случайный поток заявок.

В настоящем мы рассмотрим потоки событий, обладающие некоторыми особенно простыми свойствами. Для этого введем ряд определений.

1. Поток событий называется стационарным, если вероятность попадания того или иного числа событий на участок времени длиной (рис. 19.3.1) зависит только от длины участка и не зависит от того, где именно на оси расположен этот участок.

2. Поток событий называется потоком без последействия, если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

3. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.

Если поток событий обладает всеми тремя свойствами (т. е. стационарен, ординарен и не имеет последействия), то он называется простейшим (или стационарным пуассоновским) потоком. Название «пуассоновский» связано с тем, что при соблюдении условий 1-3 число событий, попадающих на любой фиксированный интервал времени, будет распределено по закону Пуассона (см. 5.9).

Рассмотрим подробнее условия 1-3, посмотрим, чему они соответствуют для потока заявок и за счет чего они могут нарушаться.

1. Условию стационарности удовлетворяет поток заявок, вероятностные характеристики которого не зависят от времени. В частности, для стационарного потока характерна постоянная плотность (среднее число заявок в единицу времени). На практике часто встречаются потоки заявок, которые (по крайней мере, на ограниченном отрезке времени) могут рассматриваться как стационарные. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не может считаться стационарным (ночью плотность вызовов значительно меньше, чем днем). Заметим, что так обстоит дело и со всеми физическими процессами, которые мы называем «стационарными»: в действительности все они стационарны лишь на ограниченном участке времени, а распространение этого участка до бесконечности - лишь удобный прием, применяемый в целях упрощения анализа. Во многих задачах теории массового обслуживания представляет интерес проанализировать работу системы при постоянных условиях; тогда задача решается для стационарного потока заявок.

2. Условие отсутствия последействия - наиболее существенное для простейшего потока - означает, что заявки поступают в систему независимо друг от друга. Например, поток пассажиров, входящие на станцию метро, можно считать потоком без последействия потому, что причины, обусловившие приход отдельного пассажира именно в тот, а не другой момент, как правило, не связаны с аналогичными причинами для других пассажиров. Однако условие отсутствия последействия может быть легко нарушено за счет появления такой зависимости. Например, поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой.

Вообще нужно заметить, что выходной поток (или поток обслуженных заявок), покидающий систему массового обслуживания, обычно имеет последействие, даже если входной поток его не имеет. Чтобы убедиться в этом, рассмотрим одноканальную систему массового обслуживания, для которой время обслуживания одной заявки вполне определено и равно . Тогда в потоке обслуженных заявок минимальный интервал времени между заявками, покидающими систему, будет равен . Нетрудно убедиться, что наличие такого минимального интервала неизбежно приводит к последействию. Действительно, пусть стало известно, что в какой-то момент систему покинула обслуженная заявка. Тогда можно утверждать с достоверностью, что на любом участке времени , лежащем в пределах , обслуженной заявки не появится; значит, будет иметь место зависимость между числами событий на неперекрывающихся участках.

Последействие, присущее выходному потоку, необходимо учитывать, если этот поток является входным для какой-либо другой системы массового обслуживания (так называемое «многофазовое обслуживание», когда одна и та же заявка последовательно переходит из системы в систему).

Отметим, между прочим, что самый простой на первый взгляд регулярный поток, в котором события отделены друг от друга равными интервалами, отнюдь не является «простейшим» в нашем смысле слова, так как в нем имеется ярко выраженное последействие: моменты появления следующих друг за другом событий связаны жесткой, функциональной зависимостью. Именно из-за наличия последействия анализ процессов, протекающих в системе массового обслуживания при регулярном потоке заявок, гораздо сложнее, чем при простейшем.

3. Условие ординарности означает, что заявки приходят поодиночке, а не парами, тройками и т. д. Например, поток атак, которому подвергается воздушная цель в зоне действия истребительной авиации, будет ординарным, если истребители атакуют цель поодиночке, и не будет ординарным, если истребители идут в атаку парами. Поток клиентов, входящих в парикмахерскую, может считаться практически ординарным, чего нельзя сказать о потоке клиентов, направляющихся в ЗАГС для регистрации брака.

Если в неординарном потоке заявки поступают только парами, только тройками и т. д., то неординарный поток легко свести к ординарному; для этого достаточно вместо потока отдельных заявок рассмотреть поток пар, троек и т. д. Сложнее будет, если каждая заявка случайным образом может оказаться двойной, тройной и т. д. Тогда уже приходится иметь дело с потоком не однородных, а разнородных событий.

В дальнейшем мы для простоты ограничимся рассмотрением ординарных потоков.

Простейший поток играет среди потоков событий вообще особую роль, до некоторой степени аналогичную роли нормального закона среди других законов распределения. Мы знаем, что при суммировании большого числа независимых случайных величин, подчиненных практически любым законам распределения, получается величина, приближенно распределенная по нормальному закону. Аналогично можно доказать, что при суммировании (взаимном наложении) большого числа ординарных, стационарных потоков с практически любым последействием получается поток, сколь угодно близкий к простейшему. Условия, которые должны для этого соблюдаться, аналогичны условиям центральной предельной теоремы, а именно - складываемые потоки должны оказывать на сумму приблизительно равномерно малое влияние.

Не доказывая этого положения и даже не формулируя математически условия, которым должны удовлетворять потоки, проиллюстрируем его элементарными рассуждениями. Пусть имеется ряд независимых потоков (рис. 19.3.2). «Суммирование» потоков состоит в том, что все моменты появления событий сносятся на одну и ту же ось , как показано на рис. 19.3.2.

Предположим, что потоки сравнимы по своему влиянию на суммарный поток (т. е. имеют плотности одного порядка), а число их достаточно велико. Предположим, кроме того, что эти потоки стационарны и ординарны, но каждый из них может иметь последействие, и рассмотрим суммарный поток

на оси (рис. 19.3.2). Очевидно, что поток должен быть стационарным и ординарным, так как каждое слагаемое обладает этим свойством и они независимы. Кроме того, достаточно ясно, что при увеличении числа слагаемых последействие в суммарном потоке, даже если оно значительно в отдельных потоках, должно постепенно слабеть. Действительно, рассмотрим на оси два неперекрывающихся отрезка и (рис. 19.3.2). Каждая из точек, попадающих в эти отрезки, случайным образом может оказаться принадлежащей тому или иному потоку, и по мере увеличения удельный вес точек, принадлежащих одному и тому же потоку (и, значит, зависимых), должен уменьшаться, а остальные точки принадлежат разным потокам и появляются на отрезках независимо друг от друга. Достаточно естественно ожидать, что при увеличении суммарный поток будет терять последействие и приближаться к простейшему.

На практике оказывается обычно достаточно сложить 4-5 потоков, чтобы получить поток, с которым можно оперировать как с простейшим.

Простейший поток играет в теории массового обслуживания особенно важную роль. Во-первых, простейшие и близкие к простейшим потоки заявок часто встречаются на практике (причины этого изложены выше). Во-вторых, даже при потоке заявок, отличающемся от простейшего, часто можно получить удовлетворительные по точности результаты, заменив поток любой структуры простейшим с той же плотностью. Поэтому займемся подробнее простейшим потоком и его свойствами.

Рассмотрим на оси простейший поток событий (рис. 19.3.3) как неограниченную последовательность случайных точек.

Выделим произвольный участок времени длиной . В главе 5 (5.9) мы доказали, что при условиях 1, 2 и 3 (стационарность, отсутствие последействия и ординарность) число точек, попадающих на участок , распределено по закону Пуассона с математическим ожиданием

где - плотность потока (среднее число событий, приходящееся на единицу времени).

Вероятность того, что за время произойдет ровно событий, равна

. (19.3.3)

В частности, вероятность того, что участок окажется пустым (не произойдет ни одного события), будет

Важной характеристикой потока является закон распределения длины промежутка между соседними событиями. Рассмотрим случайную величину - промежуток времени между произвольными двумя соседними событиями в простейшем потоке (рис. 19.3.3) и найдем ее функцию распределения

.

Перейдем к вероятности противоположного события

.

Это есть вероятность того, что на участке времени длиной , начинающемся в момент появления одного из событий потока, не появится ни одного из последующих событий. Так как простейший поток не обладает последействием, то наличие в начале участка (в точке ) какого-то события никак не влияет на вероятность появления тех или других событий в дальнейшем. Поэтому вероятность можно вычислить по формуле (19.3.4)

Дифференцируя, найдем плотность распределения

Закон распределения с плотностью (19.3.6) называется показательным законом, а величина - его параметром. График плотности представлен на рис. 19.3.4.

Восстанавливаемые объекты после ремонта продолжают эксплуатироваться по прямому назначению. Надежность восстанавливаемых объектов принято оценивать по характеристикам потока отказов. В общем случае потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. В теории надежности восстанавливаемых объектов в основном рассматриваются простейшие потоки событий, характеризующиеся ординарностью, стационарностью и отсутствием последействия (такие потоки событий чаще всего встречаются на практике).

Поток событий называется ординарным, если вероятность появления двух и более отказов в единичном интервале времени пренебрежимо мала по сравнению с вероятностью появления одного отказа. Таким образом, отказы в системе возникают по одному.

Поток событий называется стационарным, если вероятность попадания того или иного числа событий на интервал времени т зависит только от длины интервала и не зависит от того, где именно на оси расположен этот интервал. Стационарность потока событий означает, что плотность потока постоянна. Очевидно, что при наблюдении поток может иметь сгущения и разрежения. Однако для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный интервал времени, остается постоянным для всего рассматриваемого периода.

Отсутствие последействия в простейшем потоке событий означает, что вероятность появления отказов в единичном интервале времени не зависит от возникновения отказов во всех предыдущих интервалах времени, т. е. отказы возникают независимо друг от друга. В электронно-вычислительных средствах поток отказов равен сумме потоков отказов отдельных устройств. Если каждый в отдельности поток оказывает на суммарный поток достаточно равномерное и небольшое влияние, то суммарный поток будет простейшим.

Пусть простейший поток отказов обладает следующими свойствами.

1. Время между отказами распределено по экспоненциальному закону с некоторым параметром А, (формулы (4.16)-(4.21)):

Следовательно, и Т 0 - наработка до первого отказа распределена по экспоненциальному закону с тем же параметром X (средняя наработка до первого отказа есть математическое ожидание Т :

При таких условиях интенсивность отказов X(t) оказывается постоянной величиной:

2. Пусть r(t) - число отказов за время t (r(t) является случайной величиной). Вероятность того, что за время t произойдет m отказов при интенсивности отказов X, определяется законом Пуассона (см. (4.22)):

3. Среднее число отказов за время t равно:

4. Вероятность того, что за время t не произойдет ни одного отказа, равна: P(t) = е ~ и.

Описанный простейший поток событий также называют стационарным пуассоновским потоком. Как уже было сказано выше, такой поток характерен для сложных высоконадежных объектов.

Процесс функционирования восстанавливаемого объекта можно описать как последовательность чередующихся интервалов работоспособности и простоя, связанного с восстановлением. Предполагается, что отказ объекта немедленно фиксируется и с этого же момента начинается восстановительная процедура. Интервалы работоспособности (мы предполагаем 100%-ное восстановление объекта) являются независимыми и одинаково распределенными случайными величинами, при этом они не зависят от интервалов восстановления, которые также являются независимыми и одинаково распределенными случайными величинами (скорее всего, с другим распределением). Каждая из этих последовательностей интервалов формирует свой простейший поток событий.

Напомним, что в случае восстанавливаемых объектов основной характеристикой является параметр потока отказов. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и работает до отказа, после отказа происходит восстановление и объект вновь работает до отказа и т. д. Параметр потока отказов определяется через ведущую функцию Q(t) данного потока, представляющую собой математическое ожидание числа отказов за время 1:

где r(t) - число отказов за время t.

Параметр потока отказов со(0 характеризует среднее число отказов, ожидаемых в малом интервале времени, и определяется по формуле (2.9):

Ведущая функция может быть выражена через параметр потока отказов:

Для стационарных пуассоновских потоков, как было сказано выше, интенсивность отказов - величина постоянная и равна X; при этом она совпадает с параметром потока отказов. Действительно, по свойству 3 стационарного пуассоновского потока среднее число отказов за время г равно: Q.(t) = M = Xt, следовательно,

Средняя наработка на отказ. Как уже говорилось, этот показатель представляет собой отношение наработки к математическому ожиданию числа отказов в течение этой наработки. Поскольку при стационарном потоке отказов M (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r - равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ - интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом - в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение T н = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма - моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3.

Пусть в предприятие сервиса через случайные интервалы времени обращаются клиенты, при этом поток заказов однороден (однотипные заказы) и в единицу времени обращается X клиентов. Вероятность прихода клиента не зависит от числа уже обратившихся клиентов, вероятность того, что одновременно обратятся сразу два клиента, мала. Кроме того, число обратившихся клиентов зависит от рассматриваемого интервала времени и не зависит от начала рассмотрения.

Тогда модель математически можно описать следующим образом. Пусть р к (х) означает вероятность прибытия к клиентов в интервале времени длительностью х, p 0 (t ) - вероятность того, что за время (0, /) не будет ни одного клиента, что, согласно (14.2), соответствует вероятности того, что интервал времени до прибытия первого клиента больше, чем t.

Рис. 14.2.

1. Если ijH т2 два неперекрывающихся интервала (рис. 14.2), то предположение о независимости имеет вид:

2. Среднее значение времени между прибытиями клиентов равно

3. Вероятность того, что клиент не придет в течение интервала времени нулевой длительности,

4. Вероятность того, что клиент не придет в течение интервала времени бесконечной длительности,

Такой поток заказов считается простейшим. Поток заказов называется простейшим, или пуассоновским, если он обладает тремя свойствами: стационарен, ординарен и без последействия.

Свойство стационарности к событий потока на любом интервале времени т зависит только от числа к и длительности т.

Свойство ординарности характеризуется тем, что вероятность появления более одного события за малый интервал времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Свойство отсутствия последействия характеризуется тем, что вероятность появления к событий потока на любом интервале времени т не зависит от того, появились или не появились события в моменты, предшествующие началу рассматриваемого интервала.

Пуассоновский поток играет фундаментальную роль в теории систем массового обслуживания, как нормальный процесс в статистике. Большинство других процессов, используемых в системах массового обслуживания, получаются путем модификации пуассоновского.

Рис. 14.3.

Часто на практике трудно установить, обладает ли поток перечисленными выше свойствами. В частности, установлено, что если поток представляет собой сумму (суперпозицию) очень большого числа независимых стационарных потоков, влияние каждого из которых на весь суммарный поток ничтожно мало, то этот суммарный поток при условии его ординарности близок к простейшему. На рис. 14.3 показан пример образования суммарного потока. Указанное свойство сродни центральной предельной теореме нормального распределения.

Рис. 14.4.

Случайный процесс N(t), описывающий такой поток и соответствующий числу прибывших клиентов, является дискретным и в случайные моменты времени может принимать только целочисленные значения. Процесс нестационарный, так как может только возрастать. Реализация процесса показана на рис. 14.4.

В течение малого интервала времени процесс может остаться в том же состоянии или изменить его (увеличить число клиентов на единицу). Другими словами, процесс из состояния Sj может перейти только в состояние $ ,. Пусть вероятность изменения состояния в малом интервале времени dx равна A,dx+o(dx), где А>0. Вероятность сохранения прежнего состояния l-^dx + o(dx). Так как поток ординарен, вероятность смены состояния более одного раза в интервале (/, t+ dx) есть бесконечно малая величина o(dx) высшего порядка по сравнению с dx.

Обозначим вероятность того, что N(t) = n, как р п (х), где x - t-t 0 - интересующий нас интервал времени, т.е. процесс за время х совершил п скачков. Пусть р п (х) зависит только от х и не зависит от начального момента t 0 , от которого отсчитывается х. Поэтому, несмотря на то что процесс нестационарный, случайное число появления запросов на сервис N(t) = п за интервал времени х = t-t Q является постоянной (стационарной) величиной.

Предположим также, что N(t ) не зависит от числа реализаций события, произошедших в любые интервалы времени, предшествующие т, т.е. процесс обладает свойством отсутствия последействия. Вычислим вероятность p n (x + dx) того, что в интервале (x+dx) произойдет п событий.

Очевидно, для того чтобы в интервале (х+dx) произошло п событий, должны совершиться два взаимоисключающих события:

О произошло п событий в интервале х и 0 событий в интервале dx. Вероятность этого в силу независимости равна р п (т)(1 - Xdx);

О произошло п - 1 событий в интервале т и 1 событие в интервале dx. Вероятность этого равна р { (x)A.dx.

Таким образом,

Перенесем в левую часть р п (х) и поделим на dx:

Перейдя к пределу при dx -? 0, получим дифференциальное уравнение:

Рассчитаем вероятность /? 0 (х)того, что на интервале (x+dx) событие не наступит ни разу. Ясно, что для этого событие не должно наступить в интервале х и в интервале dx. Вероятность этого равна /? 0 (х)(1-Ых).

Таким образом,

Соответствующее дифференциальное уравнение имеет вид:

Объединив (14.12) и (14.13) и положив начало рассмотрения процесса с момента^ = 0, а х = t, получим систему дифференциальных уравнений:

Зададимся следующими начальными условиями:

которые означают, что в начальный момент t 0 событие не произошло.

Как видно, уравнения (14.14) и (14.15) являются частным случаем уравнений Колмогорова-Чепмена в дифференциальной форме (13.11) для абсолютных вероятностей и описанный процесс является марковским.

Для нахождения общего решения системы удобно использо-

вать преобразование Лапласа. Пусть p{i) Применяя преобразование Лапласа к обеим частям уравнения (14.14) системы с учетом начальных условий (14.16), получаем

По теореме о начальном состоянии оригинала

По теореме о конечном состоянии оригинала

Полученные характеристики соответствуют рассматриваемой модели.

Обратное преобразование Лапласа (14.17) будет

Применяя преобразование Лапласа к обеим частям (14.15) с учетом начальных условий (14.16), получаем

Согласно (14.17) и (14.18),

По таблице преобразований Лапласа

Используя (14.20), из (14.19) получаем распределение Пуассона

которое дает вероятность того, что в момент t > 0 система находится в состоянии N(f) = п или что за время произойдет п изменений.

Рис. 14.5. Независимые пуассоновские процессы Хт { и Хх 2

Таким образом, число событий внутри фиксированного интервала в пуассоновском потоке распределено по закону Пуассона. При этом число событий N(t { ,t 2) и N{t 3 ,t 4) на неперекрываю- щихся интервалахT t = t 2 -1 { и т 2 = t 4 -1 3 , где t { независимы (рис. 14.5).

На рис. 14.6 показаны плотности вероятности прибытия 0,1,2, 3, 4 клиентов при поступлении их по пуассоновскому закону для интенсивностей X = 0,5 (рис. 14.6, а) и X = 1 (рис. 14.6, б). Как видно, с ростом интенсивности повышается вероятность прибытия клиентов в первые моменты времени.

Вероятность того, что за время t поступит не более п заказов, определяется функцией распределения

Рис. 14.6. Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4-р(3);5-р(4)

Согласно (11.41), производящая функция для распределения Пуассона (14.21) по дискретному значению п

(14.23)

Математическое ожидание числа прибывших клиентов, распределенных по Пуассону, в соответствии с (11.43)

Таким образом, среднее число событий N(t) в интервале / равно U.

Дисперсия, характеризующая рассеивание числа заказов в интервале /, согласно (11.44),

Как видно, дисперсия простейшего потока равна математическому ожиданию. Данное свойство может служить критерием соответствия потока заказов простейшему.

Формула Пуассона (14.21) отражает все свойства простейшего потока. В самом деле, из формулы видно, что вероятность появления п событий за время t при заданной интенсивности А, является функцией только /, что характеризует свойство стационарности. В формуле не используется информация о появлении событий до начала рассматриваемого промежутка, что характеризует свойство отсутствия последействия. Если и т 2 два неперекрывающихся интервала времени, то свойство независимости имеет место, так как

Вероятность появления более одного события за малый интервал времени р (/) = (А,/) 2 /2!. Эта вероятность пренебрежимо мала

по сравнению с вероятностью наступления одного события, равной АЛ, что характеризует свойство ординарности потока.

Найдем далее для пуассоновского процесса распределение вероятностей интервалов между двумя последовательными событиями. Пусть случайная величина Т характеризует длину этих интервалов. Обозначим через F{x) функцию распределения этой случайной величины. По определению, F(x) - это вероятность того, что Т Вероятность того, что в интервале времени не произошло событие, если оно произошло в момент t 0 , равна безусловной вероятности

т.е.

Следовательно, функция распределения длины интервала между двумя последовательными событиями имеет вид показательного закона:

Продифференцировав (14.25), получим соответствующую плотность вероятности интервала между двумя событиями:

С учетом (14.26) и (14.24) вероятность того, что заказ появится внутри интервала (x,T+dx), можно записать как

т.е. вероятность поступления заказа внутри интервала (x,T + dx) равна A,dx, не зависит от х и пропорциональна dx. Величина X называется параметром показательного закона. Поскольку X не зависит от длительности интервала х, экспоненциальное распределение не имеет памяти и не имеет возраста (см. рис. 10.7).

Таким образом, для простейшего потока с интенсивностью X случайная величина Т, представляющая интервал между соседними заказами (событиями), имеет экспоненциальное распределение с функцией распределения (14.25) и плотностью распределения (14.26). Если время между прибытиями клиентов имеет экспоненциальное распределение со средним значением Т, тогда случайная переменная N(t), представляющая число клиентов, прибывших в фиксированный интервал , имеет пуассоновское распределение с параметром Xt, где Х=/Т. В силу марковости процесса интервалы между событиями взаимно независимы. Отсюда процесс, у которого интервалы между событиями взаимно независимы и подчинены показательному закону, является пуассоновским процессом.

В соответствии с разностными уравнениями (14.11) можно изобразить граф пуассоновского процесса (рис. 14.7). Вершины графа обозначают состояния системы, которые для пуассоновского потока клиентов соответствуют числу поступивших клиентов. Над дугами показаны вероятности перехода.

Рис. 14.7.

При большом промежутке времени вероятность перехода в соседнее состояние стремится к единице, а вероятность остаться в том же состоянии - к нулю и граф на рис. 14.7 преобразуется в граф на рис. 14.8. Над дугами графа показана интенсивность, с которой осуществляются переходы. Время нахождения процесса в состоянии случайно и распределено по экспоненциальному закону с математическим ожиданием /Х. В среднем через время 1Д система переходит в следующее состояние, что соответствует поступлению очередного клиента. Так как процесс ординарен, переход возможен только в соседние состояния. Передаточная функция дуги соответствует преобразованию Лапласа экспоненциального распределения (10.47).