Правило вальда основано анализе матрицы. Основные понятия последовательного анализа. Анализ связанной группы решений в условиях полной

Для каждого из описанных ниже критериев будем предполагать, что необходимо выбрать одно из действий при выборе "природой" одного из состояний , в результате чего достигается выигрыш

Критерий Вальда или максиминный критерий . В соответствии с этим критерием каждое действие оценивается по наихудшему для него состоянию, и оптимальным является действие, приводящее к наилучшему из наихудших состояний, то есть действие , для которого достигается

,

Можно установить, что согласно максиминному критерию складывающаяся ситуация рассматривается как матричная игра и максиминная стратегия представляет собой наилучший выбор против минимаксной стратегии "природы", то есть против наименее благоприятного априорного распределения вероятностей состояний "природы". С этой точки зрения максиминный критерий является чрезвычайно консервативным, так как "природа" не представляет собой сколько-нибудь разумного игрока. Однако применение этого критерия может быть целесообразным, если по условиям обстановки подобный консерватизм имеет смысл.

Критерий минимаксного риска

Минимаксный критерий (критерий потерь или минимаксного риска ). В соответствии с этим критерием оптимальным считается действие, для которого величина потерь (риска) принимает наименьшее значение при самой неблагоприятной обстановке, то есть действие , для которого достигается

,

где определяется как величина, которую нужно прибавить к , чтобы получить максимальный выигрыш, состоящий в -м столбце.

Для определения оптимального действия согласно минимаксному критерию на основании первоначальной матрицы выигрышей составляется вторая матрица , показывающая потери от ошибок ( матрица потерь). Покажем составление матрицы потерь на конкретном примере.

Пусть матрица выигрышей задана таблицей на рисунке 12.a . Из рисунка 12.a видно, что если применяется действие , а состояние "природы" , то по отношению к действию достигается наибольший выигрыш, равный 98 единицам, и, следовательно, игрок не несет никаких потерь. Поэтому показатель потерь на пересечении строки и столбца равен нулю. Этот показатель и записывается как элемент матрицы потерь. (См. рисунок 12.b) Если же игрок применяет действие против стратегии , то он получает только две единицы, тогда как максимально возможный выигрыш равен 98. Следовательно, показатель потерь в этом случае будет равен ; он записывается в таблицу на рисунке 12.b на пересечении строки и столбца Остальные элементы матрицы потерь находятся аналогичным образом.


Рис. 12.a.


Рис. 12.b.

Критерий Гурвица

Критерий пессимизма-оптимизма . В соответствии с этим критерием оптимальным считается действие , для которого достигается

где

Из приведенного условия видно, что критерий Гурвица является взвешенной средней из наименьших и наибольших выигрышей для принятого коэффициента В частности, при критерий Гурвица соответствует критерию Вальда. Заметим, что минимальный критерий учитывает только наибольший выигрыш, получаемый в результате применения любой стратегии, и безразличен к любым другим вариантам.

Критерий Лапласа

В соответствии с этим критерием оптимальным считается действие, которому соответствует

Следовательно, критерий Байеса (Лапласа) исходит из того, что раз совершенно неизвестно, какое из состояний имеет место , то нужно поступить так, как будто они равновероятны.

Последовательный анализ

Для построения математических (описательных и нормативных) моделей , как правило, бывает необходимо предварительно определить характеристики тех или иных случайных величин или вероятностей элементарных событий . Обычным путем определения подобных величин является обработка результатов наблюдений и измерений. Обработка таких результатов осуществляется методами математической статистики.

Особое значение для применения методов математической статистики имеет вопрос о числе наблюдений, полученных для оценки того или иного параметра. Классические методы статистики исходят из наличия, в крайнем случае, достаточного числа наблюдений. Однако в силу целого ряда причин не всегда возможно набрать необходимое число наблюдений. Достаточно указать, что увеличение числа наблюдений, как правило, ведет к увеличению затрат материальных средств и времени на проведение соответствующих испытаний. В подобных случаях число наблюдений целесообразно заранее не определять, а решение об окончании эксперимента принимать последовательно на каждом его этапе в зависимости от результатов предыдущих наблюдений, - иными словами, каждый последующий

Понятие риска предполагает наличие рискующего; будем называть его Лицом, Принимающим Решения (ЛПР).

Допустим, рассматривается вопрос о проведении финан­совой операции в условиях неопределенности. При этом у ЛПР есть несколько возможных решений i = 1,2,...,т, а реальная ситуация неопределенна и может принимать один из вариантов j = 1,2,..., n . Пусть известно, что если ЛПР примет i - e решение, а ситуация примет j- ый вариант, то будет получен доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений).

Оценим размеры риска в данной схеме.

Пусть принимается i - е решение. Очевидно, если бы было известно, что реальная ситуация будет j -я, то ЛПР принял бы решение, дающее доход q j = . Однако, i - е решение принимается в условиях неопределенности. Значит, ЛПР рискует получить не q j , а только q ij . Таким образом, существует реальная возможность недополучить доход, и этому неблагоприятному исходу можно сопоставить риск r ij , размер которого целесообразно оценить как разность

r ij = q j - q ij . (2.1)

Матрица R = (r ij ) называется матрицей рисков .

Пример 2.1 . Используя формулу (2.1), составьте матрицу рисков

R = (r ij ) по заданной матрице последствий

.

Решение . Очевидно, q 1 =
= 8; аналогично q 2 = 5, q 3 = 8, q 4 = 12 . Следовательно, матрица рисков имеет вид

.

6. Анализ связанной группы решений в условиях полной неопределенности

Полная неопределенность означает от­сутствие информа­ции о вероятностных состояниях среды (“природы”), например, о вероятностях тех или иных вариантов ре­альной ситуации; в лучшем случае известны диапазоны значений рассматриваемых величин. Рекомен­дации по принятию решений в таких ситуациях сформулированы в виде определенных правил (критериев). Рассмотрим основные из них.

Критерий (правило) максимакса. По этому критерию определяется вариант решения, максимизирующий максимальные выигрыши - например, доходы – для каждого варианта ситуации. Это критерий крайнего (“розового”) оптимизма , по которому наилучшим является решение, дающее максимальный выигрыш, равный
. Рассматривая i - е решение, предполагают самую хорошую ситуацию, приносящую доход
, а затем выбирают решение с наибольшимa i .

Пример 2.2. Для матрицы последствий в примере 2.1 выбрать вариант решения по критерию максимакса.

Решение. Находим последовательность значений
:a 1 =8, a 2 =12, a 3 =10, a 4 =8. Из этих значение находим наибольшее: a 2 =12 . Следовательно, критерий максимакса рекомендует принять второе решение (i =2 ).

Правило Вальда (правило максимина, или критерий крайнего пессимизма). Рас­сматривая i-e решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: b i = min q ij . Но теперь выберем решение i 0 с наибольшим . Итак, правило Вальда рекомендует при­нять решение i 0 такое, что =
=
.

Пример 2.3. Для матрицы последствий в примере 2.1 выбрать вариант решения по критерию Вальда.

Решение. В примере 2.1 имеем b 1 = 2, b 2 = 2, b 3 = 3, b 4 = 1. Теперь из этих значений выбираем максимальное b 3 = 3. Значит, правило Валь­да рекомендует принять 3-е решение (i =3 ).

Правило Сэвиджа (критерий минимаксного риска). Этот критерий аналогичен предыдущему критерию Вальда, но ЛПР принимает решение, руководствуясь не матрицей последствий Q, а матрицей рисков R = (r ij). По этому критерию лучшим является решение, при котором максимальное значение риска будет наименьшим, т.е. равным
. Рассматривая i-e решение, предполагают ситуацию максимального риска r i =
и выбирают вариант решения i 0 с наименьшим =
=
.

Пример 2.4. Для исходных данных в примере 2.1 выбрать вариант решения в соответствии с критерием Сэвиджа.

Решение . Рассматривая матрицу рисков R, находим последовательность величин r i =
: r 1 = 8, r 2 = 6, r 3 = 5, r 4 = 7. Из этих величин выбираем наименьшую: r 3 = 5. Значит, правило Сэвиджа реко­мендует принять 3-е решение (i =3 ). Заметит, что это совпадает с выбором по критерию Вальда.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). По данному критерию выбирается вариант решения, при котором достигается максимум выражения c i = {λminq ij + (1 – λ)maxq ij }, где 0 λ1. Таким образом, этот критерий рекомендует руководствоваться некоторым средним результатом между крайним оптимизмом и крайним пессимизмом . При λ=0 критерий Гурвица совпадает с максимаксным критерием, а при λ=1 он совпадает с критерием Вальда. Значение λ выбирается из субъективных (интуитивных) сооб­ражений.

Пример 2.5. Для приведенной в примере 2.1 матрицы последствий выбрать наилучший вариант решения на основе критерия Гурвица при λ =1/2.

Решение. Рассматривая матрицу последствий Q по строкам, для каждого i вычисляем значения c i = 1/2minq ij + 1/2maxq ij . Например, с 1 =1/22+1/28=5; аналогично находятся с 2 =7; с 3 =6,5; с 4 = 4,5. Наибольшим является с 2 =7. Следовательно, критерий Гурвица при заданном λ =1/2 рекомендует выбрать второй вариант (i =2 ).

Глава 2. Принятие решений в условиях неопределенности

2.7. Критерий Вальда

Критерий Вальда является самым "осторожным". Согласно ему, оптимальной альтернативой будет та, которая обеспечивает наилучший исход среди всех возможных альтернатив при самом плохом стечении обстоятельств.

Если исходы отражают подлежащие минимизации показатели (убытки, расходы, потери и т.д.), то критерий Вальда ориентируется на "минимакс" (минимум среди максимальных значений потерь всех альтернатив).

Если в качестве исходов альтернатив фигурируют показатели прибыли, дохода и других показателей, которые надо максимизировать (по принципу "чем больше, тем лучше"), то ищется "максимин" выигрыша (максимум среди минимальных выигрышей). Здесь и далее для всех критериев в тексте мы будем рассматривать именно такой случай, когда исход показывает некий выигрыш.

По критерию Вальда оценкой i -й альтернативы является ее наименьший выигрыш:

W i = min (x ij ) , j = 1..M

Оптимальной признается альтернатива с максимальным наихудшим выигрышем:

Х* = Х k , W k = max (W i ) , i = 1..N

Пример применения критерия Вальда

Есть два проекта Х 1 и Х 2 , которые при трех возможных сценариях развития региона (j=1..3) обеспечивают разную прибыль. Значения прибыли приведены в таблице 2.2. Необходимо выбрать проект для реализации.

Среди возможных проектов нет доминирующих ни абсолютно, ни по состояниям. Поэтому решение придется принимать по критериям.

Если выбор оптимального проекта осуществляется по критерию Вальда, то ЛПР должен выполнить следующие действия:

1. Найти минимальные исходы для каждой альтернативы. Это и будут значения критерия Вальда:

W 1 = min (x 1j), j = 1..3 => W 1 = min (45, 25, 50) = 25

W 2 = min (x 2j), j = 1..3 => W 2 = min (20, 60, 25) = 20

2. Сравнить значения критерия Вальда и найти наибольшую величину. Альтернатива с максимальным значением критерия будет считаться оптимальной:

25 > 20 => W 1 > W 2 => X* = X 1

Если бы решение принималось только по критерию Вальда, ЛПР выбрал для реализации проект Х 1 , поскольку прибыль, которую обеспечит данный проект при самом плохом развитии ситуации, выше.

Выбрав оптимальную альтернативу по критерию Вальда, ЛПР гарантирует себе, что при самом плохом стечении обстоятельств он не получит меньше, чем значение критерия. Поэтому данный показатель еще называют критерием гарантированного результата .

Основной проблемой критерия Вальда является его излишняя пессимистичность, и, как следствие, не всегда логичный результат. Так, например, при выборе по данному критерию между альтернативами А{100; 500} и В{90; 1000} следует остановиться на варианте А . Однако в жизни логичнее было бы выбрать В , так как в худшем случае В лишь немного хуже А , тогда как при хорошем стечении обстоятельств В обеспечивает гораздо больший выигрыш.

Предположим, что ЛПР (лицо, принимающее решения) рассматривает несколько возможных решений: i = 1,…,m. Ситуация, в которой действует ЛПР, является неопределенной. Известно лишь, что наличествует какой-то из вариантов: j = 1,…, n. Если будет принято i -e решение, а ситуация есть j -я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет i -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть j -я, то было бы принято решение, дающее доход q ij .
Значит, принимая i -e решение мы рискуем получить не q j , а только q ij , значит принятие i -го решения несет риск недобрать r ij = q j - q ij . Матрица R = (r ij) называется матрицей рисков.

Пример №1 . Пусть матрица последствий есть
Составим матрицу рисков. Имеем q 1 = max(q i 1) = 8, q 2 = 5, q 3 = 8, q 4 = 12.. Следовательно, матрица рисков есть

Принятие решений в условиях полной неопределенности

Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма). Рассматривая i -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход a i Но теперь уж выберем решение i0 с наибольшим ai0 . Итак, правило Вальда рекомендует принять решение i0 , такое что
Так, в вышеуказанном примере, имеем a 1 = 2, a 2 = 2, a 3 = 3, a 4 = 1. Из этих чисел максимальным является число 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков R = (rij) . Рассматривая i -e решение будем полагать, что на самом деле складывается ситуация максимального риска b i = max
Но теперь уж выберем решение i0 с наименьшим bi0 . Итак, правило Сэвиджа рекомендует принять решение i0 , такое что
В рассматриваемом примере имеем b 1 = 8, b 2 = 6, b 3 = 5, b 4 = 7 . Минимальным из этих чисел является число 5. Т.е. правило Сэвиджа рекомендует принять 3-е решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i , на котором достигается максимум
, где 0 ≤ λ ≤ 1 .
Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0, правило Гурвица приближается к правилу "розового оптимизма" (догадайтесь сами, что это значит). В вышеуказанном примере при λ = 1/2 правило Гурвица рекомендует 2-е решение.

Принятие решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.
Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Qi с рядом распределения

qi1

qi2


qin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый доход, обозначаемый . Правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.
Предположим, что в схеме из предыдущего примера вероятности есть (1/2, 1/6, 1/6, 1/6). Тогда Максимальный средний ожидаемый доход равен 7, соответствует третьему решению.
Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации i -го решения, является случайной величиной R i с рядом распределения

ri1

ri2


rin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.
Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем Минимальный средний ожидаемый риск равен 7/6, соответствует третьему решению.
Анализ принимаемых решений по двум критериям: среднему ожидаемому доходу и среднему ожидаемому риску и нахождение решений, оптимальных по Парето, аналогично анализу доходности и риска финансовых операций. В примере множество решений, оптимальных по Парето операций, состоит только из одного 3-его решения.
В случае, если количество Парето-оптимальных решений больше одного, то для определения лучшего решения применяется взвешивающая формула .

Правило Лапласа

Иногда в условиях полной неопределенности применяют правило Лапласа, согласно которому все вероятности p j считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

Выбор наилучшего решения в условиях неопределенности существенно зависит от того, какова степень этой неопределенности, т.е. от того, какой информацией располагает ЛПР.

Предположения субъективны, поэтому и степени неопределенности со стороны ЛПР должны различаться. Практикуются два основных подхода к принятию решения в условиях неопределенности. Лицо, принимающее решение, может использовать имеющуюся у него информацию и свои собственные личные суждения, а также опыт для идентификации и определения субъективных вероятностей возможных внешних условий, оценки возможных последствий альтернатив в различных условиях внешней среды. Это, в сущности, делает условия неопределенности аналогичными условиям риска, а процедура принятия решения, обсуждавшаяся ранее для условий риска, выполняется и в этом случае.

Если степень неопределенности слишком высока, то ЛПР предпочитает не делать допущений относительно вероятностей различных внешних условий, т.е. это лицо может или не учитывать вероятности, или рассматривать их как равные, что практически одно и то же. Если применяется данный подход, то для оценки предполагаемых стратегий имеются четыре критерия решения:

  • 1) критерий решения Вальда, называемый также максимином;
  • 2) альфа-критерий решения Гурвица;
  • 3) критерий решений Сэвиджа, называемый также критерием отказа от минимакса;
  • 4) критерий решений Лапласа, называемый также критерием решения Бэйеса.

Пожалуй, наиболее трудная задача для ЛПР заключается в выборе конкретного критерия, наиболее подходящего для решения предложенной задачи. Выбор критерия должен быть логичным при данных обстоятельствах. Кроме того, при выборе критерия должны учитываться философия, темперамент и взгляды нынешнего руководства фирмы (оптимистические или пессимистические, консервативные или прогрессивные).

Рассмотрим эти утверждения на конкретном примере. Элементами модели выбора альтернатив в условиях неопределенности являются матрица принятия решений i, Sj| и целевая функция Е {A i, w (S j)} (рис. 6.9).

Рис. 6.9.

А i, – альтернативы действий; Sj – состояние внешней среды; w (S j) – вероятности наступления состояния S j, причем Σmj= 1w(S j) = 1; e ij – результат, который будет достигнут, если выбрана альтернатива А i и наступит состояние внешней среды S j

В качестве иллюстрационного примера возьмем матрицу решений (рис. 6.10), включающую в себя пять альтернатив (A i; i = 1, ..., 5) и четыре состояния внешней среды (S j; j = 1,4). Последствия принимаемых решений приведены на пересечении строк и столбцов (e ij).

Рис. 6.10.

В условиях определенности, т.е. когда принятие решений происходит после наступления событий во внешней среде (апостериори), должно приниматься решение, максимизирующее целевую функцию (рис. 6.11). Так, при наступлении события S 1 необходимо принимать альтернативу A2, при S2 → A4, при S3 → A5, при S4 → A1.

Рис. 6.11.

В условиях риска необходимо принимать решение (выбирать альтернативу Ai) до наступления события Sj во внешней среде (априори), что требует учета вероятности w (Sj) наступления этого события. Это можно сделать путем умножения вероятности наступления этого события w (S j) на результат e ij, получаемый от принятия того или иного решения, и выбрать наибольшее значение Ai (рис. 6.12).

Рис. 6.12.

В случае если степень неопределенности слишком высока, то ЛПР может присваивать значениям вероятности свои субъективные значения, сводя задачу к принятию решений в условиях риска, либо не делать допущений относительно вероятностей различных внешних условий, т.е. может или не учитывать вероятности, или рассматривать их как равные, применяя различные критерии для выбора.

Критерий решения Вальда

Критерием Вальда "рассчитывай на худшее" (критерий крайнего пессимизма, или максимин) называют критерий, предписывающий обеспечить значение параметра эффекта, равного а:

Этот критерий ориентирует ЛПР на наихудшие условия и рекомендует выбрать ту стратегию, для которой выигрыш максимален. В других, более благоприятных условиях использование этого критерия приводит к потере эффективности системы или операции.

В рассматриваемом случае (рис. 6.13) в соответствии с критерием "крайнего пессимизма" наилучшей альтернативой будет A1.

Другим предельным случаем критерия Вальда является критерий "необузданного оптимизма", или максимакс:

В соответствии с этим критерием необходимо выбрать альтернативу А 2.

Рис. 6.13.

Альфа-критерий решения Гурвица

Этот критерий рекомендует при выборе решения в условиях неопределенности не руководствоваться крайним пессимизмом (всегда "рассчитывай на худшее", α = 0) или крайним оптимизмом ("все будет наилучшим образом", а = 1). Рекомендуется некое среднее решение (0 ≤ α ≤ 1). Этот критерий имеет следующий вид:

где α – некий коэффициент, выбираемый экспериментально из интервала между 0 и 1.

Использование этого коэффициента вносит дополнительный субъективизм в принятие решений с использованием критерия Гурвица.

В рассматриваемом примере (рис. 6.14) для случая а = 0,7 предпочтительной альтернативой становится А3.

Рис. 6.14.

Здесь приняты следующие обозначения:

Критерий решения Сэвиджа

В соответствии с этим минимаксным критерием, если требуется в любых условиях избежать большого риска, то оптимальным будет то решение, для которого риск, максимальный при различных вариантах условий, окажется минимальным.

При использовании критерия Сэвиджа обеспечивается наименьшее значение максимальной величины риска:

где риск r ij определяется выражением r ij = β – e ij, β – максимально возможный выигрыш.

Критерий Сэвиджа, как и критерий Вальда, – это критерий крайнего пессимизма, но только пессимизм здесь проявляется в том, что минимизируется максимальная потеря в выигрыше по сравнению с тем, чего можно было бы достичь в данных условиях.

Для рассматриваемого примера результаты выбора альтернативы приведены на рис. 6.15.

Рис. 6.15.

В рассматриваемом примере альтернатива А 4 минимизирует максимальное "наказание" за неверно определенное состояние внешней среды.

Критерий решения Лапласа

Критерий Лапласа, или байесов критерий, гласит, что если вероятности состояния среды неизвестны, то они должны приниматься как равные. В этом случае выбирается стратегия, характеризующаяся самой предполагаемой стоимостью при условии равных вероятностей. Критерий Лапласа позволяет сводить условие неопределенности к условиям риска. Критерий Лапласа называют критерием рациональности, и он подходит для стратегических долгосрочных решений, как и все названные выше критерии.

В рассматриваемом примере наилучшей альтернативой по критерию Лапласа (рис. 6.16) является А 5.

Рис. 6.16.

Кроме названных выше четырех критериев для принятия решений в условиях неопределенности существуют неколичественные методы, такие как приобретение дополнительной информации, хеджирование, гибкое инвестирование и др.