Создал первые советские радиолокаторы. Радиолокационные станции: история и основные принципы работы. Начало работ. Непрерывное или импульсное излучение

Вторая мировая война стала испытательным полигоном двух ключевых технологий XX века: ракетной и атомной. Говоря об этом, историки часто забывают упомянуть третью важнейшую военную разработку, в дальнейшем поставленную на службу мирным целям. Речь идет о радиолокации. Такая «забывчивость» связана с тем, что долгое время история появления радара из соображений секретности оставалась неясной. Однако сегодня ничто не мешает нам окончательно прояснить этот вопрос.

Александр Попов и радиоволны
В одной из статей «ИДИ» мы рассказывали, что изобретатель радио Александр Попов проводил практические испытания своего радиоприемника, используя суда и береговую инфраструктуру российского ВМФ. В 1897 году, настраивая радиосвязь между кораблями
Балтфлота, он обнаружил и описал явление отражения радиоволн от корабля. Разумеется, тогда об изобретении радара говорить было еще рано. Самые далеко идущие выводы из наблюдений Попова сделали немецкие ученые: в 1904 году Кристиан Хюльсмайер запатентовал телемобильскоп - двухантенное устройство для обнаружения кораблей на большом расстоянии. Детище сумрачной германской мысли выглядело чудовищно, работало ненадежно и военных совершенно не заинтересовало (наверное, к счастью, учитывая, что десять лет спустя Германия будет воевать против нас в Первой мировой войне). В 20-е годы физики сразу нескольких стран, отталкиваясь от исследований Попова и Хюльсмайера, проводили эксперименты с отражением радиоволн, большинство которых носило абсолютно мирный характер. В 1925 году советские ученые и инженеры Введенский, Симанов, Халезов и Аренберг доказали возможность использования ультракоротких радиоволн для точного обнаружения движущихся объектов. Но доказать мало, нужно еще и сделать.

Термин «радар» - аббревиатура от radiodetectionandranging - появился в 1941 году.

Как радар был электровизором
В начале 30-х молодой командир-зенитчик Павел Ощепков, поняв бесперспективность имевшейся тогда в ПВО акустической аппаратуры, приступает к разработке радиолокационных систем - РЛС. 3 января 1934 года в СССР радиолокационным методом был обнаружен самолет, летящий на высоте 150 метров на дальности 600 метров от радарной установки. В том же году на Ленинградском радиозаводе начали выпускать опытные образцы РЛС для системы радиообнаружения «Электровизор». Как и в начале века, вскоре нас нагнала Германия, но РЛС, появившиеся на кораблях германского флота, имели весьма ограниченный радиус действия. Достижения инженерной мысли совпали по времени с теоретическими исследованиями советского ученого-радиотехника Владимира Котельникова, позволившими усовершенствовать методы радиоприема в том числе и в целях радиолокации. С 1938 года в СССР начали серийно выпускаться РЛС «РУС-1» и «РУС-2», которые доказали свою эффективность в первые же часы войны. Благодаря тому что в Севастополе базировался крейсер «Молотов», единственный на тот момент советский корабль, оснащенный РЛС, первая атака немецких бомбардировщиков на базу Черноморского флота 22 июня была отражена. А 22 июля 1941 года расположенный в Подмосковье комплекс РЛС «РУС-2» с расстояния около 100 км обнаружил приближение 200 бомбардировщиков - первый налет немецкой авиации на Москву. Благодаря раннему оповещению наши силы ПВО смогли дезорганизовать воздушную атаку противника. Советскими истребителями и зенитными орудиями было сбито 22 вражеских бомбардировщика, большинство других немецких машин в панике поспешили избавиться от бомб, сбросив их в леса и на поля на подступах к Москве.

Украденный триумф
Если еще в 1940 году английские РЛС никуда не годились даже по сравнению с немецкими аналогами, то уже три года спустя британцы, изучив любезно предоставленные им советские схемы, создали превосходные РЛС, которым дали звучное имя «радар». Помимо дальности их коньком была точность - как им это удалось?
Вспомним, что наши физики еще до Ощепкова придумали использовать волны УКВ диапазона, что значительно повышало «прецизионность» радиолокации. Сантиметровая радиолокационная станция «Буря» испытывалась в СССР еще в 1936 году, в то время как и Германия и Великобритания вошли в войну с неэффективными радарами, работавшими в метровом диапазоне. Но к 1943 году у англичан все было «олрайт»: они задействовали радиолокаторы не только как средство противовоздушной обороны, но и для нападения - бортовые радары начали ставить на бомбардировщики, что позволило значительно повысить точность авиаударов. Именно с помощью сканирующих местность РЛС их авиация всего за четыре ночных налета уничтожила большую часть Гамбурга. В то время как советские РЛС тихо прикрывали наши города от фашистских самолетов, британцы пиарили якобы разработанные ими радары, сбрасывая бомбы на немецкие мегаполисы.
До абсурда ситуация дошла в 1946 году, когда британский премьер-министр Уинстон Черчиль заявил: «Самое выдающееся достижение в военной технике за последние 50 лет и за годы Второй мировой - изобретение радара, и это достижение целиком и полностью завоевание Великобритании». В СССР никак не отреагировали на такую «благодарность» союзника, поскольку разработки РЛС у нас все еще оставались засекреченными и афишировать их из-за чьей-то неуемной кичливости было нецелесообразно. Немцы, у которых заслуг в области разработки РЛС было побольше, чем у англичан, промолчали на правах проигравших. Как ни странно, вместо нас возмутились ближайшие союзники англичан - американцы. В журнале Look была опубликована статья, в которой открыто заявлялось: «Советские ученые успешно разработали теорию радара за несколько лет до того, как радар был изобретен в Англии».

Как и многие другие изобретения, радиолокатор был предсказан научной фантастикой. Первым его описал уроженец Люксембурга Хьюго Гернсбек . Он открыл в США радиобизнес и на заработанные деньги стал издавать научно-фантастический журнал, в котором был одним из авторов. Однако литература была слабым звеном этого одаренного человека, его книги не встали в один ряд с томами Жюля Верна и Герберта Уэллса. Принцип работы радиолокатора Гернсбек описал в 1911 году в романе «Ральф 124C 41+». Он был настолько детальным, что Роберт Уотсон-Уотт, которого в Великобритании считают изобретателем радара, узнав о романе, был сильно впечатлен и публично признал приоритет фантаста.

Уотсон-Уотт свое устройство представил лишь в 1935 году. Но еще за год до этого в СССР был успешно проведен эксперимент по обнаружению самолета радиолокатором, созданным товарищем Ощепковым. Разработки РЛС в 30-х годах прошлого века велись военными ведомствами наиболее технически продвинутых стран - СССР, Великобритании, США, Франции, Германии. И были строго засекречены, поскольку все готовились к войне. Этим и объясняется то, что у изобретения не один «отец».

Ощепков Павел Кондратьевич
Будущий изобретатель впервые сел за парту в 12 лет. Но учение ему давалось легко, он поступил сначала в техникум связи, а затем в Московский энергетический институт, который окончил досрочно и был призван в армию. Там за три месяца он провел расчеты и разработал рекомендации по технике артиллерийской стрельбы, которые под названием «Теория зенитной артиллерийской стрельбы» были размножены и стали учебным пособием для расчетов зенитных орудий. В самом начале идеи «отца» советского радара Павла Ощепкова нашли поддержку у заместителя наркома обороны Тухачевского - большого поклонника технических нововведений в армии. Но после того как в 1937 году Тухачевского репрессировали, арестовали и Ощепкова, а разработки радиолокационных систем притормозили. Только с началом войны Павел Кондратьевич был переведен в полутюремное КБ - шарашку. За его освобождение ходатайствовали такие люди, как академик Иоффе и будущий маршал Жуков. Однако время было упущено и хотя советские РЛС являлись лучшими в мире, но значительный прогресс в их разработке был достигнут только к концу Великой Отечественной.
После войны Ощепков продолжал исследования радиолокации, а также стал основоположником таких научных дисциплин, как энергоинверсия и интроскопия.


РЛС "Воронеж"

В России создано огромное множество радиолокационных средств различного назначения, работающих в разных диапазонах, которые способны отслеживать все, что движется в небе и в космосе. Например, РЛС «Дон-2Н», которой нет аналогов в мире (читайте о ней на страницах 20 и 21). Но поскольку технологии постоянно идут вперед, пришла пора заменить некоторые старые радары на более совершенные. В настоящее время на смену громоздким РЛС «Дарьял» приходят станции нового поколения «Воронеж», предназначенные для обнаружения баллистических и крылатых ракет, а также космических объектов. Преимущество новых РЛС - модульность, их можно в короткий срок собрать в любом месте. Скоро встанут на боевое дежурство загоризонтные РЛС «Контейнер». Их название говорит о том, что их также легко установить, а при необходимости разобрать и перевезти. Принцип работы загоризонтных радаров основан на том, что радиосигнал как от зеркала отражается от ионосферы и уходит далеко за горизонт, что позволяет контролировать огромное пространство. Помимо этого к 2020 году Вооруженные силы России получат порядка 800 новейших радиолокационных средств, таких как «Подлет-К1», «Гамма-М» и «Небо».


РЛС "Контейнер"

Современная война стремительна и быстротечна. Зачастую победителем в боевом столкновении выходит тот, кто первым сумеет обнаружить потенциальную угрозу и адекватно на нее среагировать. Уже более семидесяти лет для поиска противника на суше, море и в воздухе используется метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от различных объектов. Устройства, посылающие и принимающие подобные сигналы, называются радиолокационными станциями (РЛС) или радарами.

Термин «радар» - это английская аббревиатура (radio detection and ranging), которая была запущена в оборот в 1941 году, но давно уже стала самостоятельным словом и вошла в большинство языков мира.

Изобретение радара – это, безусловно, знаковое событие. Современный мир трудно представить без радиолокационных станций. Их используют в авиации, в морских перевозках, с помощью РЛС предсказывается погода, выявляются нарушители правил дорожного движения, производится сканирование земной поверхности. Радиолокационные комплексы (РЛК) нашли свое применение в космической промышленности и в системах навигации.

Однако наиболее широкое применение радары нашли в военном деле. Следует сказать, что эта технология изначально создавалась для военных нужд и дошла до стадии практической реализации перед самым началом Второй мировой войны . Все крупнейшие страны-участницы этого конфликта активно (и не без результата) использовали радиолокационные станции для разведки и обнаружения судов и самолетов противника. Можно уверенно утверждать, что применение радаров решило исход нескольких знаковых сражений как в Европе, так и на Тихоокеанском театре боевых действий.

Сегодня РЛС используются для решения чрезвычайно широкого спектра военных задач, от отслеживания запуска межконтинентальных баллистических ракет до артиллерийской разведки. Каждый самолет, вертолет, военный корабль имеет собственный радиолокационный комплекс. Радары являются основой системы противовоздушной обороны. Новейший радиолокационный комплекс с фазированной антенной решеткой будет установлен на перспективный российский танк «Армата». Вообще же, многообразие современных радаров поражает. Это абсолютно разные устройства, которые отличаются размерами, характеристиками и назначением.

С уверенностью можно заявить, что сегодня Россия является одним из признанных мировых лидеров в области разработки и производства РЛС. Однако прежде чем говорить о тенденциях развития радиолокационных комплексов, следует сказать несколько слов о принципах работы радаров, а также об истории радиолокационных систем.

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

Антенна импульсного радара работает и на прием, и на передачу. После испускания сигнала передатчик отключается на время и включается приёмник. После его приема происходит обратный процесс.

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

В импульсных радиолокационных станциях в качестве источника сигнала обычно используют магнетроны, или лампы бегущей волны.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Типичным доплеровским радиолокатором является радар, который используют сотрудники дорожной полиции для определения скорости автомобилей.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Кроме первичных РЛС, существуют и так называемые вторичные радиолокаторы, которые используются в авиации для опознания воздушных судов. В состав таких радиолокационных комплексов, кроме передатчика, антенны и приемного устройства, входит еще и самолетный ответчик. При облучении его электромагнитным сигналом ответчик выдает дополнительную информацию о высоте, маршруте, номере борта, его государственной принадлежности.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9-6 м (частота 50-330 МГц) и 0,3-1 м (частота 300-1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5-15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

История радиолокации

Идея радиолокации возникла практически сразу после открытия радиоволн. В 1905 году сотрудник немецкой компании Siemens Кристиан Хюльсмейер создал устройство, которое с помощью радиоволн могло обнаружить крупные металлические объекты. Изобретатель предлагал устанавливать его на кораблях, чтобы они могли избегать столкновений в условиях плохой видимости. Однако судовые компании не заинтересовались новым прибором.

Проводились эксперименты с радиолокацией и в России. Еще в конце XIX века русский ученый Попов обнаружил, что металлические объекты препятствуют распространению радиоволн.

В начале 20-х годов американские инженеры Альберт Тейлор и Лeo Янг сумели с помощью радиоволн засечь проплывающее судно. Однако состояние радиотехнической промышленности того времени было таково, что создать промышленные образцы радиолокационных станций было затруднительно.

Первые радиолокационные станции, которые можно было использовать для решения практических задач, появились в Англии примерно в середине 30-х годов. Эти устройства были очень большими, устанавливать их можно было только на суше или на палубе больших кораблей. Только в 1937 году был создан прототип миниатюрной РЛС, которую можно было установить на самолет. К началу Второй мировой войны англичане имели развернутую цепь радиолокационных станций под названием Chain Home.

Занимались новым перспективным направлением и в Германии. Причем, нужно сказать, небезуспешно. Уже в 1935 году главнокомандующему германского флота Редеру был продемонстрирован действующий радиолокатор с электронно-лучевым дисплеем. Позже на его основе были созданы серийные образцы РЛС: Seetakt для военно-морских сил и Freya для ПВО. В 1940 году в немецкую армию стала поступать система радиолокационная управления огнем Würzburg.

Однако несмотря на очевидные достижения германских ученых и инженеров в области радиолокации, немецкая армия начала использовать радиолокаторы позже англичан. Гитлер и верхушка Рейха считали радары исключительно оборонительным оружием, которое не слишком нужно победоносной немецкой армии. Именно по этой причине к началу битвы за Британию у немцев было развернуто только восемь радиолокационных станции Freya, хотя по своим характеристикам они как минимум не уступали английским аналогам. В целом же можно сказать, что именно успешное использование радаров во многом определило исход битвы за Британию и последующее противостояние между Люфтваффе и ВВС союзников в небе Европы.

Позже немцы на основе системы Würzburg создали рубеж ПВО, который получил название «линии Каммхубера». Используя подразделения специального назначения, союзники сумели разгадать секреты работы немецких радаров, что позволило эффективно глушить их.

Несмотря на то, что англичане вступили в «радарную» гонку позже американцев и немцев, на финише они сумели обогнать их и подойти к началу Второй мировой войны с самой продвинутой системой радиолокационного обнаружения самолетов.

Уже в сентябре 1935 года англичане приступили к постройке сети радиолокационных станций, в состав которой перед войной уже входили двадцать РЛС. Она полностью перекрывала подлет к Британским островам со стороны европейского побережья. Летом 1940 года британскими инженерами был создан резонансный магнетрон, позже ставший основой бортовых радиолокационных станций, устанавливаемых на американских и британских самолетах.

Работы в области военной радиолокации велись и в Советском Союзе. Первые успешные эксперименты по обнаружению самолетов с помощью радиолокационных станций в СССР были проведены еще в середине 30-х годов. В 1939 году на вооружение РККА была принята первая РЛС РУС-1, а в 1940 году – РУС-2. Обе эти станции были запущены в серийное производство.

Вторая мировая война наглядно показала высокую эффективность использования радиолокационных станций. Поэтому после ее окончания разработка новых РЛС стала одним из приоритетных направлений развития военной техники. Бортовые радиолокаторы со временем получили все без исключения военные самолеты и корабли, РЛС стали основой для систем противовоздушной обороны.

В период Холодной войны у США и СССР появилось новое разрушительное оружие – межконтинентальные баллистические ракеты. Обнаружение запуска этих ракет стало вопросом жизни и смерти. Советский ученый Николай Кабанов предложил идею использования коротких радиоволн для обнаружения самолетов противника на больших расстояниях (до 3 тыс. км). Она была довольно проста: Кабанов выяснил, что радиоволны длиной 10-100 метров способны отражаться от ионосферы, и облучая цели на поверхности земли, возвращаться тем же путем к РЛС.

Позже на основе этой идеи были разработаны радиолокаторы загоризонтного обнаружения запуска баллистических ракет. Примером таких РЛС может служить «Дарьял» - радиолокационная станция, которая несколько десятилетий была основой советской системы предупреждения о ракетных пусках.

В настоящее время одним из самых перспективных направлений развития радиолокационной техники считается создание РЛС с фазированной антенной решеткой (ФАР). Подобные радары имеют не один, а сотни излучателей радиоволн, работой которых руководит мощный компьютер. Радиоволны, испускаемые разными источниками в ФАР, могут усиливать друг друга, если они совпадают по фазе, или же, наоборот, ослаблять.

Сигналу РЛС с фазированной решеткой можно придавать любую необходимую форму, его можно перемещать в пространстве без изменения положения самой антенны, работать с разными частотами излучения. РЛС с фазированной решеткой гораздо надежней и чувствительней, чем радиолокатор с обычной антенной. Однако у подобных радаров есть и недостатки: большой проблемой является охлаждение РЛС с ФАР, кроме того, они сложны в производстве и дорого стоят.

Новые радиолокационные станции с фазированной решеткой устанавливаются на истребители пятого поколения. Эта технология используется в американской системе раннего предупреждения о ракетном нападении. Радиолокационный комплекс с ФАР будет установлен на новейший российский танк «Армата». Следует отметить, что Россия является одним из мировых лидеров в разработке радиолокаторов с ФАР.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Печора, ЗГРЛС "ДАРЬЯЛ"

Печора, Коми, ЗГРЛС 5Н79 "ДАРЬЯЛ". В/ч 96876

Разработана в составе эскизного проекта в 1968 г. Эту станцию, рассчитанную на большую излучаемую мощность и имеющую огромную площадь антенного полотна, предполагалось оснастить ядерными автономными источниками питания. Согласно первоначальному замыслу, данная РЛС должна быть размещена на крайнем Севере СССР в районе Земли Франца-Иосифа с целью достижения максимального времени предупреждения. Этот проект, уникальный и сложный, претерпел ряд доработок, выдержал конкурс с альтернативным проектом НИИДАР.

14 апреля 1975 года было принято решение о создании на базе РЛС «Дарьял» двух узлов - РО-30 в районе города Печора и РО-7 в Азербайджане в районе г. Габала. Весной 1975 года началось ускоренное строительство узла РО-30. Уже в мае 1975 года был отрыт котлован для передающего центра, а в мае 1977 года окончен монтаж конструкций технологической решетки ФАР. Строительные работы выполнялись военными строителями 43 УИРа (управление инженерных работ) под контролем главка ГУССМО.

Строительные нормативы характеризуют цифры: при высоте приемной антенны в 100 м верх ее при ветре 50 м/с не должен был отклониться более чем на 10 см; мощность водо- и энергоснабжения узла была эквивалентна городу со стотысячным населением.

По мере готовности помещений под технологическое оборудование специалисты Головного производственно-технологического предприятия (ГПТП) и его филиалов (Ленинградским, Рязанским, Николаевским) совместно с представителями монтажно-настроечных служб головных заводов (ДМЗ, ЗЭМЗ, МРЭЗ, ЮРЗ и др.) преступали к монтажно-настроечным работам.

В ходе монтажно-наладочных работ не обошлось и без чрезвычайных ситуаций. Летом 1979 года в ходе настроечных работ на передающем центре выгорело почти 80% радиопрозрачного укрытия АФУ и около 70% (недалеко от расположенных передатчиков) обгорели или покрылись сажей. В здании образовалась дыра примерно 100 на 100 м. Под угрозой срыва оказались работы не только на этом узле и на узле РО-76 в Азербайджане. Последствия пожара все же удалось быстро устранить. К 1981 году монтажно-настроечные работы на РО-30 были практически завершены. Начались заводские испытания, а позднее совместные испытания.

Так как через сектор обзора Печорского узла проходили трассы испытательных и учебных пусков БР, то это дало возможность отработать аппаратуру и программы РЛС по реальному космическому фону и ускорить проведение испытаний.

Большую помощь по созданию объекта и вводу его в строй оказывали представители заказчика ГУВ ПВО (М.И. Ненашев, А.Т. Потапов, О.М. Лосев, А.В. Прохоров, Н.И. Петров и др.), командир в/ч 73570 М.М. Коломиец и главный инженер этой части В.В. Рожков, специалисты Е.М. Захарчук и его подчиненные.

К концу 1983 года Госкомиссия (председатель – заместитель главкома ПВО Е.С. Юрасов) успешно завершила совместные испытания.

20 марта (января?) 1984 года (после более чем десятилетней гигантской работы) Печорская РЛС «Дарьял» была принята на вооружение.

Балхаш-9, Казахстан, ЗГРЛС «Дарьял-У». Узел ОС-2

Город Балхаш-9 - "девятка", затерянный в казахской степи гарнизон Российской Армии
Объект 1102 (5Н15, Балхаш).

Разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих баллистических ракет (БР) и космических объектов начиналась в Радиотехническом институте (РТИ) АН СССР Эта РЛС прошла полигонную отработку на 10-м государственном испытательном полигоне Минобороны, и 15 ноября 1962 г. было задано создание 4-х таких РЛС в районах Мурманска, Риги, Иркутска и Балхаша.

Первая РЛС «Днепр», предусмотренная эскизным проектом 1972 г., прошла совместные испытания на дополнительной ячейке узла ОС-2 (РЛЯ № 5) Балхаша и принята на вооружение Советской Армии в 1974 году. Гульшад, объект 1291

Следующая РЛС «Днепр» была создана несколько позже на узле РО-4 в г. Севастополе и на узле РО-5 (г. Мукачево, Украина).

День 29 октября 1976 г. стал днем рождения отечественной СПРН. Систему в составе командного пункта СПРН, узлов РО-1 (Мурманск), РО-2 (Рига), ОС-1 (Иркутск) и ОС-2 (Балхаш) на базе РЛС "Днепр" поставили на боевое дежурство.

Впервые в мировой практике в УПП (УПП – универсальная приемная позиция и ТПП – типовая передающая позиция) было предусмотрено создание адаптивной фазированной антенной решетки. Головной образец приемной позиции, которая называлась "Даугава-2", предполагалось разместить на узле ОС-2 (Балхаш), а первые ТПП - на узлах Мукачево и Рига.

Впоследствии на основе этих решений началось создание РЛС "Дарьял-У" на узлах Балхаш, Иркутск и Енисейск (Красноярск) и РЛС "Дарьял-УМ" на узлах Мукачево и Рига. Главным конструктором "Дарьяла-У" был назначен Александр Васильев, а "Дарьяла-УМ" - Виктор Иванцов.

Даръял - "Всевидящий глаз"

По результатам рассмотрения проекта 1976-1977 гг. было задано создание трех РЛС "Дарьял-У" в районах городов Балхаш, Иркутск и Енисейск, двух РЛС "Дарьял-УМ" в районах Мукачево и Риги и развернуты работы по разработке серии РЛС "Волга".

Проектировщик "Дарьял-У" - Радиотехнический Институт имени Минца. (РТИ), Москва, улица 8-го Марта. Там теперь БиЛайн находится. А начальник антенного отдела, тов. Зимин, стал одним из отцов-основателей этого БиЛайна. Называлось это вначале КБ Импульс.

Загоризонтная радиолокационная станция "Дарьял-У" (сооружение №1 («единица») -передатчик, сооружение №2 («двойка») - приемник) смотрела в космос и предназначалась для дальнего надгоризонтного обнаружения баллистических ракет уже на орбите и космических объектов на "южном ракетоопасном направлении" - в секторе Западный Китай – Иран.

Коридоры и кабинеты "двойки" напоминали фантастическую космическую станцию. Передатчик (по размеру больше приемника) находился в паре километров от приемника. С ним украинцы и завод Вымпел экспериментировали, когда включали - у слабых здоровьем казахов кровь с носа и ушей шла, даже защиту от обратных лепестков излучения собирались строить, т.к. эти лепестки были направлены на городок и на казармы.

На Балхашском узле к концу 80-х годов строительные и монтажные работы по созданию РЛС «Дарьял-У» проводились замедленными темпами.
С 1984 года образовалась в/ч 52175.
В 1991 году завершались заводские испытания с замечаниями строительного характера.

В январе 2003-го сооружения №1 и №2 были переданы Казахстану.
17 сентября 2004-го "двойку" сожгли.


Дарьял-УМ, Скрунда-2, Рига

Скрунда-2 является военным городком, расположенным в 5 км севернее обычной Скрунды.
Объект 1511-1 (Скрунда), РО-2 (Рига, "Днестр").

Ко второй половине 1950-х гг. в Радиотехническом институте (РТИ) АН СССР началась разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих баллистических ракет (БР) и космических объектов. 15 ноября 1962 г. было задано создание 4-х таких РЛС в районах Мурманска, Риги, Иркутска и Балхаша.

На РЛС "Скрунда" строительство радиолокационного комплекса раннего обнаружения РО-2 с РЛС "Днестр-М" начато в 1963-64гг. Станция начала функционировать в 1969г, и занимала площадь вместе с военным городком 164 га. РЛС осуществляла контроль за воздушным и космическим пространством над Западной Европой и Северной Америкой и при старте БР время предупреждения составило бы 25 минут.

РЛС "Днестр-М" представляла собой здание излучателя высотой 40 м и две расположенные в ряд антенны приемника. Площадь РЛС 1800 кв.м.

25 августа 1970 г. на вооружение Советской Армии был принят комплекс раннего обнаружения (РО) атакующих БР в составе командного пункта (КПК РО) и узлов РО-1 (Мурманск), РО-2 (Рига). Этот комплекс работал по принципу разнесенного на местности радиолокатора, когда функции источников информации сводились к формированию единичных измерений и передаче их на КПК РО, а задачей командного пункта комплекса являлось построение траекторий баллистических ракет и космических объектов и определение параметров их движения в автоматическом режиме. Создание узлов РО-1 и РО-2 обеспечило надежный контроль ракетных баз США.

На РЛС "Скрунда" в 1972г началось строительство радиолокационного комплекса раннего обнаружения "Днепр-М". Он стал вторым локатором в Скрунде. В 1977 году локатор встал на боевое дежурство. Параллельно с возведением второй РЛС "Днепр-М", были проведены работы по модификации первой РЛС "Днестр-М" до "Днепр-М". Таким образом, в Скрунде в конце 1979г. стало две РЛС "Днепр-М".

РЛС "Днепр-М" от своей предшественницы "Днестр-М" внешне отличалась в основном только приемной частью. Две разнесенные антенны, выполнены по Y-конфигурации, образуя между собой угол 120°. Площадь РЛС 900кв.м.

В конце 1979г все СПРН СССР были интегрированы и успешно обеспечивали информацию практически по всем ракетоопасным направлениям.

Следующим этапом СПРН явилась система "Дарьял".
По результатам рассмотрения проекта 1976-1977 гг. было задано создание трех РЛС "Дарьял-У" в районах городов Балхаш, Иркутск и Енисейск, двух РЛС "Дарьял-УМ" в районах Мукачево и Риги и развернуты работы по разработке серии РЛС "Волга". РЛС "Дарьял-УМ" разрабатывалась так, чтобы работать вместе с уже существующими РЛС типа "Днестр" и "Днепр".

Система состояла из приемника и передатчика, разнесенных между собой на 1.5км. РЛС типа "Дарьял" и "Дарьял-У" планировалось построить В Скрунде (Латвия), Мукачево (Украина), Печоре, Енисейске, Мишелевке (Иркутск), Балхаше (Казахстан) и Габале (Азербайджан).
В 1985г (86 г.?) на РЛС "Скрунда" началось строительство радиолокационного комплекса раннего обнаружения "Дарьял-УМ". Он стал третьим локатором в Скрунде. Сначала строили здание приемника 80x80м. Оно так и не было закончено. Здание антенны передатчика 30x40м даже и не начали строить.

После 1991 г судьба РЛС "Скрунда" была предрешена. По требованию латвийского правительства, в 1994 году заключен двусторонний договор о выводе российских войск с территории Латвии, по которому станция должна прекратить существование. С начала 1990-х годов станция находилась на условиях аренды, стоимость которой составляла 5 млн. долларов в год. Летом 1994 года был объявлен конкурс среди фирм, готовых снести РЛС "Дарьял-УМ". Локатор был взорван американской фирмой "Control Demolition Incorporated". 5-го мая 1995г. (или 4 мая) в присутствии военачальников из разных стран НАТО, взорвали и здание приемной антенны РЛС "Дарьял-УМ".

РЛС "Днепр-М" продолжали работать до 1998 г. Станция перестала действовать 31 августа 1998 года и 1 сентября 1998 начались работы по ее демонтажу, финансирование которых осуществлялось Россией. На уничтожение, взрыв и последующую очистку территории РЛС было выделено 7 млн. долларов, несмотря на то, что ее уничтожение обошлось в 3-3,5 млн. Работы по демонтажу станции были завершены 19 октября 1999 года и было подписано соглашение о передаче земельных участков, а также оставшихся инженерных сооружений и военного городка под юрисдикцию Латвии. В июне 2000 года руководство Латвии, из-за отсутствия средств на содержание военного городка "Скрунда-2", приняло решение об его консервации, на что было выделено 1,7 млн. долл.

Азербайджан, Габала-2, РЛС "Дарьял".

Габала (Габеля, до 1991 Куткашен) находится в 63 км от железнодорожной станции Ляки.

Конструкторские работы начались в 1977 г.
Строительство РЛС (также Мингечаурская РЛС) на узле "Габала" (РО-7) объект 754 началось в 1982 году вблизи поселка Куткашен (строительство в Азербайджане выпрашивал ЦК коммунистической партии республики Азербайджан). Началось строительство объекта “Стопор” с 16 этажным зданием РЛС "Дарьял". Узел был сдан и станция заступила на боевое дежурство в 1985 году. Строительство было завершено в 1987 году.

Станция контролирует территории Ирана, Турции, Китая, Пакистана, Индии, Ирака, Австралии, большую часть стран Африки и острова Индийского и Атлантического океанов, просматривает территорию дальностью свыше 6000 км. РЛС не способна обрабатывать информацию самостоятельно, а передает ее режиме реального времени на объекты “Квадрат” и “Швертбот” под Москвой.

Энергопитание было организовано не так, как на американских аналогах. Стояли тысячные трансформаторы и ПСЧ для снабжения аппаратуры переменным током с частотой 400 герц. Приэтом была полная гальваническая развязка, чтобы подключившись к сети питания не снимали информацию.
В качестве резервного питания стояли МГД генераторы. Говорят, когда их включали - "горы раскалывались".

Судьба РЛС была одним из вопросов на переговорах между Россией и Азербайджаном в Москве 1997 года. За период с января 1992 по июль 1997 года задолженность РФ перед Республикой Азербайджан составила около 100 млн. деноминированных рублей. На основании этого указом Президента Азербайджана узел был снят с боевого дежурства. Все три комплекта аппаратуры станции поддерживались в режиме "готовность к боевой работе" или "холодный резерв, регламентные работы" с периодическими кратковременными включениями одного из них в режим "боевая работа" для выполнения поступающих от системы ККП целеуказаний на уточнение параметров орбитальных обьектов.
В начале 2002 года определился статус, принципы и условия использования узла РО-7 в Азербайджане. Россия будет использовать её на правах аренды. Пока срок аренды определен в 10 лет. Этот узел занимает ключевое положение в СПРН.

В 2007 году Путин предложил Бушу совместно использовать радиолокационную станцию в Азербайджане.

Иркутск, «Днепр», «Дарьял-У»

Уз ел ОС-1, объект 1291 (1102 ?), Сибирь, Иркутская область, пос. Мишелевка. г. Усолье-Сибирское-7.

Первые разработки систем предупреждения о ракетном нападении (СПРН) и ракетно-космической обороны в целом (РКО) начались в Советском союзе в 50-x годах, в тот период, когда в СССР и США появились межконтинентальные баллистические ракеты (БР). В это время в Радиотехническом институте (РТИ) АН СССР, под руководством А.Л. Минца, началась разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих БР и космических объектов. Дальность обнаружения БР до 3250км.

После того, как опытный образец РЛС "Днестр" завершил полигонную отработку в июле 1962 г., 15 ноября этого же года было задано создание 4-х таких РЛС в районах Мурманска (Оленегорска, Кольский полуостров), Скрунды (Рига, Латвия), Мишелевки (вблизи Иркутска) и Балхаша (Казахстан). В такой конфигурации СПРН должна была обеспечивать контроль на потенциально опасных направлениях. На северо-западе отслеживались пуски БР из Атлантики, с акваторий Норвежского и Северного морей и из Северной Америки, на юго-востоке отслеживались пуски БР из Индийского и Тихого океанов, и также с западного побережья США.

В 1971 году было осуществлено информационное подключение к КП СПРН нижних РЛЯ Иркутского и Балхашского узлов. Это дало возможность контролировать (хотя и не полностью) возможные пуски БР, прежде всего со стороны Китая (ракетный полигон Урумчи), отношения с которым в то время ухудшились. Это событие уже было предтечей следующего этапа – этапа создания комплексной системы.

13 февраля 1973 г. приняты на вооружение РЛС "Днестр" на узлах, предназначенных для обнаружения спутников (ОС) Земли - ОС-1 (Иркутск) и ОС-2 (Балхаш). Узлы ОС-1 и ОС-2 существенно расширили возможности по контролю космического пространства и прикрыли юго-восточное ракетоопасное направление.

В 1968 г. в РТИ АН СССР разработали первый эскизный проект СПРН с использованием РЛС "Днепр", созданной на базе локатора "Днестр" и обладающей по сравнению с ним более высокими тактико-техническими характеристиками, и перспективной РЛС "Дарьял".

В последствии РЛС «Днестр-М» были доработаны до РЛС «Днепр-М, кроме радио-локационных ячеек (РЛЯ) №№ 3 и 4.

29 октября 1976 г. объединенную СПРН в составе командного пункта СПРН, узлов РО-1 (Мурманск), РО-2 (Рига), ОС-1 (Иркутск) и ОС-2 (Балхаш) на базе РЛС "Днепр" поставили на боевое дежурство. Задачей системы было снабжение информацией о БР и спутниках, а не организация ответно-встречного удара.

Строительство РЛС "Дарьял-У" на ОРТУ "Мишелевка" началось в 1979 году на позициях РЛС "Днепр" и продолжалось по 1984 год в 100 км к северо-западу от Иркутска, вблизи поселка Усолье-Сибирское. РЛС первоначально входила в состав Военно-космических сил СССР, затем в состав РВСН.

Далее, имеющаяся информация по станции разнится. Пишут, что строительство "Дарьял-У" продолжалось по 1984 год. С завершением постройки станция начала контроль территории Китая.
По информации из других источников, создание станции «Дарьял-У» (третьей по счету в СССР) на Иркутском узле не было доведено даже до этапа заводских испытаний в силу незначительного в конце 80-х и начале 90-х годов финансирования, потере производственных мощностей, морального старения элементов и технологий за время растянувшегося на долгие годы строительства.

В октябре 1999 года США предложили России помощь в завершени строительства РЛС в обмен на изменение Договора по ПРО, так как затраты на завершение строительства могут составить несколько десяткаов млн долларов. Россия отнеслась к этому предложению негативно.

В 1999 году станция была передана Сибирскому отделению РАН для организации наблюдений за верхними слоями атмосферы. По сообщениям заведующего отделом расположенного в Иркутске Института солнечно-земной физики Александра Потехина, на станции проводятся исследования совместно с учеными обсерватории Массачуссетского технологического института США.

С помощью американских специалистов радар частично переоборудован и включен в мировую сеть наблюдений за состоянием атмосферы на высоте от 150 до 1000 и более километров.

Также, по иркутскому узлу встречалась такая информация: .г. Ангарск, антенна передатчика "Кондор" (чуть меньше "Дуги-1"), высота 175 м, длина 175м, три башни, 16 широкополосных вибраторов.
КВ от 6 до 16 МГц., мощность - 2 МВт непрерывно. Функционирует.

Красноярск, «Днепр», «Дарьял-У»

В 1983 году на ОРТУ "Енисейск-15" для создания непрерывного радиолокационного поля по внешней границе СССР на северо-восточном ракетоопасном направлении, после неоднократных обращений высшего командования ВС СССР в 1983 году было развернуто строительство нового узла надгоризонтной радиолокационной станции «Дарьял-У» под Енисейском - Енисейск-15. Специалисты прогнозировали нахождение у западного побережья США баз атомных подводных лодок с ракетами «Трайдент» и «Трайдент-2», способных атаковать всю территорию СССР.

Первоначально рассматривались места под Норильском и Якутском. Последний район отпал из-за недостатка энергоресурсов, а Норильск – из-за условий вечной мерзлоты, удаленности от удобных транспортных артерий и соответственно высокой стоимости доставки строительных материалов и оборудования, что могло отразиться на сроках и стоимости введения в строй этого ключевого в СПРН узла.из-за. Строительство новой РЛС было развернуто в районе Енисейска в нарушение Договора между СССР и США по ограничению систем ПРО 1972 года, которым разрешалось размещение РЛС СПРН только по периметру государственной территории.

К началу 1987 года строительство технологических помещений на узле было закончено и начались монтажно-наладочные работы. В это время американская сторона обвинила Советский Союз в нарушении Договора и дальнейшее строительство станции было прекращено, при этом затраты на строительство по состоянию на 1 января 1987 года составили 203,6 млн. рублей, а на закупки технологического оборудования - 131,3 млн. рублей.

Размеры антенны передатчика РЛС 30х40 м; антенна включает десятки передатчиков под единым управлением. Приемная антенна имела габариты 80х80 м, частотный диапазон работы РЛС - метровый.
Предложения Советской стороны по использованию РЛС в качестве международного средства обнаружения спутников (ОС-3) не получили одобрения.

В мае 1987 года станция была проинспектирована группой американских специалистов. На основе полученных данных был подготовлен подготовлен подробный доклад о состоявшейся поездки для спикера палаты представителей:

"На основании того, что мы видели своими глазами, мы считаем, что вероятность использования Красноярской станции в качестве РЛС ПРО крайне низка. Отсутствие защиты, независимых источников энергоснабжения и неподходящая частота - все это говорит против использования ее в таких целях. Мы считаем, что в данный момент станция не нарушает Договор по ПРО". Важное место в докладе имеет и второй раздел - "доступ к информации": "...мы стали свидетелями проявления такой открытости, которое нельзя не назвать впечатляющим. Девять американцев (включая Уильяма Брода, научного обозревателя газеты "Нью-Йорк таймс") получили возможность посетить РЛС и провести там почти четыре часа. За это время было сделано свыше 1000 фотоснимков, были сняты две видеоленты, сделана магнитофонная запись".

Во время начавшейся перестройки и политики односторонних уступок со стороны руководства СССР под давлением США в 1987 году строительство станции было остановлено и в 1989 году под нажимом США было принято решение о демонтаже практически полностью построенной станции.

Подмосковье, пос. Фрязино. РЛС «Дон-2Н»

Одним из серьезных добавлений к СПРН стала постройка РЛС типа Дон-2Н возле подмосковных г. Фрязино и г. Пушкино, которая заменила станции Дунай и Дунай 3У.

Многофункциональная РЛС 5Н20 «Дон-2Н», Софрино-1, объект 2311.
Проектировщик - РТИ (Радиотехнический институт).
Главный конструктор МРЛС «Дон-2Н» системы ПРО А-135) - В.К. Слока.

МРЛС «Дон-2Н» является уникальной РЛС с обзором 360”, которая является моноимпульсной многофункциональной радиолокационной станцией сантиметрового диапазона с крупномодульными фазированными активными антенными решетками (ФАР), электронным управлением характеристиками и положением в пространстве передающей и приемной диаграммами направленности, цифровой обработкой радиолокационных сигналов, а также информационно-управляющей и вычислительной системой, способной одновременно осуществлять обнаружение и сопровождение сложных баллистических и аэробаллистических целей, а затем и наведение на них противоракет дальнего и ближнего перехвата. Представляет собой стационарный наземный комплекс радиотехнической аппаратуры, сопряженный с вычислительной системой КВП-135 и размещенный в одном из двух сблокированных зданий специального инженерного сооружения.

Самая мощная и эффективная на планете станция «Дон-2Н» противоракетной обороны является основой единственной в мире развернутой системы ПРО – A-135 предназначенной для защиты Московского региона и прилегающих областей от ядерного удара (в радиусе до 100 км). Строительство системы началось в 80-х гг., в 1995 г. она была введена в строй в полном объеме.

Сооружение представляет правильную четырехугольную усеченную пирамиду с длиной стороны по отметке 6 м - 144 метра, по кровле - 100 метров, высотой 33,6 (по неподтвержденным данным ~35) м. Кроме того, по неподтвержденным данным, этажи сооружения уходят под землю на глубину ок. 6 м. В любом случае сооружения под зданием РЛС значительные. На всех четырех боковых поверхностях сооружения расположены круглые фазированные антенные решетки сопровождения целей и противоракет (диаметр антенны 16 м) и квадратные (10.4х10.4 м) фазированные антенные решетки передачи команд наведения на борт противоракет. Радиолокационная станция "Дон" обеспечивает одновременный обзор всей верхней полусферы в зоне ответственности комплекса.

На ее командно-вычислительный пункт, в Солнечногорске (КП Солнечногорск-7 , п Тимоново), защищенный от поражающих факторов ядерного взрыва, через командный пункт СПРН (тоже Солнечногорск) поступает информация от всех действующих узлов раннего обнаружения, как от расположенного на северо-западном ракетоопасном направлении узла «Барановичи». Эти исходные данные вместе с полученными от самой РЛС «Дон-2Н» в случае необходимости будут использованы для наведения противоракет. Их на сегодняшний день в составе системы A-135 сотня – 68 ракет 53T6 (по классификации НАТО «Gazelle»), рассчитанных на перехват в атмосфере, и 32 ракеты 51T6 («Gorgon»), призванные осуществлять перехват за пределами атмосферы.

На ней существуют автономные системы электро- и водоснабжения, мощное холодильное оборудование, устраняющее перегрев везде, где он может возникнуть, ремонтный цех или завод.

Все системы дублированы, поэтому замена элементов, узлов, агрегатов оборудования может производиться без отключений.

Ежедневно в 9.00 и 21.00 на дежурство, длиной 12 часов, заступает 100 человек. На каждого из обслуживающего персонала станции приходится по 12-14 дежурств на человека в месяц. Из-за нехватки кадров многим приходится дежурить сутки через двое. Эксплуатацию станции проводят только офицеры. Солдат на объекте нет.

Операторы РЛС регулярно выполняют учебные стрельбы по поражению БР по специальным компьютерным программам, имитирующим реальные боевые условия. Программы разделяются по различным траекториям полета БР, количеством ГЧ и ложных целей, степенью сложности поражения. В учебном бою участвуют все системы обороны. Бой идет в режиме реального времени и в реальном географическом измерении.

В мирной обстановке РЛС "Дон-2Н" работает в режиме малой излучаемой мощности. Перевод станции в более активный режим осуществляется в случае необходимости детальной разведки ККП и т.п.

В классификации НАТО станция "Дон-2Н" получила обозначение "Pill Box".

Аналогов в мире РЛС "Дон-2Н" не имеет.

РЛС «Волга», г. Барановичи, Беларусь

Узел «Барановичи» СПРН Космических войск ВС РФ занимает не менее 200 га в районе между пос. Ганцевичи и г. Барановичи, республика Беларусь. Представляет собой радиолокационную станцию 70М6 «Волга», предназначенную для обнаружения стартов баллистических ракет, космических объектов над всей территории Европы (за исключением районов Восточного Средиземноморья) и контроль над районами патрулирования подлодок НАТО в значительной части акватории Северной Атлантики (Северного и Норвежского морей, западной части Средиземного). Сектор контроля на севере ограничен о. Исландия, на юге – о. Мадейра. Но при этом с командного пункта станции, можно заглянуть даже в Африку.

Объект замыкается на «ядерный чемоданчик» президента России. Сверхчувствительные антенны «Волги» круглосуточно отслеживают, любой ракетный запуск на расстоянии в пять тысяч километров. Дежурные офицеры наблюдают и за всеми космическими объектами, аппаратура позволяет увидеть на любой из орбит даже шарик диаметром несколько миллиметров. Глубоко под землей спрятан вычислительный комплекс – электроника позволяет моментально расшифровать изображение любой зафиксированной «Волгой» пусковой вспышки и за считанные секунды определить предполагаемую траекторию полета ракеты.

«Волга» – целый тщательно охраняемый город, в любой момент способный перейти в полностью автономный режим. Глубоко под землей находятся мощные дизель-генераторы, холодильный завод, куда каждые сутки из десятка артезианских скважин закачивается 3,5 тысячи тонн воды. Вода необходима для охлаждения фазированной антенной решетки – «фары», которая состоит из сотен приемо-передающих устройств.

«Волга» стала совместным детищем ВПК России и Беларуси. Так, уникальные компьютерные программы разработаны белорусскими учеными, обслуживанием уникальной аппаратуры рука об руку занимаются инженеры двух государств. Немало рабочих мест занято местными жителями, с соседними хозяйствами военные наладили самые тесные отношения, закупают продукты.

РЛС разработана в соответствии с проектом 1976 года и последующих его корректировок.
В середине 1984 года появилось решение о создании головной станции «Волга» на западном ракетоопасном направлении в Белоруссии, в районе г. Барановичи у пос. Ганцевичи (Минский узел).
Строительство РЛС «Волга» на узле «Барановичи» развернулось в 1986 году.
В 1990 году создание станции РЛС «Волга» приближалось к завершению. Но в 90-е годы этот процесс резко затормозился (практически приостановился).
После завершения строительных, монтажно-наладочных и испытательных работ, станция «Волга» в 2003 году была поставлена на боевое дежурство в составе СПРН.

По сравнению с аналогичными объектами в Азербайджане и Украине, или России, узел СПРН «Волга» является технически совершенным, на ней единственной применяется полная цифровая обработка сигналов.

Узлы дециметрового диапазона на базе РЛС «Волга» в Советском Союзе должны были быть построены между радиолокационными узлами метрового диапазона типа «Дарьял», что позволяло создать двухдиапазонное сплошное радиолокационное поле по всей периферии СССР.

Соседями барановичской «Волги» должны были стать, к югу – «Дарьял-УМ» на узле Берегово близ узла Мукачево (Закарпатская область Украины), к северу – «Дарьял-УМ» на узле Скрунда близ узла Рига.

Севатополь, РЛС "Днепр"

Первая РЛС «Днепр» прошла совместные испытания на дополнительной ячейке узла ОС-2 (РЛЯ № 5, Балхашский узел, Казахстан) и была поставлена на дежурство в 1974 году.

Следующие РЛС 5Н86 «Днепр» были построены несколько позже 1979 г. на узле РО-4 «Николаев» в г. Севастополе, мыс Херсонес и на узле РО-5 (г. Мукачево, п. Пестрялово Украина). ОРТУ "Николаев" включал РЛС "Днепр" на мысе Херсонес, в дальнейшем модернизированную до РЛС "Днепр-М", что обеспечило возможность контроля юго-западного направления.

РЛС на мысе Херсонес постоянно следит за территорией Турции, Саудовской Аравии, Израиля и части Ирана. Во время первой войны в Персидском заливе именно она первой обнаружила пуски иракских ракет "Скад". Станция также обнаружила единственный пуск БР

"Иерихон" на испытаниях в Израиле.

В 1988 году на ОРТУ "Николаев", вблизи Севастополя, на основе РЛС "Днепр", началось строительство РЛС "Дарьял-У". Строительство продолжалось до 1993 года.

После распада Советского Союза РЛС, находящаяся на ОРТУ "Николаев", стала собственностью Украины и организационно входят в состав украинских Вооруженных сил и эксплуатируются украинским военным персоналом. В оперативном отношении сохраняется взаимодействие дислоцированных на украинской территории ОРТУ с 3-й армией, и узлы продолжают решать задачи в интересах системы ПРН Российской Федерации.

Срок службы РЛС "Днепр" , которые были установлены в начале 70-х годов прошлого века, истек в 1995-96 годах, однако после проведения определенных работ, его удалось увеличить.

В одном из своих интервью в 1997 году командующий войсками РКО России заявил, что "все станции СПРН (в Казахстане, Украине, Азербайджане) исправно выдают информацию, решая свои задачи на рекетоопасных направлениях". Соглашение, регламентирующее работу этой станции, а также РЛС в Николаеве, было подписано в 1997 году. В начале 1999 года оно было ратифицировано в России.

В 1997 году было заявлено о полном переходе финансирования станций на Россию. На начало марта 1997 года задолженность России перед Украиной за эксплуатацию станции составляла 2,5 млн. долларов.
Информация с обеих РЛС поступает на центральный командный пункт системы предупреждения о ракетном нападении, подчиненной космическим войскам России. Обслуживают станцию украинский персонал.

В далбнейшем, Киев настаивал, чтобы Москва платила больше за информацию, которую получает с двух радиолокационных станций "Днепр М" в Мукачеве и Севастополе. За аренду РЛС "Дарьял" в Азербайджане Россия платит ежегодно по пять миллионов долларов, Украине за информацию с двух украинских станций - только 1,2 миллиона.

ТЕХНИКА И ВООРУЖЕНИЕ № 2/2008, стр. 34-43

ПЕРВЫЕ ОТЕЧЕСТВЕННЫЕ РЛС ДАЛЬНЕГО ОБНАРУЖЕНИЯ

Е. Климович,

А. Гладков

Продолжение.

Начало см. в «ТиВ» №8/2007г.

Дальнейшие пути совершенствования первых РЛС

В марте-июне 1941 г. была выпущена опытная партия станций РУС-2 в количестве десяти комплектов. По своим техническим характеристикам РУС-2 вполне отвечала требованиям времени, но не удовлетворяла войска в тактическом и эксплуатационном отношениях. В процессе изготовления опытной партии РУС-2 и эксплуатации их в войсках было установлено, что эта станция может быть значительно упрощена с одновременным повышением ее надежности и улучшением других характеристик. Упрощение станции виделось прежде всего в замене двухантенной системы на одноантенную, что позволяло разместить передающую и приемную аппаратуру на одной автомашине в неподвижном фургоне, но с вращающейся антенной и отказаться от громоздких и сложных приводов для фургонов и устройств для их синхронного и синфазного вращения. К тому же, вращение фургона не добавляло удобства работе оператора: по свидетельству Ю.Б. Кобзарева, «более двух часов такой «карусели» никто не выдерживал».

Реализация такого предложения наряду с возможностью конструктивных и технологических улучшений в аппаратуре РАС должна была привести к росту выпуска станций, снижению их стоимости, повышению надежности и удобства применения в войсках. Задача увеличения и упрощения производства станции стала тем более актуальна, что выпускавший РУС-2 завод им.Коминтерна вскоре был эвакуирован в Новосибирск, где смог возобновить свою деятельность только в первом квартале 1942 г.

Возможность работы на одну антенну ЛФТИ проверил на своей опытной РЛС, развернутой под Токсово. Модернизацию РУС-2 осуществляли ЛФТИ и НИИ-20 (НИИ радиопромышленности). Одноантенный вариант станции требовал коммутатора для переключения антенны с передачи на прием и обратно, при котором исключалось бы попадание излучаемого сигнала в приемный тракт, и согласования антенны с передающей и приемной аппаратурой. Инженером Д.С. Михалевичем была предложена схема, основанная на использовании свойств четвертьволновой линии, которая при отсутствии потерь может служить для согласования полных сопротивлений - линии передач и нагрузки. Передатчик с помощью автотрансформаторной связи (индуктивной связи колебательных контуров) подключался к фидеру, к которому на расстоянии примерно в четверть волны от анодного контура присоединялся фидер питания радиоприемника. Переключение антенны с передачи на прием и обратно осуществлялось с применением электрических разрядников, блокирующих при передаче входную часть приемника от мощных импульсов передатчика. Эта схема стала классической для многих последующих типов импульсных РЛС.

При разработке конструкции вращающейся антенны была решена и другая сложная задача по созданию высокочастотного устройства, которое должно было обладать достаточной электрической прочностью в режиме передачи и сохранять постоянство входного сопротивления в цепи антенны при ее вращении. В результате появился так называемый бесконтактный токосъемник из индуктивно связанных цепей с распределенными постоянными. Был также разработан более простой по конструкции индикатор обзора воздушного пространства.

В сентябре 1940 г. Управление связи РККА выдало ТЗ на проектирование опытного образца РЛС «Редут-41». В техническом задании содержались следующие тактико-технические требования:

Совмещение передающей и приемной аппаратуры в одном фургоне при работе на общую антенну;

Вращение не фургона, а только установленной на нем антенны;

Размещение во втором автофургоне двух агрегатов питания (рабочего и резервного);

Станция должна обнаруживать самолеты на дальности до 30 км на высоте 500 м и до 110 км на высоте 8000 м с точностью определения дальности 1,5 км, азимута 7°, рабочая длина волны 4,0-4,3 м (частоты 75-70 МГц) при длительности импульса 10-12 мкс;

Вся аппаратура станции должна размещаться на двух автоприцепах.

Кроме того, РЛС разрабатывалась в двух вариантах: в автомобильном (для обеспечения средствами разведки Сухопутных войск) и в разборном с перевозкой радиоаппаратуры и агрегатов питания в укладочных ящиках любым видом транспорта (для стационарных постов ВНОС на территории страны). Разработку и серийное производство автомобильных станций поручили одному из радиозаводов, а разборных - НИИ-20 (НИИ радиопромышленности) .

НИИ-20 создавал также стационарную станцию с расчетной дальностью обнаружения до 200-250 км. Станция получила шифр «Порфир», ее экспериментальный образец был готов в начале войны. 21 июля 1941 г. станцию смонтировали под Можайском, и она внесла свой вклад в своевременное приведение в боевую готовность истребительной авиации и зенитной артиллерии при первом налете гитлеровской авиации на Москву. Станция «Порфир» имела двухъярусную антенну типа «волновой канал» длиной 7 м и высотой 25 м. Коэффициент направленного действия антенны в несколько раз превосходил коэффициент станции «Редут». Передатчик был выполнен на четырех лампах ИГ-8 (у «Редута» - на двух) с анодным контуром в виде коаксиального эндо-вибратора (объемного резонатора). Приемник с каскадом усиления по высокой частоте обладал повышенной чувствительностью. Это послужило основанием для применения его схемы в приемнике разборного варианта станции «Редут-41», которым занимался коллектив НИИ-20 под руководством А.Б. Слепушкина. Был упрощен ряд узлов «Редута», в частности, ламповый модкоятор был заменен тиратронным. Антенна должна была размещаться на деревянной треноге, изготавливавшейся расчетом на месте, потом в комплект включили разборную мачту из металлических труб. Этот «упаковочный» тип станции получил наименование «Пегматит». Изготовили опытную партию из 10 станций и мачт с антеннами к ним, устанавливаемых на земле и соединяемых фидером с передающим и приемным устройствами.

Ввиду явных преимуществ одноантенных станций Управление связи РККА решило серийное производство двухантенных РУС-2 не осуществлять, а сразу выпускать одноантенную «Пегматит». В мае 1941 г. институт подготовил первые две станции «Пегматит» , которые успешно прошли полигонные испытания и подтвердили полное соответствие их ТТХ станции «Редут» (РУС-2). Станция была одобрена уже в начале июля 1941 г., но драматические события первого периода войны и эвакуация подразделений НИИ в Барнаул не позволили закончить сборку опытной партии к началу 1942 г. РЛС «Пегматит» (известна также как П-2) поступила на вооружение войск ПВО, ВВС и ВМФ под названием РУС-2с. Одноантенные станции дальнего обнаружения из опытной партии были установлены в Московской зоне ПВО и получили высокую оценку командования и войск ПВО. РУС-2с обнаруживала цель на дальностях до 110 км на высоте 8000 м и до 30 км на 500 м, определяла дальность с точностью до 1,5 км и азимут с точностью ±7°, а при нескольких засечках (с учетом вращения антенны) позволяла вычислять также курс цели. Комплекты РУС-2с перевозились в укладочных ящиках и развертывались в небольших стационарных помещениях (избах, землянках и т.д.) Антенна высотой 12 м крепилась растяжками. Серийное производство станций «Пегматит» организовали в Москве на заводе «Авиаприбор» (с 1942 г. - завод № 339 Наркомавиапрома) и заводе № 703 Наркомсудпрома (впоследствии - завод «Салют»).

В процессе производства РЛС РУС-2с институтом велись работы по ее дальнейшему совершенствованию, что позволило уже в апреле 1942 г. перейти к модернизированной станции П-2М. Эта станция выпускалась в течение всей войны самим НИИ и на заводах.

За разработку станций РУС-2 и РУС-2с, ставших основой технической вооруженности постов ВНОС и значительно поднявших боевую эффективность войск ПВО, группе сотрудников НИИ-20 в составе А.Б. Слепушкина, В.В. Тихомирова, Л.В. Леонова, Д.С. Михалевича, И.Т. Зубкова, И.И. Вольмана в 1943 г. была присуждена Сталинская премия, а в 1944 г. НИИ за успехи, достигнутые в развитии радиолокации, был награжден орденом Трудового Красного Знамени. Создание одноантенной РУС-2 явилось крупным достижением отечественных ученых и инженеров. Стоит отметить, что английские специалисты, ознакомившиеся в конце войны со станциями РУС-2, были поражены простотой и надежностью ее конструкции и тем, как эффективно была решена задача работы на одну антенну. К тому же, отечественные РУС-2с, не уступая по своим возможностям британской станции MRU-105 или американской SCR-270, отличались мобильностью и быстротой развертывания на позиции.

Для сравнения: британская MRU-105 (mobile radio unit, 105 - высота антенны в футах, т.е. около 32 м, первые три такие станции были присланы в СССР в декабре 1941 г.) монтировалась в двух прицепных автофургонах «Кросслей» и собиралась на позиции довольно долго. Синхронизация между передающей и приемной машиной шла по укладываемому на грунте коаксиальному кабелю (в ЗИП такого кабеля не было). В отличие от РУС-2, станция MRU-105 работала в секторе около 120°, причем по краям сектора дальность ее действия была вдвое меньше, чем по оси. Преимуществом MRU-105 было наличие в приемной аппаратуре гониометра (т.е. устройства для измерения углов в пространстве) , в который подавались сигналы от пар диполей верхней и нижней частей антенны, по соотношению сигналов вычислялся угол места цели, и с помощью номограммы оператор мог определить высоту ее полета. В плане ремонтопригодности английских станций определенную положительную роль сыграл тот факт, что отечественные высоковольтные кенотроны и модуляторные электронные лампы выпускались на американском оборудовании и были близкими аналогами английских и американских ламп.

Производство РЛС дальнего обнаружения росло. Если выпуск станций РУС-2 и РУС-2с в 1941 г. принять за 100%, то в 1942 г. он составил 106%, в 1943 г. - 136%, в 1944 г.- 306% и в 1945 г. - 588%. Количество РЛС дальнего обнаружения, выпущенных отечественной промышленностью к концу войны, приведено в таблице.

Самой массовой отечественной станцией дальнего обнаружения стала РУС-2с. Для сравнения: союзники поставили в СССР по ленд-лизу 1788 РЛС для зенитной артиллерии, а также 373 морских и
580 авиационных РЛС. С учетом состояния молодой отечественной радиопромышленности немаловажными были и поставки из-за рубежа специализированного оборудования для производства радиокомпонентов. Научно-исследовательские и опытно-конструкторские работы по радиолокации в СССР не отставали от зарубежных, а вот возможности промышленности оказались скромнее, чем у союзников и противника.

Тем не менее в годы Великой Отечественной войны первые отечественные РЛС успешно выполняли боевые задачи по обнаружению воздушного противника, обеспечивая оповещение и целеуказание зенитной артиллерии и истребительной авиации. Применялись они также на флоте при прикрытии баз, а в ВВС - для защиты аэродромов и наведения истребительной авиации на самолеты противника. РУС-1, РУС-2 и РУС-2с в годы войны вошли в систему ПВО Москвы, Сталинграда, Горького, Ленинградского фронта, Бакинской армии ПВО и Рыбинско-Ярославского дивизионного района ПВО. Об их значении свидетельствует памятник РЛС «Редут» («Редут-1», как он числился в 72-м орб ВНОС, открытый 9 мая 2003 г. в городе Токсово под Ленинградом (хотя в памятнике использована антенна совсем другой, послевоенной РЛС).

Созданием станций РУС-2 и РУС-2с практически закончился предвоенный период развития РЛС дальнего обнаружения. Одновременно начались работы по совершенствованию станций дальнего радиообнаружения и созданию новых образцов.

Так, в планах НИИИС РККА на 1941 -1942 гг. были намечены дальнейшие важные направления в области создания средств радиообнаружения, а именно:

Разработка станции обнаружения на УКВ с дальностью обнаружения 300-350 км («Редут-Д»);

Обеспечение обнаружения самолетов на малых высотах (при высоте полета от 50 м и более);

Создание для войсковой ПВО станции типа «Редут», работающей на ходу, с дальностью обнаружения 10-50 км;

Разработка аппаратуры определения высоты полета самолета станциями РУС-2 и РУС-2с;

Разработка станции для обеспечения стрельбы зенитной артиллерии;

Разработка аппаратуры наведения для истребителей, в том числе бортовой РЛС обнаружения на волнах 10-15 см с дальностями 1,5-2 км и бортового приемника сигналов, отраженных от самолета противника при облучении его с земли станциями РУС-2;

Разработка аппаратуры опознавания государственной принадлежности самолетов (по признаку «свой- чужой»), работающей во взаимодействии со станцией РУС-2;

Разработка методов радиотехнической разведки и определения характеристик РЛС противника и его станций помех.

Реализацию этих планов прервала война, но она же заставила вернуться к ряду из этих тем.

В ЛФТИ в 1941 г. начали работу по созданию станций обнаружения с дальностями действия 300-350 км. Увеличение дальности обнаружения предполагалось достичь за счет большой энергии в зондирующем импульсе значительной длительности и накопления энергии эхо-сигналов в резонансном контуре, настроенном на частоту повторения импульсов. Поскольку эхо-сигнал, в отличие от шумового, имеет постоянные характеристики, его накопление позволяет значительно улучшить отношение «сигнал/ шум» и выделить полезный сигнал на фоне шумов. Дальность до цели должна была определяться по фазе колебаний в приемнике, что дало основание назвать метод импульсно-фазовым.

Повышение точности отсчета дальности до цели ожидалось получить путем стробирования эхо-сигналов по дальности. Научно-исследовательская работа этого направления была примечательна тем, что являлась первой разработкой, в которой предполагалось применить метод накопления энергии эхо-сигналов и осуществить высокую точность дальномет-рии при весьма длительных импульсах. До начала Великой Отечественной войны ЛФТИ удалось выполнить лишь небольшую часть исследований, в частности, создать резонансный фильтр-накопитель эхо-сигналов. После начала войны эти исследования в ЛФТИ также прекратились.

Выдвигались и другие предложения по дальнему радиообнаружению. Профессор Физического института АН СССР С.Э. Хайкин предложил использовать московскую радиостанцию в качестве источника мощного сигнала, а простые приемные устройства расположить широкой сетью и связать с зенитными прожекторами. Принимая сигнал, отраженный от самолета, приемная станция указывала бы направления прожектористам. Но при тогдашнем уровне радиоприемных устройств и отсутствии систем автоматической обработки сигнала такая схема просто не могла бы работать.

В литературе описан также способ радиоперехвата, довольно эффективно применявшийся в первые месяцы войны, не относящийся, правда, к радиолокации. Радиоприемники настраивались на частоту радиостанций германских бомбардировщиков. Взлетая с аэродромов на захваченной территории Украины и Белоруссии, расположение которых было хорошо известно командованию советских войск, летчики выходили в эфир перед построением в боевые эшелоны. Далее радиообмен осуществлялся с немецкой пунктуальностью через каждые пятнадцать минут полета вплоть до подхода группы к цели. Осуществляя радиоперехват, зная скорость и дальность полета, наши войска получали точную и подробную информацию о приближении самолетов противника.

Продолжение работ по РЛС дальнего обнаружения

После постановки в ходе войны на производство РУС-2с и П-2М непосредственно встала задача дальнейшего совершенствования РАС дальнего обнаружения. Дело в том, что по опыту эксплуатации в войсках станции РУС-2 и РУС-2с использовались и как станции раннего предупреждения, и как станции наведения истребительной авиации ПВО, а в отдельных случаях - и как станции целеуказания зенитной артиллерии. Между тем по точности определения координат и зонам действия РУС-2 и РУС-2с не в полной мере соответствовали задачам наведения и целеуказания. Опыт разработки и производства РЛС в годы войны свидетельствовало возможности повышения эксплуатационной надежности и упрощения обслуживания станций. Постановлением ГКО от 20 марта 1943 г. на НИИ радиопромышленности возлагалась разработка новой станции дальнего обнаружения. Тактико-технические требования к ней, разработанные НИИИС РККА и утвержденные командованием войск ПВО, предусматривали следующие характеристики:

Дальность обнаружения цели - не менее 130 км, пеленгования - 70 км;

Точность определения азимута при обнаружении - 4° и пеленгования-1,3°;

Точность определения дальности - 650 м и высоты - 300-700 м;

Определение координат цели по азимуту - от 0 до 360° и по углу места - от 4 до 18°;

Время определения трех координат цели -не более 25 с;

Длина волны - 4,16 м;

Мощность излучения в импульсе - 80-100 кВт, длительность импульса - 10-15 мкс.

Станция получила обозначение П-3 и создавалась в разборном варианте. Ее инженерной особенностью являлась антенная система, состоявшая из двух антенн: азимутальной, сигналы с которой поступали на вход приемника через антенный переключатель, и вертикальной зондирующей, которая при излучении работала от передатчика, а в период паузы переключалась на прием и функционировала вместе с азимутальной антенной. Приближенное определение азимута производилось обычным способом - по максимуму амплитуды сигнала от антенны, направленной на самолет. В режиме точного определения азимута за счет действия антенного переключателя и соединения между собой обеих частей азимутальной антенны в противофазе на экране отметчика при ориентировании системы на цель были видны два раздвинутых по шкале импульса равной амплитуды. При уходе цели вправо или влево относительно оси антенны один импульс возрастал, а другой уменьшался (метод равносигнальной зоны). Для определения высоты полета самолетов использовалась система, состоявшая из двух антенн типа «волновой канал», установленных на разных высотах от поверхности земли, - 7 и 11м. Каждая из них подключалась к аппаратуре станции через гониометр. От положения ползунка гониометра зависела результирующая характеристика направленности обеих антенн в вертикальной плоскости. Угол места цели определялся по пропаданию сигналов в момент перемещения ползунка гониометра (нулевое излучение и прием). По измеренной дальности и найденному углу места с помощью номограммы оператор получал высоту цели над землей. Причем управление характеристикой направленности антенн в вертикальной плоскости позволило не только определять высоту полета, но и устранять в достаточно широких пределах мертвые зоны ДНА, т.е. зоны, из которых не было приема эхо-сигнала.

В разработке станции участвовали И.Н. Антонов, Е. Я. Богуславский, Р.С. Буданов, И.И. Вольман, А.Р. Вольперт, СП. Заворотищев, Л.В. Леонов, П.В. Подгорнов и др. В период с 20 июля по 15 августа 1944 г. станция П-3 проходила заводские испытания под Москвой. Подтвердилось ее соответствие требованиям заказчика. ГАУ, не ожидая окончательно доводки станции и ее полигонных испытаний, внесло в ГКО предложение об изготовлении в том же году опытной партии новых РЛС. ГКО обязал НИИ предоставить в IV кв. 1944 г. 14 комплектов П-3.

Полигонные испытания станции П-3, проведенные на НИЗАП ГАУ в январе-феврале 1945 г. (инженер-испытатель Г.Т. Опрышко), показали следующие результаты.

Высотные приставки к станциям РУС-2 и РУС-2с

Прямыми измерениями, производимыми с помощью РУС-2 и РУС-2с, получались только две координаты цели - наклонная дальность и азимут. Однако надежное наведение истребительной авиации и расчет данных для стрельбы зенитной артиллерии требовал быстрого определения по результатам измерений еще третьей координаты - высоты. Встала задача дополнить станции РУС-2 и РУС-2с аппаратурой определения высоты. Важность этой задачи была ясна и ранее, теперь же она стала столь неотложной, что подготовленное НИИИС РККА задание на разработку соответствующей аппаратуры было выдано радиозаводу, НИИ-20 (НИИ радиопромышленности) и ЛФТИ.

На радиозаводе эта аппаратура, получившая название «высотная приставка», разрабатывалась инженером Е.А. Селиным (ранее работавшим в НИИ-9 и получившим там опыт работы над радиолокационной аппаратурой) по техническому решению, предложенному инженером НИИИС А.И. Шестаковым. Приставка представляла собой, по сути, дополнительную РЛС для определения координат цели, функционирующую совместно с РЛС обнаружения. В основу был положен принцип определения утла места, основанный на том, что каждая антенна высотной приставки принимает радиоволны, как пришедшие непосредственно от цели (самолета), так и переотраженные от земли. В результате между каждой парой антенн приставки всегда существует напряжение, являющееся функцией угла падения волны, т.е. угла места цели. Благодаря этому с помощью гониометра, включаемого между верхней или нижней парой антенн, можно определять угол места самолета. Зная угол места цели и наклонную дальность до нее, высоту можно вычислить по простой формуле прямоугольного треугольника. Комплект аппаратуры высотной приставки включал мачту высотой 16,5 м с тремя антеннами, гониометр как средство измерения углов места, устройство определения высоты и переключатель антенного устройства и приемника. Антенны были смонтированы на мачте на разных высотах: нижняя - на 4,12 м от земли, средняя - 8,12 м и верхняя - 16,48 м.

Станция орудийной наводки СОН-2а (излучающая установка).

Контрольные испытания высотной приставки прошли в августе 1943 г. под Москвой под руководством инженера НИИИС А.И. Кувшинова. По их результатам были получены следующие срединные ошибки определения высоты: при полете цели на 4000 м - 230 м на нижней паре антенн и 210 м на верхней паре, при полете цели на 6000 м - соответственно 320 и 310 м. Для определения утла места требовалось около 12 с. На основании испытаний были сделаны следующие выводы: высоту полета самолета можно установить на расстояниях в пределах 60% от дальности обнаружения; рекомендовать высотную приставку для серийного производства к станциям РУС-2. Эта рекомендация вскоре была реализована, что позволило расширить возможности и повысить тактические свойства станции РУС-2 при ее применении в службе ВНОС и для наведения истребительной авиации. С учетом того же технического предложения А.И. Шестакова аналогичная высотная приставка была разработана и в НИИ-20 к станциям РУС-2с и П-2М. Она также успешно прошла испытания и выпускалась серийно вплоть до создания новой станции дальнего обнаружения П-3: в аппаратуру станции П-3 устройство определения высоты входило органически.

Коллектив ЛФТИ под руководством Ю.Б. Кобзарева еще в конце 1941г., сопоставляя конструкцию и технические характеристики английской станции GL-MkII с РУС-2, в инициативном порядке занялся теорией гониометра для определения высоты целей. Исследования и разработки по этому плану были подтверждены актом представителя НИИИС КА Д.С. Стогова от 25 декабря 1941 г. К марту 1943 г. ЛФТИ разработал теорию гониометрического метода, создал методику расчета зон пеленгования и предложил способ устранения мертвой зоны ДНА в зените у станции СОН-2от (об этой станции будет рассказано далее) при длине волны излучения 4 м. 16 марта 1943 г. представители НИИИС КА М.И. Куликов и А.И. Шестаков после ознакомления с работами ЛФТИ сделали заключение, что предлагаемые институтом пути модернизации РУС-2 не удовлетворяют требованиям заказчика и не могут быть положены в основу превращения этой станции в станцию орудийной наводки. Вскоре Ю.Б. Кобзарева перевели на работу в Совет по радиолокации при ГКО, его сотрудников - в научно-исследовательский институт радиолокации, и на этом активные работы в области радиолокации в ЛФТИ практически прекратились.

Одновременно проблемой определения высоты цели по собственной инициативе занимались инженеры и техники в частях ВНОС. Так, воентехники отдельного радиотехнического батальона (ОРТБ) ВНОС Московской зоны ПВО Н.И. Кабанов, Е.И. Алейников, Я.Н. Немченко и Б.И. Молодов, занимавшиеся эксплуатацией станций РУС-2, коллективно разработали соответствующую аппаратуру. Проверив приставку в боевых условиях, они изготовили партию приставок в мастерских батальона и снабдили ими все станции РУС-2 Московской зоны ПВО.

Аналогичную аппаратуру создали также в Ленинградской армии ПВО инженеры Ю.Н. Шеин и И.А. Лютоев, бывшие участники разработок в НИИ-9 радиоискателей для зенитной артиллерии. Приставка их конструкции была испытана на станции РУС-2 на Карельском перешейке, а затем, после испытаний и калибровки, их ставили и на другие станции.

А воентехник В.Г. Петров сделал антенну станции РУС-2с, на которой служил (также в Московской зоне ПВО), подъемной и опускаемой. Опуская антенну с помощью лебедки по мере приближения цели, он добивался того, что приземный лепесток ДНА оставался направленным на цель, отчасти устраняя отрицательное влияние изрезанного профиля ДНА и мертвых зон. Понятно, что подобные методы требовали от оператора РЛС большой натренированности в определении середины основного лепестка и момента «засечки» цели.

Приборы опознавания

С началом боевой эксплуатации в ПВО станций дальнего обнаружения встала новая задача: кроме обнаружения самолетов требовалось определять также их принадлежность по принципу «свой-чужой». Еще 19 мая 1940 г. Управление связи РККА заключило с ЛФТИ договор на модернизацию станции «Редут», при этом имея в виду попутно найти способ опознавания.

Группа под руководством Ю.Б. Кобзарева предложила способ опознавания на основе применения регенеративного ответчика, устанавливаемого на самолете и реагирующего (выдающего ответный сигнал) на сигналы только «своих» РЛС. Испытания на самолете дали хорошие результаты, и в канун Великой Отечественной войны разработчики получили соответствующее авторское свидетельство. С началом войны в связи с эвакуацией института опытный ответчик был передан в НИИ-9, где под руководством Н.Ф. Алексеева и Д.Е. Малярова прошел конструктивную доработку, после чего был передан в производство.

Аппаратура опознавания была разработана также инженерами НИИИС, и в середине 1941 г. при испытании ее на самолетах были получены удовлетворительные результаты.

В середине 1942 г. руководство разработками самолетных приборов опознавания взял на себя НИИ ВВС. Он заключил договор на изготовление прибора опознавания («свой-чужой») с радиозаводом-институтом Наркомата электропромышленности. После изучения уже имеющихся к тому времени приборов в лаборатории профессора С. Э. Хайкина был создан прибор, успешно прошедший испытания на истребителях в Московской зоне ПВО. Он был принят на вооружение и в 1943 г. поставлен на серийное производство. К концу 1943 г. приборы-ответчики для самолетов и специальные устройства запроса для станций РУС-2 появились в войсках. Их применение в третьем периоде войны, в частности, облегчало наведение истребителей на самолеты противника. Единая система опознавания для всех видов Вооруженных Сил и гражданской авиации СССР («Кремний-1») была разработана и принята уже после войны.

После окончания войны развитие радиолокационных средств ПВО проходило в соответствии с трехлетним планом развития радиолокации на 1946-1948 гг., разработанным Советом по радиолокации и утвержденным Советом Министров. 10 июля 1946 г. СМ СССР принял постановление, посвященное вопросам радиолокации. Это был основополагающий программный документ, регламентировавший всестороннее развитие радиолокации в стране. В плане развития наземных средств ПВО постановление определило Министерство промышленности средств связи головным по наземным РЛС обнаружения и радионавигационным системам, а Министерство вооружения - по станциям управления огнем артиллерии. Радиолокация уже прошла первый этап своего развития, а ее дальнейшее развитие требовало больших капиталовложений в различных отраслях.

Стоит отметить, что в очень тяжелые первые послевоенные годы немаловажное значение для развития отечественной радиолокационной техники имело тщательное изучение германской, английской и американской техники, сравнение ее с отечественными образцами, анализ опыта применения РЛС различного назначения, типов и рабочих диапазонов. Переданные союзниками в конце войны станции кругового обзора и СОН с длиной волны 10 см и опыт применения союзниками своих РЛС убеждали в преимуществах сантиметрового диапазона (т.е. СВЧ). Освоение диапазона сантиметровых длин волн стало одной из важнейших задач советских специалистов радиолокации.

После взятия Берлина в Германии активно работала комиссия Совета по радиолокации под руководством А.И. Шокина, изучавшая германское радиолокационное оборудование. Свою роль сыграло и вывезенное по репарациям из Германии оборудование для производства радиоэлектронных устройств, и комплектующие (подарком для локаторщиков стали, например, трофейные германские конденсаторы и «пальчиковые» радиолампы) . Тем более что достигнутая было договоренность с американской компанией «Радиокорпорэйшн» об оказании технической помощи в развертывании производственной базы радиоэлектронной промышленности сорвалась не столько по финансовым, сколько по чисто политическим причинам: уже вовсю разворачивалась «холодная война», и вчерашние союзники не спешили оказывать СССР помощь в новой и столь важной отрасли.

Подготовил к печати С.Л. Федосеев.

Литература

1. История «Редута» // Радио. - 1984. №6.

2. Кисунько Г.В. Секретная зона. Исповедь Генерального конструктора. - М.: Современник, 1996.

3. Ланцберг Г.С. Академик Юрий Борисович Кобзарев. К 90-летию со дня рождения // Электросвязь. - 1995. №10.

4. Лисочкин И. Блокадное телевидение: «с приоритетом от февраля 1942-го...» // Санкт-Петербургские ведомости. - 2002, 27 февр.

5. Лобанов М.М. Развитие советской радиолокационной техники. - М.: Воениздат, 1982.

6. Лобанов М.М. Мы - военные инженеры. - М.: Воениздат, 1977.

7. Противовоздушная оборона страны (1914-1995). - М: Министерство обороны РФ. Военно-воздушные силы, 1998.

8. Петухов СИ, Шестов И.В. История создания и развития вооружения и военной техники ПВО Сухопутных войск России. Ч. 1. - М.: ВПК, 1997.

9. Симонов Н.С. Военно-промышленный комплекс СССР в 1920-1950-е гг. -М.-.РОССПЭН, 1996.

10. Цверава Г. Николай Тесла - поэт электротехники // Радио. - 1991, №7.

11. Журнал «Арсенал». - 2003, №5.

Эпизоды истории радиолокации

В ряде популярных публикаций, в телевизионных передачах и т.п. делаются попытки приписать начало работ по радиолокации и начало ее внедрения в нашей стране какому-либо одному человеку. Занятно, что обычно выбирается специалист, подвергшийся репрессиям (очевидно, не репрессированные личности журналистам просто не очень интересны). Между тем даже конспективный взгляд на раннюю историю радиолокации показывает, что на права безусловного «пионера» этой отрасли не может претендовать не только отдельный человек, но и отдельная организация и даже какая-либо одна страна.

Явление отражения радиоволн наблюдал еще Г. Герц в 1886-1889 гг. Наблюдавшиеся А.С. Поповым и его ассистентом П.Н. Рыбкиным в 1897г. прерывания радиосвязи корпусом корабля (во время опыта связи с установкой передатчика на транспорте «Европа», а приемника - на крейсере «Африка»), говорили об отражении радиоволн металлическими предметами. Вскоре последовали предложения по практическому применению этого эффекта.

В 1900 г. серб Н. Тесла предположил возможность определения местонахождения наземных и небесных объектов с помощью отраженных электромагнитных волн (в 1917 г. он же предложил использовать импульсы сверхвысоких частот для обнаружения подводных лодок).

В 1904 г. немец К. Хюльсмайер запатентовал метод и двухантенное устройство для обнаружения кораблей на большом расстоянии по отраженным от него радиоволнам. В авторской заявке (патент №165546 от 30 апреля 1904 г.) он дал подробное описание устройства для реализации своего метода, а позднее, в том же 1904 г., получил и второй патент (№169154) на усовершенствование своего метода и устройства.

10 лет спустя, в 1914 г., в России И.И. Ренгартен проводил работы по макетированию радиопеленгатора. Однако дело упиралось в возможности тогдашней радиоаппаратуры - выделить в шумах ничтожно малый по сравнению с излученным эхо-сигнал было чрезвычайно трудно.

В 1919 г. Л. Махтсу был выдан патент, в котором описывалось устройство со спиральной разверткой и визуальной индикацией положения объекта, обнаруживаемого с помощью радиоволн.

Еще через десять лет, в 1924 г. англичане Е. Эплтон и М. Барнет по отраженному непрерывному сигналу измерили высоту слоя Кеннелли-Хэвисайда (слой ионосферы, от которого отражаются радиосигналы), используя декаметро-вые радиоволны (диапазон 3-30 МГц).

В 1925 г. английские ученые Г. Брейт и М. Тьюв опубликовали результаты своей работы по определению высоты слоя Кеннелли-Хэвисайда импульсным методом - по времени запаздывания импульсного сигнала, отраженного от слоя, относительно сигнала, пришедшего вдоль поверхности Земли. В те же годы импульсная радиолокационная установка для измерения высоты слоев ионосферы была разработана в СССР.

В том же 1925 г. советские ученые и инженеры Б.А. Введенский, Ю.П. Симанов, Б.В. Халезов. А.Г. Аренберг указывали на возможность использования радиоволн УКВ диапазона (привлекшего интерес радиоспециалистов в начале 1920-х гг.) для обнаружения движущихся объектов, а Л.И. Мандельштам и Н.Д. Папалекси, проведя серию опытов по изучению свойств радиоволн, к 1930 г. разработали теорию радиоинтерференционного измерения расстояний.

В 1933 г. Б. Тревор и П. Картер, исследовавшие распространение ультракоротких радиоволн, описали явление периодического изменения величины сигнала при наложении сигнала, отраженного летящим самолетом, на сигнал передатчика.

В начале января 1933 г. инженер П.К. Ощепков в записке на имя начальника Управления ПВО предложил применить в аппаратуре радиообнаружения импульсный метод.

В октябре 1933 г. ГАУ заключило договор с Центральной радиолабораторией (ЦРЛ), руководимой М.А. Бонч-Бруевичем, и в январе 1934 г. в Гребном порту в Ленинграде начались опыты с аппаратурой радиообнаружения, созданной в ЦРЛ группой Ю.К. Коровина с помощью Ленинградского электротехнического института. При мощности в антенне 0,2 Вт и длине волны 50 см аппаратура обнаруживала самолет на расстоянии 600-700 м, но это был первый практический успех.

16 января 1934 г. в Академии наук СССР состоялось заседание, на котором рассматривались способы выявления самолетов ночью, в условиях плохой видимости и на больших расстояниях. В заседании участвовали специалисты по радиотехнике, радиофизике, оптике: академики А.А. Чернышев (7 февраля 1934 г. он подаст изобретательское предложение радиотехнической системы обнаружения, действовавшей по принципу завесы) и СИ. Вавилов, профессор Н.Д. Папалекси, помощник директора Института телемеханики В.Н. Андреев, директор ЛФТИ академик А.Ф. Иоффе и его научные сотрудники Ю.Б. Харитон, Н.Н. Семенов и P.P. Гаврух. Были приглашены: профессор А.А. Лебедев, научные сотрудники Ленинградского электрофизического института (ЛЭФИ) Б.К. Шембельи В.В. Цимбалин, профессор Ф.А. Миллер, профессор В.П. Линник, специалист по акустике профессор Н.Н. Андреев, начальник радиотехнического факультета Военной электротехнической академии РККА профессор А.А. Яковлев, инженер П.К. Ощепков, представители ГАУ и Управления ПВО РККА. Интересно, что А.Ф. Иоффе, занимавшийся проблемами распространения радиоволн, касаясь пригодного диапазона длин волн, отбросил дециметровые и сантиметровые, считая, что их переотражение в разные стороны от поверхностей самолета сильно ослабит эхо-сигнал. К тому же, метровый диапазон УКВ в те годы был наиболее освоен, имелась соответствующая передающая и приемная аппаратура. Хотя менее чем через десять лет свое преимущество показали именно короткие волны.

Вавгусте 1934г. П.К. Ощепков представил проект «Электровизор» - по сути, одну из первых программ создания радиолокационных комплексов. Не случайно 1934 г., когда были сформулированы основные теоретические предпосылки и прошла испытания первая радиолокационная аппаратура, считается годом рождения отечественной радиолокации.

В 1935 г. опытные станции радиообнаружения с непрерывным излучением для зенитной артиллерии создали группа того же Коровина уже в Центральной военно-индустриальной радиолаборатории в Горьком (магнетрон для нее разработали в Горьковском физико-техническом институте) и группа Б.К. Шембеля в ЛЭФИ. В том же ЛЭФИ М.Д. Гуревич-старший работал над импульсными методами обнаружения. Одним из исследовательских центров по радиообнаружению стал вскоре НИИ-9 Наркомтяжпрома, созданный на основе ЛЭФИ и Радиоэкспериментального института.

В 1936 г. прошел испытания созданный в НИИ-9 под руководством Б.К. Шембеля подвижный зенитный радиоискатель «Буря».

В 1936-1938 гг. работы по радиообнаружению расширялись. Велись активные исследования по различным вариантам направленных антенн. Радиолокация предъявила новые требования к радио-и электротехнической, электровакуумной промышленности. И далеко не все из них молодая индустрия могла выполнить. В опытном порядке создавалась передовая элементная база - многорезонаторные магнетроны, триоды СВЧ, отражательные клистроны, малошумящие приемо-усилительные лампы и т.д., но запуск их в серию оказался очень трудной задачей.

В 1938 г. Ленинградский физико-технический институт, занимавшийся проблемой радиообнаружения в интересах службы ВНОС, добился успеха, применяя импульсную технику.

В сентябре 1938 г. по настоянию ГАУ в НИИ-9 под председательством профессора (впоследствии академика) М.В. Шулейкина прошла научно-техническая конференция по радиообнаружению.

В конференции приняли участие М.А. Бонч-Бруевич и Б.А. Введенский, создатели первых станций радиообнаружения Ю.К. Коровин и Ю.Б. Кобзарев, инженеры НИИ-9 и Украинского ФТИ (г. Харьков, институт был подключен к работам по импульсной аппаратуре), а также военные инженеры М.И. Куликов от НИИИС РККА, М.М. Лобанов от ГАУ (Лобанов был одним из наиболее активных сторонников радиолокации, много сделавший для ее практического внедрения) и И.В. Бренев от НИМИСТ РККФ. Были заслушаны доклады о работах НИИ-9, ЦВИРЛ, УФТИ, ГАУ о задачах и технике радиообнаружения. Конференция, по сути, согласилась с планами и тематикой исследований по радиообнаружению в НИИ-9, но рекомендовала расширить исследования по импульсному методу радиообнаружения, используя дециметровый диапазон волн, с которым уже работали в Л ФТИ.

Работы велись широким фронтом, но вплоть до 1943 г. без единого плана и руководства: так, НИИ-9 работал по заказам ГАУ, ЛФТИ получал заказы от Управления ПВО, УФТИ - от НИИИС РККА.

За рубежом в это время также проводились активные работы.

В 1930 г. в США Л.Э. Хайленд предложил использовать дециметровые волны для предупреждения о приближении вражеских самолетов. В 1933-1936 гг. в США ставились опыты по радиообнаружению самолетов с использованием непрерывного излучения метрового и сантиметрового диапазонов и эффекта Доплера. В 1934 г. сотрудник Морской исследовательской лаборатории США Р. Пейдж сфотографировал на индикаторе отраженный от самолета сигнал на частоте 60 МГц. В 1936 г. опытная американская РЛС, работавшая на частоте 80 МГц, засекла самолет на расстоянии 65 км. Кроме того, изготовили первую небольшую РЛС, работавшую на частоте 200 МГц. В 1937 г. ее установили на эсминец «Лири». В 1939-1941 гг. компания «Сигнал Корпс» разработала РЛС дальнего обнаружения, одна из которых принимала участие в отражении атаки японцев на Перл-Харбор утром 7 декабря 1941 г.

В 1935 г. радиолокация получила первое коммерческое применение: во Франции на лайнере «Нормандия» установили «детектор препятствий», а в 1936 г. в порту Гавра - «радиопрожектор» для обнаружения судов, входящих в гавань и покидающих ее.

В том же году в Великобритании R Ватсон-Ватт проводил опыты по импульсной радиолокации самолетов. В 1936 г. англичане установили пять стационарных импульсных РЛС (работавших на метровых волнах) на юго-западном побережье Великобритании, в 1937 г. испытали импульсную корабельную РЛС. К июлю 1939 г. в районе между Скапа-Флоу и Портсмутом имелось около 20 РЛС, способных обнаруживать подлетающие самолеты на дальностях до 100-200 км. В первый период Второй мировой войны юг острова был прикрыт сетью РЛС («линия Чэйн Хоум»), и, по мнению ряда историков, в 1940-1941 гг. «битва за Англию» была выиграна в воздухе именно благодаря радару.

В 1934 г. в Германии по инициативе ВМФ были развернуты работы по радиолокации (для этого была создана фирма «Гема»), в 1936 г. работы над средствами радиообнаружения начала фирма «Телефункен», добившаяся в 1939 г. заказа от ВВС Германии (в чье ведение входила ПВО) на РЛС для зенитной артиллерии. Уже в 1940 г. германская ПВО располагала сетью станций дальнего обнаружения «Фрея» (дальность действия до 200 км) и «Вюрцбург» (до 80 км) дециметрового диапазона. Позднее к ним добавились станции орудийной наводки «Малый Вюрцбург» (до 40 км), «Мангейм» (до 70 км), а также стационарные станции обнаружения «Вассерман» (до 300 км). К концу 1941 г. была создана система РЛС из двух поясов - внешнего и внутреннего, а к концу 1943 г. территория Германии оказалась прикрыта практически сплошным радиолокационным полем ПВО.

В СССР в этот период использовался термин «радиообнаружение», а РЛС называли установками или станциями радиообнаружения («станциями РО»). Термин «радиолокация» (от лат. radio - «излучаю» и locatio - «размещение, расположение») стал применяться только с началом Великой Отечественной войны и получением первых зарубежных РЛС. Отметим здесь же, что английское слово «радар» (radar), также употребляемое в отечественной литературе, представляет собой аббревиатуру от RAadio Detection And Ranging - «радиообнаружение и определение расстояний».

Семен Федосеев

Тиратрон-газоразрядный электродный прибор с управляющей сеткой, использовавшийся в основном в коммутаторных устройствах.

Интерференционный метод основан на разнице фаз прямого и отраженного сигналов, пропорциональной расстоянию до объекта. Выявить эту разницу можно по биению по амплитуде и фазе результирующего сигнала, получаемого при сложении прямой и отраженной волн.

Магнетрон - генераторная двухэлектродная электронная лампа с перекрещивающимися электрическим и постоянным магнитным полями. Первый магнетрон разработал в 1921 г. А. У. Хэлл в США, промышленный его вариант был готов к 1928 г.

Клистрон - сверхвысокочастотная электронная лампа, в которой поток электронов преобразуется в группы модуляцией по скорости, лампа имеет объемный резонатор. Со временем клистроны серьезно потеснили магнетроны как СВЧ-генераторы большой мощности.

У нас в Советском Союзе, в России первые отечественные радиолокационные станции были реально созданы в 1939 году. Первая опытная установка радиообнаружения самолетов была создана в Ленинградском физико-техническом институте. Ее установили на двадцатиметровой вышке в поселке Токсово. На ней отрабатывались варианты конструкции ряда функциональных устройств создаваемых радиолокационных станций (РЛС). В этот же период времени в этом же Институте был создан и мобильный вариант первого нашего отечественного радиолокатора. Он получил условное наименование "РУС-2" и был направлен в Москву на государственные испытания… Это произошло, примерно, в середине 1938 года.

Что предшествовало этому?

Этому предшествовало создание в 1937-1938 г.г. системы радиообнаружения самолетов типа "РУС-1" - "РЕВЕНЬ". Аббревиатура расшифровывается так: "РадиоУловитель Самолетов".

Система РУС-1 по существу и по принципиальным признакам не являлась радиолокатором. По аналогии с существовавшими в то время ЗвукоУлавливателями, систему радиообнаружения назвали РадиоУловитель Самолетов. Не очень удачное название, т.к. звук уловить можно, а "уловить" самолет, каким бы то ни было способом, не представляется возможным. Система РУС-1 - это система радиообнаружения самолетов, перелетающих условную линию, образованную длиннннной цепью станций типа РГО и РПО.

…РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО…

Расшифровка аббревиатур: РГО – РадиоГенератор-Обнаружитель, РПО – РадиоПриемник-Обнаружитель.

Станция РГО работала в режиме непрерывного излучения высокочастотных колебаний. Каждая РГО была оснащена двумя направленными антенными системами. С ней были связаны две станции РПО, антенные системы которых были направлены на "свою" РГО. Совокупность станций РГО - РПО, устанавливаемых в линию, образовывала в охраняемом воздушном пространстве, как бы, "радиозабор" – нечто сходное со "следовой полосой", которая в то время строилась вдоль всей линии государственной границы Советского Союза - от одной пограничной заставы к другой. Не следует думать, что этот "радиозабор" должен бы быть строго прямолинейной конструкцией. "Радиозабор" мог быть образован и в виде некой "ломаной линии", повторяя линию государственной границы. Все зависело от устанавливаемого угла направленности антенных систем соответствующих сопряженных РГО и РПО. Для этого, в частности, станции РПО устанавливались парами.

Факт пересечения каким-либо самолетом "радозабора" между какой-либо из РГО – РПО фиксировался на соответствующей РПО по факту возникновения в приемном устройстве допплеровских биений прямого радиосигнала, принятого от "своей" РГО, и радиосигнала, отраженного от летящего самолета и принятого здесь же приемным устройством.

Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО обнаруживать не могли.

Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи или по радио непосредственно на ГП ВНОС, расположенный в Ленинграде.

Система РУС-1 предназначалась для охраны неподвижной линии государственной границы. При пересечении вражеским самолетом линии государственной границы СССР на станции РПО соответствующего участка охраняемой линии границы должны были уловить этот факт перелета и по радио сообщить о нем на Главный Пост ВНОС по принадлежности. Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи и по радио на ГП ВНОС, расположенный в Ленинграде. Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО определять не могли.

Первым отечественным импульсным радиолокатором явилась радиолокационная станция (РЛС) типа РУС-2, аббревиатура названия которой неправомерно унаследована от системы РУС-1. Это был самый первый отечественный импульсный радиолокатор, принятый на вооружение в конце лета 1940 года. Именно на первом опытном образце этой РЛС, который после окончания государственных испытаний под Москвой был отправлен в 28-й Радиополк ВНОС в г. Баку, автор этих строк обучался работе старшего оператора.

Здесь в 28 Радиополку ВНОС в учебной роте полковой школы готовили специалистов для эксплуатации систем РУС-1. Для обучения работе на радиолокаторах типа РУС-2 в учебной роте был создан спецвзвод. Вся информация о радиолокаторах типа РУС-2 была строго засекречена. В те годы процесс обучения в этом спецвзводе был организован так, что о РЛС типа РУС-2 в других взводах учебной роты никто не мог знать ничего. В конце марта 1941 года автор этих строк был аттестован, как старший оператор станции РУС-2. В первых числах апреля 1941 года всю нашу учебную роту эшелоном переправили в Ленинградский военный округ.

13 апреля 1941 года в Советском Союзе были созданы войска ПВО. В это же время в Ленинградском военном округе был создан 72-й Отдельный Радиобатальон ВНОС, на вооружение которого должны были поступать станции системы РУС-1 и в дальнейшем РЛС типа РУС-2.

Станции РГО и РПО системы РУС-1 стали поступать в нашу часть уже во второй половине апреля 1941 года. Их сразу же укомплектовывали боевыми расчетами и направляли для развертывания к местам дислокации вдоль линии советско-финляндской границы.

Первые два серийных радиолокатора типа РУС-2 были получены в наш 72 Отдельный Радиобатальон ВНОС прямо с завода-изготовителя через 5-6 дней после начала Отечественной войны.

Радиолокатор типа РУС-2 состоял из двух аппаратных кабин. Две небольшие кабины (приемная и передающая) были смонтированы на автомобильном шасси типа ЗИС-5 с возможностью кругового вращения. На крыше каждой из кабин была установлена антенная система. В передающей кабине располагался передатчик высокочастотных импульсов. В приемной кабине располагался приемник и индикаторное устройство. Вся работа по обнаружению целей происходила в приемной кабине. Передающая кабина в своем вращении строго синхронно и синфазно следовала за приемной, как собачка на поводке так, что ее антенная система всегда была направлена в ту же сторону, что и антенная система приемной кабины.

В приемной кабине было два рабочих места. Рабочее место оператора телефониста располагалось у левого окна, которое во время работы всегда было закрыто брезентовой шторой. Рабочее место старшего оператора было в центре кабины, над токосъемником. В небольшой кабине было тесновато. Если во время работы в кабину входил инженер РЛС, то ему приходилось неподвижно стоять за спиной старшего оператора у входной двери кабины. Долго так стоять в неудобной позе было трудно. Убедившись, что аппаратура работает нормально, он быстро уходил. Не каждый из операторов мог выдержать почти непрерывное круговое вращение и рыскание кабины при пеленгации целей в течение долгих четырех часов дежурства. На меня это круговое вращение кабины никак не сказывалось, и я полностью отдавался работе. Моим помощником оператором-телефонистом в то время был Павел Шакалов. Во время работы он чувствовал себя плохо - его укачивало. После смены, после четырех часов непрерывного кругового вращения (один оборот кабины в минуту), мне приходилось вести его в землянку отлеживаться…

Радиус действия радиолокатора РУС-2 не превышал 120-150 км. Экран индикаторного устройства был выполнен на электронно-лучевой трубке с белым цветом свечения. Наблюдать за экраном нужно было через узкую продольную щель в фронтальной панели пульта управления. Цели на экране индикаторного устройства выглядели, как белая узкая вертикальная полоска на темном фоне линии развертки. (яркостная модуляция!). Координаты цели определялись в системе "азимут-расстояние". По характеру засветки импульса цели и его мерцанию можно было определить одиночный самолет, пару и тройку. Далее можно было определить "много".

В конце июля или в первых числах августа 1941 года прямо на боевой позиции под Нарвой радиолокатор "РУС-2" нам заменили на новейший радиолокатор типа "РЕДУТ", который пригнали к нам прямо с завода буквально сразу же после окончания его изготовления. Это был самый, самый первый радиолокатор типа "РЕДУТ"!

Радиолокатор типа "РЕДУТ" по своей технической сущности является нашим первым полномасштабным отечественным импульсным радиолокатором дальнего обнаружения. По новизне, использованной в нем совокупности новых технических решений, по составу аппаратуры, по техническим возможностям и внешнему виду он никак не являлся усовершенствованным вариантом первого отечественного импульсного радиолокатора типа РУС-2. Создание в 1941 году радиолокатора типа "РЕДУТ" и его практическое использование в начальный период Отечественной войны выводило в то время Россию на передовые позиции в мире в области создания радиолокаторов дальнего обнаружения самолетов. Однако, по соображениям сохранения строжайшей секретности на наши новейшие технические решения патентов не испрашивали и потому юридически доказать приоритет России в создании и практическом использовании этого вида вооружения теперь, очевидно, уже невозможно.

Иной раз в соответствующей литературе высказывается такое мнение, что радиолокатор типа "РЕДУТ" является несколько усовершенствованным вариантом радиолокатора типа РУС-2. Это ошибочное мнение! По составу функциональных устройств, по ряду новых прогрессивных технических решений, реализованных в радиолокаторе типа "РЕДУТ", по надежности, по удобству в эксплуатации и дальности уверенного обнаружения целей ему, надо полагать, в то время (в 1941 году) не было равного в мире! Радиолокатор "РЕДУТ" по существу являлся новой, более высокой ступенью, в развитии отечественной радиолокации.

Вся аппаратура на "РЕДУТЕ" располагалась в одном типовом неподвижном аппаратном фургоне, закрепленном на шасси грузового автомобиля ЗИС-5. Во время работы вращалась только одна антенная система на крыше фургона. Одна и та же антенная система использовалась для передатчика и для приемника. Отключение приемника от антенны на время генерации передатчиком мощного зондирующего радиоимпульса осуществлялось специальным высокочастотным разрядником. Радиус уверенного обнаружения целей радиолокатором "РЕДУТ" достигал 200 - 210 км. Однажды (в 1942 году) на РЛС "РЕДУТ-7" уходящую цель вели наблюдением до 270 км. На радиолокаторе типа "РЕДУТА", как и в радиолокаторе РУС-2, еще не было индикатора кругового обзора. Картина воздушной обстановки в зоне обзора складывалась в голове старшего оператора по мере кругового вращения антенной системы. Старший оператор обязательно должен был обладать способностью пространственного (объемного) мышления и иметь хорошую память. Наблюдая на экране импульсы целей, он должен был мысленно представлять себе реальную воздушную обстановку. Хороший старший оператор мог помнить координаты (азимут - расстояние) 4 - 5 целей, количество самолетов в каждой из целей, направление их движения и некоторые индивидуальные особенности целей, если таковые имелись. Если целей было больше 4 - 5, то приходилось периодически посматривать и на планшет-картоплан. На планшете под листом прозрачного плексигласа была закреплена карта местности – Ленинград и окружающие его районы. Карта была разделена на квадраты с кодированными номерами.. На поверхность плексигласа оператор-телефонист наносил отметки целей обычными чернилам, обыкновенной перьевой ручкой. Фломастеров в то время не было.

Экран электронно-лучевой трубки индикаторного устройства на "РЕДУТЕ" был полностью открыт для старшего оператора. Цели на экране наблюдались в зеленом свечении в виде вертикальных пульсирующих импульсов, пересекающих горизонтальную линию развертки (амплитудная модуляция!), Зеленое свечение экрана лучше воспринималось глазами старших операторов.

Именно потому, что в приемном устройстве сигналы целей на промежуточной частоте не детектировались, а после усиления подавались прямо на электронно-лучевую трубку (амплитудная модуляция!), на радиолокаторе "РЕДУТ" оказалось возможным, оценивая структуру импульсов и характер их пульсаций на экране, точно определять количество самолетов – один, двойка, тройка. Такой способ показа целей на экране радиолокатора, как я полагаю, был реализован у нас в России впервые в мире, но никаких доказательств этому у меня нет. США пошли несколько по иному пути. У них в радиолокаторах к этому времени уже были индикаторы кругового обзора.

Определение количества самолетов в групповых целях не предусматривалось разработчиком. В соответствии с Инструкцией по эксплуатации, если в группе было более трех самолетов, количество самолетов в группе следовало называть "Много".

Методика точного определения количества самолетов в группах родилась у меня в сознании буквально в первые же дни после того, как я сел на свое рабочее место за экран индикаторного устройства радиолокатора "РЕДУТ". Видимо в этом проявился уже большой опыт работы, приобретенный в реальных боевых условиях на радиолокаторе РУС-2.

В конце июля 1941 года РЛС типа "РЕДУТ", введенная в эксплуатацию на нашей "точке" взамен радиолокатора РУС-2, была первой и единственной на всем Ленинградском фронте. С того времени нашу "точку" стали называть "РЕДУТ-3". С того же времени стационарному радиолокатору, установленному на вышке в пос. Токсово было присвоено наименование "РЕДУТ-1". Несколько позднее радиолокатор типа РУС-2, дислоцированный на Карельском перешейке в пос. Агалатово, тоже заменили на радиолокатор "Редут" и он получил условное наименование "РЕДУТ-2". .

Когда я впервые после РУС-2 сел за экран на "РЕДУТЕ", я сразу почувствовал, что это новая техника прекрасна! Даже сравнивать ее с РУС-2 невозможно было!

К тому времени опыт боевой работы у меня, как старшего оператора РЛС, уже был немалый. С большим увлечением я занялся определением точного количества самолетов в групповых целях. Буквально в первые же дни после практического знакомства с "РЕДУТОМ" я усмотрел в нем возможность точного определения количества самолетов в групповых целях. На разработку соответствующей методики, на практическую проверку ее эффективности у меня ушло дней 7 -10. Естественно, что я не делал никакого секрета из этой моей методики. Рассказал о ней моим друзьям-товарищам - сменным старших операторам нашего "РЕДУТА-3".

Все это происходило в начале августа 1941 года под Нарвой. С того времени мы стали успешно использовать ее в нашей повседневной работе. В последующие дни крупная группировка немецких войск из под Котлов и Кингисеппа, преодолев упорное сопротивление наших войск, начала быстрое продвижение к Ленинграду. Чтобы мы с нашей секретнейшей техникой не оказались под Нарвой в глубоком немецком тылу, по приказу командования нашего 72-го ОРБ ВНОС мы свернули нашу станцию и двинулись к Ленинграду… С первых чисел сентября мы, РЛС "РЕДУТ-3", дислоцировались уже на "Ораниенбаумском пятачке" в дер. Большая Ижора. Наши донесения о движении самолетов противника мы передавали по радио на Главный Пост ВНОС в Ленинград и по прямому проводу непосредственно на командный Пункт ПВО КБФ.

Во время вражеских налетов на корабли и Кронштадт 21- 23 сентября 1941 года я успешно пользовался этой своей методикой и точно (+-2 самолета в группе из 70 самолетов) определял количество самолетов во всех группах. В дальнейшем, уже после Кронштадтского Сражения об этой моей методике прослышали и в Ленинграде, в штабе нашего батальона. Потому в самом конце октября или даже в начале ноября 1941 года меня решили отозвать с "РЕДУТА-3" в батальон для того, чтобы я ознакомил с этой методикой других старших операторов нашего батальона. Я же об этом ничего не знал и не понимал для чего меня вдруг вызвали с боевой "точки" в Ленинград.

Добраться с "Ораниенбаумского пятачка" в Ленинград в то время было совсем непросто. Для этого из Большой Ижоры, где мы располагались, я на попутном транспорте добрался в Ораниенбаум, а затем катером в Кронштадт. Оттуда ночью в Ленинград отправлялся караван кораблей. Впереди шел ледокол "Тазуя". Я находился на другом кораблике (названия уже не помню) где-то ближе к голове каравана. У Петергофа фарватер простреливался немцами. Скажу правду – я очень боялся. Было очень страшно. Вокруг лед. Плавать я не умел и не умею… Тонуть очень не хотелось… До нас тут вчера немцы потопили буксир и баржу. На барже с "пятачка" в Ленинград переправляли госпиталь… Погибли много раненных и персонал госпиталя. Мне и сейчас (Мороз по коже!!!) страшно вспоминать все это. Одно дело – погибнуть в бою. Совсем другое дело быть расстрелянным невидимым противником и утонуть в ледяной воде, не имея возможности даже выстрелить в сторону противника…

Ярко светила Луна, но еще до подхода к траверзу Петергофа Луна зашла за горизонт. Стало темно. Немцы зажгли прожектор и его луч положили на воду так, что он пересекал фарватер. Незаметно проскочить было невозможно. Но вот над прожектором вдруг появился наш "Кукурузник" У-2 и луч прожектора поднялся вверх. С самолета обстреляли прожектор и его луч погас. В это время головная часть нашего каравана проскочила опасный участок пути. Потом, когда немцы снова зажгли прожектор, последние корабли нашего каравана уже покидали опасную зону. По ним немцы открыли огонь из орудий крупного калибра, но существенных потерь наш караван не понес. Так я благополучно добрался до Ленинграда. Только здесь, в штабе нашего батальона я узнал для чего, собственно, меня вызвали в Ленинград. Командир нашего батальона капитан Б.К. Бланк захотел, чтобы я поделился своим опытом работы с другими старшими операторами нашего батальона. Мне это "хотение" командира батальона вполне могло стоить жизни!… К ноябрю 1941г. у нас в батальоне уже были созданы "РЕДУТЫ" № 4, № 5. В штабе батальона в ноябре 1941 года я несколько раз проводил беседы со старшими операторами "РЕДУТОВ" № 1, № 2, № 4 и № 5, которых специально для этих бесед поочередно вызывали в штаб батальона. По ходу этих бесед рассказывал о своей методике определения количества самолетов в группах и рисовал на бумаге картинки импульсов разных целей, отвечал на все вопросы старших операторов. Командир батальона капитан Б.К. Бланк был очень доволен мною и перед строем объявил мне благодарность. Таким образом, с ноября 1941 года, моя методика точного определения самолетов в групповых целях стала использоваться почти всеми старшими операторами нашего батальона, а имя автора этой методики, как у нас тогда водилось, было позабыто. Моя методика стала достоянием всего батальона и жила уже сама по себе... Я воспринимал это, как должное.

"Операторы "Редутов" быстро освоили приемы определения количества самолетов в группе по характеру пульсаций отраженных импульсов. Помню рядового Г.И. Гельфенштейна с "Редута-9", который особенно хорошо проявил себя в этом тонком деле и редко ошибался"…

В конце января 1942 года на какое-то время я был включен в состав боевого расчета новой РЛС – "РЕДУТ-9". Эту станцию по Дороге Жизни вывозил на Волховский фронт, в Волховский дивизионный район ПВО, командир роты молодой старший лейтенант Сергей Николаевич Скворцов… Помню, как он иной раз долго, час-полтора, молча стоял у меня за спиной и смотрел как я работаю. Потом молча хлопал меня по плечу и уходил из аппаратной. Он так и не узнал тогда, что именно я и являлся автором методики точного определения самолетов в групповых целях…

В конце лета 1942 года по решению командования нашего батальона я был отозван с "РЕДУТА-9" в Ленинград.

Г. Гельфенштейн