Керамика виды. Свой бизнес: производство продукции из керамики. Способы изготовления керамических изделий

Материалы, получаемые термической обработкой минерального сырья.

Основным исходным сырьем для керамических изделий являются широко распространенные глины.

Глины образовались в результате химического разложения горных пород под воздействие воды, углекислоты. В результате разложения полевого шпата образуется минеральный каолинит АI2О3 2 Si2 2Н2О - основа глины.

Глины имеют помимо каолинита – кварц, слюду, полевой шпат, магнезит и т.д. Содержат окиси кальций, железа, натрия и д.р. Содержание кальция сокращает процесс спекания глин и ухудшает условия обжига.

Вода в глинах содержится в виде свободной и химически связанной, – т.е. входящей в состав глин образующих минерал. О количестве воды можно судить по наличию в глине тех или иных минералов.

При смачивании сухой глины молекулы воды втягиваются между чешуйчатыми частицами каолинита и расклинивают их, вызывая набухание глин. Тонкие слои воды между пластинчатыми частицами глины строительных минералов обусловливают характерные свойства глинистого теста. С одной стороны они способствует связыванию глинистой массы в единое целое, с другой служат как бы смазкой, облегчая движение глинистых частиц при механическом воздействии. Нечто подобное происхождение, когда между стеклянными пластинами, плотно прижатыми друг к другу находится тонкий слой воды. Разнять весьма трудно, но легко скользит относительно друг друга.

Основные свойства глин – пластичность, отношение к сушке (воздушная усадка) и отношение к температурам.

Пластичность – возможность формирования изделий различных конфигураций. Пластичность можно повысить добавлением более пластичной глины или удалением из глины песка. Пластичность зависит от содержание глинистых частиц.

Воздушная усадка – уменьшение объема при сушке в условие нормальной (комнатной) температуры вследствии удаления из нее воды и сближение частиц глины, усадка у кирпича 4 - 15%.

Отношение к температурам . На воздействия температур глины проверяют, на огнеупорность с помощью конуса из глины размерами в вершине 2мм, в основании 8мм и высотой 30 мм, который помещается, в печь и когда при оплавлении вершина касается подставки фиксируют температуру.

По отношению к температурам глины бывают огнеупорные, тугоплавкие и легкоплавкие. Глины, имеющие после обжига белый цвет применяется для изготовления фаянса и фарфора.

Огнеупорные глины содержат мало примесей, очень пластичны, и выдерживают температуру выше 1580°С. Применяются при изготавлении огнеупорного кирпича и плитки.

Тугоплавкие глины имеющие огнеупорность 1350-1580°С, применяются для изготовления облицовочного кирпича, плиток для полов, канализационных труб и т.д.



Легкоплавкие - с огнеупорностью ниже 1350°С, имеют примеси в виде песка, известняка, слюды, полевого шпата. Применяются для изготовления кирпича, черепицы и аналогичных изделий.

Желательно использовать глины после вылеживания их в течение года после добычи.

Глиняные массы для керамических изделий, кроме глины содержат различные добавки, оказывающие влияние на их свойства.

Для снижения пластичности в глину вводят добавки: кварцевый песок, шлак и т.д. это снижает усадку.

В производстве керамических изделий на основе глинистых пород и плавленых изделий применяются золошлаковые отходы ТЭС в качестве отощающих или топливосодержащих добавок, а также в качестве основного сырья для изготовления зольной керамики.

Наиболее широко применяют топливные шлаки и золы как добавки при производстве стеновых керамических изделий. Для изготовления полнотелого и пустотелого кирпича и керамических камней рекомендуется использовать легкоплавкие золы с температурой размягчения до 1200 °С. Золы и шлаки, содержащие до 10% топлива, применяются как отощающие добавки, а 10% и более - как топливосодержащие. В последнем случае можно существенно сократить или исключить введение в шихту технологического топлива. В золах, используемых как добавки при производстве стеновых керамических изделий, количество S03 не должно превышать 2% от общей массы.

Порообразующие добавки вводят в сырьевую массу для получения изделий с пористой и пониженной теплопроводностью. Для этого используют вещества, которые при обжиге выделяют газ (молотый мел, доломит) или выгорают (опилки, бурый уголь). Выгорают древесные опилки, измельченный бурый уголь, отходы обогатительных фабрик, золы ТЭЦ- это способствует повышению пористости и равномерному спеканию керамического черепка.

Керамические изделия классифицируют:

· по структуре образования;

· по областям применения;

· по назначению.

По структуре различают грубую – крупнозернистую с неоднородными строением и тонкую – с мелкокристалическим строением.

Большую часть строительных керамических материалов относят к грубой пористой керамике с водопоглащением 5-15%. Это – стеновые камни, кирпичная черепица, дренажные трубы др.

Дорожные и кислотоупорные кирпичи, канализационные трубы относят к грубой плотной керамике с водопоглащением 10%.

К тонкой пористой керамике относят изделия из фаянса и майолике, а к тонкой плотной - фарфор и часть огнеупорных, кислотоупорных электроизоляционных керамических материалов.

Керамические строительные материалы делят на плотные и пористые. Пористые с водопоглащение более 5%, плотные менее 5%. Поликристаллическая структура керамических материалов формируется при обжиге т. е. при высокой температуре.

В зависимости от назначения и области применения в строительстве керамические изделия подразделяются на стеновые материалы, камни для перекрытий, кровельные материалы, материалы для наружной и внутренней отделки, материалы для полов, для дорожных покрытий, специального назначения (теплоизоляционные, огнеупорные, кислотоупорные) сантехнические изделия, трубы дренажные и канализационные.

Особую группу составляют декоративно-художественная и бытовая керамика.

В каждой из этих групп входят разнообразные продукции по размерам:

Так стеновые ограждения конструкции включает в себя мелкоштучные и крупные керамические блоки, а также панели.

Основные технологические виды современной керамики: терракота, майолика, фаянс, фарфор, каменная масса.

Терракота - неглазурованная однотонная естественно окрашенная керамик, цветом от светло-кремового до красно-коричневого. Это могут быть скульптуры, МАФ, облицовочная плитка, архитектурные детали, вазы и др.

Майолика - керамика из цветной обожженной глины с крупнопористым черепком, покрытая глазурью - фризы, наличники, порталы, изразцы и т.д.

Фаянс - твердый, мелкопористый керамический материал, чаще белого цвета, более пористый чем фарфор, поэтому покрывают глазурью. Водопоглащение -10%.

Фарфор - спеченный керамический водонепроницаемый материал белого цвета. Получают путем обжига тенкодисперсной массы (смеси глины, каолина, кварца и полевого шпата).

Каменная масса- или «каменная» керамика, это близкий к фарфору плотный материал, отличающийся цветом черепка (серый, коричневый). Изготавливают дорожное покрытие, химически стойкую плитку.

К керамическим изделиям относят и огнеупорные керамические материалы, кислотоупорные, сантехнические.

По форме : кирпичи выпускают в виде прямоугольных параллелепипедов, лекальными, фигурными.

По отделки поверхности : обыкновенные, облицовочные, глазурованные без применения штукатурки.

Разнообразие форм, рельефа, цвета и рисунка кирпича помогают решать эстетичные вопросы строительства.

В зависимости от предела прочности кирпичи и керамические камни классифицируют по маркам . Марка соответствие пределу прочности при сжатии (5 образцов) М75 до 300 МПА.

Производство керамических изделий. Производство керамических материалов возникло много тысячелетий назад в виде гончарных изделий, настенных украшений и т.д.

Технологическая цепочка изготовления керамических изделий – подготовка сырья - дозировка – перемешивание - формирование ---сушка - обжиг.

Технология изготовления керамических материалов включает:

· подготовку сырья: – обогащение, дробление и выделение примесей;

· дозировку - добавка всех компонентов (глины, песка, порообразователей);

· перемешивание – чтобы получить однородную массу;

· формирование - пластическое, полусухое, литьем;

· сушку – при полусухом способе, прессование не требуется;

· обжиг при температуре – 900-1100% - для легкоплавких и 1150 – 1250 °С для тугоплавких глин.

Плитку, кирпич – прессуют полусухой из порошкообразной массы. Жидкую, высокой влажности глину для изготовления пустотелого кирпича, черепицы, керамических труб – шнековым способом выдавливают (Рисунок 2), литьем получают сантехнические изделия сложной конфигурации.

Рисунок2 Шнековый способ формования керамических изделий

Некоторые изделия покрывают глазурью (плитку) либо перед обжигом, либо обжигают дважды.

При обжиге температура, поднимается медленно: сначала, происходит досушивание, равномерное удаление влаги из массы затем обжиг.

При 100-120°С удаляется влага (свободная) затем сгорают органические примеси.

При t =450-650°С удаляется химические связанная влага и глина переходит в аморфное состояние, происходит усадка.

Печи для обжига кирпича бывают камерные и туннельные. До обжига на лицевой поверхности керамические изделий различными способами формируют рисунок следующими способами:

· механическим;

· глазированием;

· прессованием с помощью трафаретов;

· переводом печатного изображения с бумаги;

· нанесение рисунка прессованием из смеси разноцветных порошков грубого помола.

Классификация керамических изделий по назначению.

Номенклатура керамических строительных материалов. Строительной промышленностью выпускаются керамические строительные материалы:

· стеновые материалы - кирпич, камни, панели, блоки;

· фасадные плитки;

· черепица;

· плитки керамические для стен и пола;

· сантехнические изделие;

· художественно-архитектурное изделия;

· теплоизоляционные материалы;

· краски.

Стеновые материалы : кирпичи и камни

Кирпич обыкновенный сплошной имеет плотность 1600-1800 кг/м3 Размеры кирпича обыкновенного глиняного: 65х120х250, вес 3 кг. Размеры стеновых материалов должны координироваться с действующей модульной системой. Сплошные (полнотелые) и пустотелые кирпичи 4кг высотой -88мм называется утолщенный или модульный.

Выпускается кирпич 7 марок- 75:100;125:150;200;250;300 с прочностью на сжатие 7,5-30 МПА соответственно. Коэффициент теплопроводности λ=0,75-0,8 ккал/м· ч· град. По морозостойкости выпускается 4 марки кирпича. – F-5;25;35;50 циклов.

Применяют для кладки наружных, внутренних стен, перегородок, столбов, сводов, а также для изготовление кирпичных блоков и стеновых панелей. Нельзя применять для устройства фундаментов, подземной части зданий.

Кирпич пустотелый. Такой же, как и обыкновенный, но с технологическим пустотами для уменьшение массы. Пустоты – круглые, прямоугольные, овальные. Пустоты сквозные и не сквозные. Плотность: 1000- 1450кг/м3. Коэффициент теплопроводности λ=0,65-0,7 ккал/м· ч· град.

Предельная прочность: 7,5-25МПа для марок 75;100;125;150;200;250; (6 марок) соответственно. По морозостойкости марки F – 15;25;35;45 и 50.

Применяют для наружных и внутренних стен, перегородок без увлажнения.

Камни керамические пустотелые со сквозными и несквозными отверстиями размерами: 250х120х138: 250х250х138 и 288х138х138 и 288х, марок 75:100:125:150:200:250. Плотность 1450 кг/м3. Марка по морозостойкости F – 15 для несущих и ненесущих внутренних стен

Крупноразмерные блоки для наружных и внутренних стен. Панели изготавливают размером на комнату одно и двухслойные. Однослойные блоки толщиной 30см изготавливают из пустотелых керамических камней и керамзитобетонного заполнителя. Двухслойные толщиной 26см из кирпича и эффективного утеплителя: фибролита, минеральной ваты толщиной 10 см с облицовкой фасадной поверхности керамической плиткой. Кирпичные блоки изготавливают для увеличение производительности труда в условиях строительной площадки и повышения качества работ.

Отделочная керамика. Промышленностью выпускается керамическая плитка для внутренних работ и фасадная плитка. Фасадную плитку крепят цементным раствором, и на тыльной стороне плитки делают рельеф. Другие плитки «закладные» имеют сложную конструкцию и устанавливаются во время кладки стены.

Для отделки стен внутри зданий изготовляют плитку толщиной 5-10 мм, размерами 100х100; 150х150; 200х200 ; 200х400; 300х400 и т. д.

Керамические плитки для полов выпускаются двух видов: штучные и коврово-мозаичные, толщиной 11,13 и 15 мм, размерами 300х300; 400х400 и 500х500мм/

Керамогранит (каменный фарфор) - При его производстве применяются: кварцевые включения, полевой шпат, каолин. Формуются плиты при высоком давлении, температура обжига 1200-1300°С. По твердости и, соответственно, износостойкости каменному фарфору нет равных среди облицовочных материалов - у него эти показатели выше, чем у кварца и гранита. Крайне низкой пористостью объясняется и прочность керамогранита, и его низкая гигроскопичность - не более 0,05%. Твёрдость 8–9 баллов по шкале MOHS, а водопоглощение 0,05% по массе обеспечивает устойчивость не только к дождевой воде и всякого рода загрязнениям, но и к морозу. Благодаря всему перечисленному, Falesie прекрасно подходит как для интерьеров, так и для наружных работ, вплоть до предельно жёстких условий эксплуатации. Площадки для парковки, парковые или автомобильные дорожки, входные блоки и проходы общественных зданий и сооружений с любой интенсивностью движения.

Санитарно- технические изделия – ванны, раковины, унитазы, изготавливают из твердого фаянса и полуфарфора с глазурованием поверхности, способом литья в гипсовых формах.

Кровельная черепица применяется для скатных крыш. Изготавливают из легкоплавких глин. Долговечны, но трудоемки и весят 1мІ - 60кг. Применяются в наших климатических условиях редко.

Теплоизоляционная керамика. Керамзит – легкий, сыпучий строительный материал с закрытыми мелками порами, полученный быстрым обжигом легкоплавких глин, зол на тепловых предприятиях и другого вспучивающегося при термической обработке сырья.

Получают керамзитовый песок, гравий и щебень различных функций крупность от 5 до 40 мм. Песок, гравий, щебень применяется не только как заполнитель для легких бетонов, но и в качестве засыпок теплоизолирующих в слоистых конструкция.

Глинозольный керамзит производят по обычной для керамзита технологической схеме, включающей последовательное измельчение и усреднение сырья, формование гранул на дырчатых вальцах или ленточном прессе и их термическую обработку во вращающейся противоточной печи. Зола смешивается с глиной в глиносмесителе с пароувлажнением и в составе глинозольной массы поступает вперерабатывающие вальцы, а затем в агрегат для гранулирования.

Основной особенностью технологии изготовления глинозольного керамзита, помимо добычи и усреднения золы, является более тщательная подготовка сырьевой смеси. С этой целью применяют двух-стадийное перемешивание глинистой породы и золы в последовательно установленных агрегатах. Для производства глинозслъного керамзита предпочтительны золы из отвалов гидроудаления. Насыпная плотность глинозольного керамзита составляет 400-700 кг/м3, прочность при сдавливании в цилиндре - 2,3 - 4,8 МПа, водопоглощение – 10 - 21%, морозостойкость - более 15 циклов.

Глинозольный керамзитовый гравий и песок пригодны в качестве пористых заполнителей для легких бетонов классов от В3,5 до ВЗО.

Дорожный кирпич (клинкер)– искусственный камень получают путем формования и обжига глиняной массы до полного спекания. Размеры- 220х110х65 мм. Применяют для устройства тротуаров.

Керамические трубы –канализационные и дренажные. Керамические канализационные трубы – используют в строительстве безнапорной сети канализации, транспортирующие, промышленные, бытовые и дождевые, агрессивные и неагрессивные воды. Для производства применяют пластичные огнеупорные и тугоплавкие глины с содержанием Al2O3 не менее 16 %, интервалом спекания более 60 0С и без повышенного количества вредных включений типа колчедана, сидерита, гипса и тд. Формуется на специальных трубных прессах. Покрывают снаружи и внутри глиняной глазурью, после чего обжигают в камерных или туннельных печах при температуре 1250…1300 оС. Водопоглощение не более 8 %, кислотостойкость не менее 93 %.

Керамические краски – в виде защитных покрытий в атомной промышленности, получают окраской поверхности и закрепление обжигом.

Декоративная художественная керамика применяется в виде фасадных деталей, скульптур, ваз, малых архитектурных форм.

Керамические кислотоупорные плитки – изготавливают трех типов: кислотоупорные (К), термокислотоупорные (ТК) и термокислотоупорные для гидроизоляционной промышленности (ТКГ). По внешнему виду делят на два сорта: I и II. Предел прочности при сжатии не менее 39 МПа и на изгиб не менее 15 МПа, водопоглощение не более 6…9 %, кислотостойкость не менее 96…98 %., высока термическая стойкость не менее 8 теплосмен.

Керамические кислотоупорные трубы – изготавливают двух сортов: I, II. Имеют плотный спекшийся черепок, с обеих сторон покрытый глазурью. Отличаются высокой плотностью и прочностью, малым водопоглощением и высокой устойчивостью к действию кислот. Кислотостойкость не менее 98 %, водопоглощение не более 3 %, предел прочности при сжатии не менее 40 МПа, термическая стойкость не менее двух теплосмен и гидравлическое давление не менее 0,4 МПа. Применяют для перемещения неорганических и органических кислот и газов при разряжении или давлении до 0,3 МПа.

Вопросы для СРС

Ассортимент изделий из керамики чрезвычайно разнообразный и различаются они и по форме, и своими свойствами. Но кое-что остается одинаковым или, по крайней мере, очень похожим – это основные производственные этапы изготовления.

Основные этапы и технология производства керамики:

  • Добыча сырья;
  • Подготовка массы;
  • Формирование сырца (изделий);
  • Сушка;
  • Обжиг;
  • Прочая обработка;
  • Упаковка продукции.

Добыча сырья

Если говорить о добыче сырья, то в основном все заводы по производству находятся рядом с месторождением глины, а очень часто эти карьеры и есть частью завода. Добыча же происходит открытым способом с помощью эскалаторов.

Первым этапом обработки сырья является очистка (большие включения удаляются вообще или же измельчаются), а также разрушается естественная структура глины. После этого глина смешивается с добавками и увлажняется до состояния такой массы, которая легко поддается лепке.

Способы обработки глиняной массы

Включает в себя разные способы придания формы массе. Выбор того или иного метода зависит от первичных свойств поставляемого материала, а также от вида изготавливаемой продукции. Рассмотрим каждый из них отдельно:

1. Полусухой способ – после дробления и просушки глину подают на формирование с влажностью не более 8–12%. Формирование массы происходит на механических или гидравлических прессах.

2. Пластический способ – сначала дробление, а потом в глиносмесителе, смешивание с отощающими добавками до получения однородной массы с влажностью 20–25%. При использовании этого метода изделия формируются в основном на ленточных прессах.

3. Шликерный способ – глины смешивается с огромным количеством воды (около 60%), конечно предварительно измельчив. Все смешивается до тех пор, пока не образуется однородная масса – так называемый шликер. Он используется для изделий, которые изготовляются способом литья или же непосредственно после просушки в специальных распылительных печах.

Особенности производственного процесса

В наше время процесс технология производства керамических изделий максимально автоматизирована. Именно в связи с этим технология получения специального пресс-порошка занимает очень важную позицию в общем процессе. Суть этого процесса заключается в объединении процессов дробления, сепарации и обезвоживания. Сама по себе сушильная камера – это металлический цилиндр, снизу он заканчивается конусом. Основное его предназначение – это сбор уже готового продукта. Именно объединение выше названых процессов в распылительных сушилках дало возможность поднять производительность в 3,5 раза и при этом сократить затраты на производство.

Процесс сушки

Теперь поговорим о сушке. Этот промежуточный этап – обязательный при пластическом способе изготовления. Сырец, влажность которого высокая, ни в коем случае нельзя сразу отправлять на обжиг, потому что в таком случае он потрескается. При искусственном способе для сушки используют дымовые газы в обжигательных печах или же специальных топках. Если же изготовляют изделия из тонкой керамики, тогда для сушки используют горячий воздух из калорифера. Для искусственной же сушки подходит обжиг в туннельных или камерных сушилах.

Рассмотрим детально сам процесс сушки. Он представляет собой целый комплекс взаимосвязанных процессов массо- и теплообмена между окружающей средой и материалом. Иными словами изделие отдает свою влагу и, как следствие, изделие теряет объемы. Для получения качественных изделий из керамики просто необходимо строго придерживаться всех технических условий во время сушки и обжига.

Что такое обжиг?

Процесс обжига – завершающий в технологическом процессе производства. Именно во время обжига происходить полная дегидратация материала и усадка керамических изделий. Эти процессы происходят при температуре от +550 0 C до +800 0 C.

Летучие органические примеси удаляются при температуре от +200 0 C до +800 0 C, а также происходит окисление примесей, но только в пределах их возгорания. Здесь характерным является резкое поднятие температур (от +300 0 C до +450 0 C за час). После этого, до полного выгорания углерода, изделия пребывают в окислительной среде.

В дальнейшем температура поднимается от +800 0 C до максимума и при этом разрушается кристаллическая решетка минералов и происходит изменение структуры черепка. Когда температура достигает максимума, тогда изделие выдерживают, пока температура не выровняется по толщине всего изделия. Потом постепенно температуру снижают. Именно в этот период согласно технологии изготовления керамических изделий происходит их усадка и другие пластические изменения формы.

Постепенно снижается скорость охлаждения. При определенных условиях внешнего теплообмена снижение температуры замедляется. Но если говорить об обычных туннельных печах, скорость режима обжига никак не может быть реализована по причине неравномерности температурного поля. Например, легкоплавкие глины, которые используются для изготовления отдельных изделий, обжигаются при температуре от +900 0 C до +1100 0 C. Именно благодаря таким температурам подобные изделия характеризуются морозостойкостью, прочностью, очень высокой водостойкостью и многими другими качествами, которые особенно ценны для строительства.

Технология производства керамических изделий, видео-обзор:

Насколько разнообразна керамика, трудно себе даже представить. Попробуем перечислить только самые главные виды керамики. По назначению обычно керамику подразделяют на строительную, бытовую и техническую.

Строительная керамика: кирпич, черепица, трубы, облицовочные плитки разных видов для наружных и внутренних отделки стен зданий, плитки и плиты для полов, санитарно-технические изделия (раковины, ванны, унитазы, бачки к ним и т.п.).

Бытовая керамика: посуда, художественные изделия.

Техническая керамика: самые разнообразные изделия для машиностроения, ракетостроения, радиоэлектроники, электротехники и других отраслей промышленности.

Однако при всем многообразии различают плотную и пористую . При этом неважно, из какого сырья изготовлено изделие, какого цвета его черепок, как отделана поверхность. К плотной керамике относят: фарфор неглазурованный («фарфоровый бисквит»), а также глазурованный; фаянс . Представителями пористой керамики являются: майолика, терракота, шамот .

Однако самодельщиков интересует главным образом та технология изготовления керамики, изделия из которой они могут изготавливать сами . Это майолика и терракота. Вот о них-то и пойдет разговор ниже.

Лепка, отминка, литье...

Горшок формируют из глины разными способами. Древние горшечники брали мешок с мокрым песком, придавали мешку форму будущего горшка, а потом облепляли его со всех сторон влажной пластичной глиной, выравнивали поверхность и иногда наносили на мягкую глину деревянной палочкой узор в виде полос и спиралей. Когда глина высыхала, высыхал и песок в мешке. Тогда песок высыпали, легко вынимали освободившийся мешок, а глиняный горшок обжигали на костре...

Потом придумали гончарный круг. Изготовленные на нем керамические изделия имеют обязательную форму тел вращения, по крайней мере, изначально. Лепили из глины и изображения животных, людей. Эти статуэтки не были столь симметричными, как гончарные изделия.

Но крупные лепные изделия не получались. Дело в том, что их не умели делать полыми, и потому они неизбежно оказывались «толстостенными», в результате обычно растрескивались или сильно деформировались при сушке и обжиге.

Неизвестно, кто первый заметил, что если сильно разведенную водой глину в виде сметанообразной массы (шликера ) вылить в сосуд с пористыми впитывающими воду стенками, то на стенках сосуда образуется корочка из глины. Чем дольше шликер находится в таком сосуде, тем более толстая образуется корка. Если затем лишний шликер вылить, а образовавшейся корке дать подсохнуть, то ее можно из сосуда извлечь. И получится отливка, внешняя поверхность которой будет копией внутренней поверхности сосуда.

Это наблюдение и легло в основу так называемого сливного способа формирования керамических изделий сложной формы, например, статуэток, ваз, изразцов, унитазов, раковин. Многие уникальные произведения искусства получены именно сливным способом.

Ниже мы подробно познакомимся именно с таким способом изготовления майолики, то есть изделий из цветной обожженной глины с крупнопористым черепком, покрытых эмалью.

Последовательность операций при сливном способе формирования керамических изделий следующая:

Подготавливают все твердые компоненты сырьевой смеси, причем лучше всего их измельчить, чтобы облегчить последующий помол; осуществляют мокрый помол, это очень ответственная операция, от которой зависит качество будущих изделий (в мельницу при подобном помоле кроме глины и всех добавок заливают еще и воду);

Полученный шликер заливают в заранее подготовленные гипсовые разъемные формы и выдерживают в них до тех пор, пока не будет достигнута нужная толщина стенок изделий;

Из форм сливают «лишний» шликер, а формы с изделиями оставляют для первичной просушки - подвяливания;

Осторожно разнимают формы и извлекают из них изделия;

Изделия и формы высушивают (последние после сушки используют для формования повторно);

Сухие изделия покрывают слоем глазури;

Глазурованные изделия обжигают в печи и охлаждают.

В приведенной здесь общей схеме получения майолики сливным способом нет подробностей. Но именно в этих подробностях заключены те самые секреты и хитрости, которые называют тайной гончарного мастерства. Но о секретах чуть позднее. Тех же, кто решит попробовать свои силы в этом замечательном ремесле, хочу сразу предупредить, что без мельницы и печи им никак не обойтись. Учтите это, пожалуйста.

Глина глине рознь

Глины бывают разные. Геологи и технологи различают множество разновидностей глин. Для нас же важна информация о глинах, с которыми нам предстоит работать.

Просто глины - осадочные горные породы, состоящие преимущественно из глинистых минералов (каолинита, монтмориллонита, галлуазита и др.) и некоторого количества примесей, обладающие способностью размокать и набухать в воде с образованием при этом пластичной массы. Эти породы обычно имеют красновато-бурую или желто-бурую окраску.

Каолины - осадочные горные породы из глинистых минералов, состоящих главным образом из каолинита или его разновидностей. (Каолинит - минерал подкласса слоистых силикатов, Al 4 (OH) 8 - Прим. ред.)

Бентониты - осадочные породы, но состоят они из минералов группы монтмориллонита. Эти минералы имеют слоистую кристаллическую структуру как у графита или талька, то есть состоят из тончайших чешуек, способных при механическом воздействии на них скользить друг по другу. Поэтому эти минералы наощупь кажутся жирными. К тому же между чешуйками имеются полости, в которые легко проникают молекулы воды. Благодаря этому бентонитовые глины сильно набухают в воде и образуют пластичное тесто.

При всем разнообразии глинистых минералов у них есть общая особенность: они образовались при химическом разрушении других минералов и потому размеры их кристалликов очень малы - всего 1...5 мкм в поперечнике.

Кроме глинистых минералов все глины содержат то или иное количество примесей, которые сильно влияют на свойства глин, а потому состав и количество примесей необходимо учитывать при работе с глиной. Познакомимся с основными примесями, содержащимися в глинах.

Кварц - один из самых распространенных на Земле минералов, состоящий из одной лишь двуокиси кремния - кремнезема (Si0 2).

Полевой шпат - довольно обычный минерал, в котором наряду с кремнеземом обязательно присутствует глинозем - окись алюминия (Аl 2 0 3), а также окись одного из металлов типа натрия, калия, кальция (чаще всего именно этих трех).

Слюда - знакомый всем минерал, характерный тем, что очень легко расщепляется на тончайшие прозрачные пластинки. Слюда содержит кремнезем, глинозем и (часто) соединения железа, натрия, магния.

Чаще всего эти минералы-примеси и составляют присутствующий в глине песок. Реже в глине встречаются зерна известняка, гипса, других пород и минералов.

Разные минералы по-разному влияют на свойства глины. Так, кварц снижает ее пластичность, но повышает прочность черепка после обжига. Полевые шпаты снижают температуру спекания. А вот зерна известняка могут быть и полезными, и вредными, что зависит от их размера. Если эти зерна крупные (до 2 мм в поперечнике), то они для керамики вредны. Дело в том, что при обжиге известняк превращается в окись кальция (СаО), то есть в ту самую известь, которую мы называем кипелкой. Зерна извести в уже готовом черепке обязательно «натянут» пары воды из воздуха. При этом известь начнет «гаситься», сильно увеличиваясь в объеме. В конце концов, такое расширение песчинки приведет к разрушению изделия, которое обязательно растрескается. Если те же самые примеси находятся в глине в виде тонкого порошка, да еще равномерно в ней распределены, вреда от них не будет. Иногда даже наоборот полезно добавить в глину некоторое количество тонкоизмельченного известняка. Зачем? Об этом разговор будет позже.

Примеси в глинах встречаются не только в виде зерен. Некоторые минеральные вещества, растворимые в воде, как бы пропитывают глину. Это соединения железа, марганца, серы и целого ряда других элементов. Именно они чаще всего придают глине ее цвет. Чтобы убедиться в этом, проделайте простой опыт. Поместите в стакан щепотку обычной бурой глины и залейте ее уксусом. Содержимое размешайте, а потом осторожно промойте водой, чтобы не слить осадок. Вы увидите, что в стакане остался осадок белого или светло-серого цвета, а вся бурая окраска перешла к воде. Это произошло потому, что окрашивающие глину примеси растворились в кислоте и «отмылись» водой.

Что вам надо знать о глине

Свойства глин весьма разнообразны и многочисленны. Поэтому остановимся только на свойствах, особенно важных для гончаров, чтобы они могли правильно выбрать глину, а главное - подготовить ее к работе.

Среди свойств глины несколько выделяют ее запесоченность , которая характеризует содержание в глине песчаных частиц. Чтобы определить запесоченность глины, понадобится сито с размером ячеек 0,14 мм. Берут 100 г высушенной глины и замачивают ее в большом количестве воды до полного размокания. Затем полученную влажную массу выкладывают на сито и промывают водой до полного исчезновения мути в сливе (до «чистой воды»). После этого оставшуюся на сите субстанцию, а это и будет песок, содержащийся в глине, перекладывают на металлическую тарелку и сушат на плите или в духовке. Далее песок взвешивают с точностью до 0,1 г. Масса песка в граммах и будет равна запесоченности глины.

Остальные свойства глины, знание которых необходимо гончару, обычно подразделяют на водные и огневые.

Водные свойства

Пластичность - количество воды, которое необходимо добавить к глине, чтобы получить пластичное тесто. Это количество воды определяют опытным путем.

Берут 100 г сухой глины, растертой в ступке до состояния тонкого порошка, и добавляют к ней 5 г воды. Замешивают тесто, скатывают из него шарик, укладывают последний на ровную поверхность, например, на стол, и ладонью раскатывают в цилиндр-«колбаску» (рис. 1). Если «колбаска» через некоторое время начинает распадаться - воды мало. Тогда повторяют опыт, добавляя в глину большее количество воды, например, 10 г. Только нельзя добавлять воду к уже приготовленному тесту, придется тесто замешивать заново. Если и в этот раз цилиндр развалится, значит, воды все еще мало. Тогда надо еще на 5 г увеличить количество воды. Словом, повторяют эту процедуру до тех пор, пока глиняная «колбаска» или не перестанет растрескиваться (значит, достигнут предел раскатывания), или начнет просто размазываться по поверхности, что свидетельствует о достижении предела текучести.

Разность между влажностью глины в состоянии предела текучести влажностью той же глины в состоянии предела раскатывания называют числом пластичности. По значению этого числа судят о пластичности глины. Напомню еще, что относительная влажность характеризуется отношением массы жидкости, содержащейся во влажном веществе, к массе этого влажного вещества. Выражается влажность в процентах. Итак, малопластичной считают глину, число пластичности которой меньше 7%, у пластичной глины это число - 7...15%, у высокопластичной - более 15 %. Знание пластичности глины очень важно при составлении рецептуры керамической массы, а также для назначения режима сушки изделий.

Пластичность глины можно в некоторой степени изменять введением добавок.

Воздушная усадка - уменьшение объема глины при ее высыхании. При удалении из глины воды частицы минералов, составляющие глину, сближаются между собой, что и вызывает усадку. Это также очень важная характеристика, которая понадобится, например, чтобы определить размеры изделия-сырца. Определяют воздушную усадку так. Приготовив и промесив как следует некоторое количество глиняного теста, влажность которого соответствует пределу пластичности, его заворачивают во слегка увлажненный кусок холщовой материи и кладут на ровную доску. Далее деревянным молотком-киянкой «простукивают» тесто. Этот прием, называемый выколачиванием, позволяет получить тесто без воздушных пузырьков и пустот. Затем, не доставая глину из холстины, придают ей форму ровного пласта толщиной 10 мм. После этого острым ножом разрезают глину (без холстины, конечно) на квадраты со стороной 50 мм. При этом пользуются линейкой, чтобы линии разреза были прямыми и ровными. Потребуется изготовить не меньше пяти штук таких глиняных плиточек.

Затем заостренной палочкой на поверхности плиточек тоже по линейке наносят диагонали. Не глубоко, но так, чтобы они были хорошо заметны. Осталось с помощью циркуля-измерителя, раскрыв его ровно на 50 мм, нанести его концами риски поперек обеих диагоналей (рис. 2). Для сушки плитки укладывают в укромное место, например, на полку или на сухой подоконник. Конечно, на плитки не должны попадать прямые солнечные лучи, причем нельзя их располагать близко к отопительным приборам. При комнатной температуре плитки просохнут за неделю, после чего можно приступать к определению воздушной усадки. Для этого, взяв штангенциркуль, измеряют с точностью до 0,1 мм расстояния между рисками на диагоналях. Не забудьте во время измерения осмотреть образцы, отметить изменения формы, наличие трещин, прогибов, искривлений и т. д.

Предположим, что после замеров всех 5 плиток получили такие результаты (в мм): 45,0, 45,9, 46,1, 45,6, 47,8, 46,2, 45,4, 45,5, 46,1, 45,8. Вычислим среднее арифметическое этой группы чисел, для чего сумму значений этих чисел разделим на их количество:

459,4: 10 = 45,94 мм.

Теперь определим процент усадки, зная, что расстояние между рисками до сушки было равно 50,0 мм:

[(50,0 - 45,94)/50] х 100 = 8,12%.

Вот это и есть воздушная усадка нашей глины. У разных глин она неодинаковая и колеблется в пределах от 1 до 15%.

Одновременно по состоянию этих же образцов определяем и еще одно свойство нашей глины - чувствительность к сушке . Если после сушки образцы не деформированы и на них отсутствуют трещины, значит глина мало чувствительна к сушке. Наличие слабых искажений формы или небольшого числа мелких усадочных трещин свидетельствует о повышенной чувствительности глины к сушке. Наконец, если образцы сильно деформированы или потрескались - глина высокочувствительна к сушке. Это очень важный показатель, который обязательно учитывают при назначении рецептуры керамической массы из той или иной глины.

Огневые свойства

Спекаемость - способность глины давать при обжиге плотный черепок. Исследователи, занимающиеся керамикой, договорились, что способность глины образовывать черепок необходимо определять при одной и той же температуре, а именно при 1350° С. Ведь разные глины спекаются при «своих» температурах, разброс которых весьма значителен (от 450 до 1450° С), и если определять спекаемость каждой глины при ее температуре, то трудно установить количественную меру спекаемости. Поэтому и выбрали одну температуру.

Степень же спекаемости определяют по водопоглощению обожженного при 1350° С черепка той или иной глины: если водопоглощение меньше 2% - глина сильноспекающаяся; от 2 до 5% - среднеспекающаяся; больше 5% - неспекающаяся. (Водопоглощение - способность материала впитывать воду при погружении в нее.) Спекаемость глин удается регулировать с помощью добавок.

Поскольку мы условились, что будем заниматься изготовлением майолики, то есть пористой керамики, нам не понадобится добиваться сильного спекания глины. Однако чтобы определить температуру спекания той глины, с которой предстоит работать, это свойство глины знать желательно.

Для определения спекаемости нашей глины подойдут те же образцы, которые послужили для определения воздушной усадки. Причем не страшно, что они потрескались при сушке или изменили форму. Если есть доступ к лабораторной муфельной печи, то обжечь высушенные образцы лучше в ней.

Мы хотим установить сейчас, насколько сильно можно спечь в вашей печи черепок из имеющейся глины без введения каких-либо добавок. Поэтому и установим в муфеле соответствующую температуру.

При отсутствии муфеля образцы обжигают в обычной отопительной печи. Для этого в конце протапливания печи, когда в топке накопится достаточно много золы, но топливо еще полностью не прогорело, высушенные образцы укладывают поверх углей, не закапывая в них. Задвижку печи и поддувало прикрывают так, чтобы горение топлива продолжалось со средней интенсивностью. Когда печь протопится, ее просто закрывают. Образцы достают из печи только после полного ее охлаждения, то есть примерно через 10...12 ч. Температура спекания в этом случае будет такая, какую обеспечит печь, где вы собираетесь обжигать свои изделия. Обычно дровяные печи дают температуру 850...950° С. Осина, липа и другие мягкие породы при горении выделяют меньше теплоты, чем хвойные породы. Твердые (дуб, бук, вяз) - больше. Конечно, во многом температура зависит и от тяги в печи.

Вынув образцы из печи, их отряхивают от золы и пыли, после чего взвешивают на аптечных весах с точностью до 0,1 г и помещают их плашмя в посудину с водой, погружая образцы в воду не полностью, а на 2/3 их толщины.

В воде образцы выдерживают одни сутки, после чего вынимают, промокают сухой тряпицей или промокательной бумагой (вода с них капать не должна) и снова взвешивают с той же точностью.

Водопоглощение образцов вычисляют по формуле:

В = [(М в - М с)/М с ] х 100,

где М с - масса сухого образца, г; М в - масса насыщенного водой образца, г; В - водопоглощение,%.

Подвергнуть подобному испытанию необходимо не менее 3 образцов, затем вычисляют среднее арифметическое полученных результатов. Это и будет значение водопоглощения. Если оно окажется менее 2%, то глина легкоспекаемая, при 2...5% - среднеспекаемая, выше 5% - неспекаемая. Если глина легкоспекаемая, никаких мер для улучшения ее спекаемости не требуется. Среднеспекаемую глину, скорее всего также можно оставить в покое. А вот как повысить спекаемость неспекаемой глины, обсудим позже.

Если после выяснения воздушной усадки образцы окажутся непригодными для определения спекаемости, ну, скажем, они развалились при сушке или оказались сильно деформированными, следует приготовить точно такие же новые образцы. Но сушить их придется осторожнее и медленнее, для чего их лучше поместить в закрытый сосуд, например, в стеклянную банку, и накрыть ее листом бумаги. Сушка в этих условиях продлится не меньше 2 недель.

Огневая усадка - изменение объема глины при обжиге. Степень подобной усадки зависит не только от свойств глины, но и от температуры обжига. Как и в случае со спекаемостью, огневую усадку определяют при 1350° С. Но в нашем случае важна огневая усадка при температуре обжига, то есть при той, которую обеспечит печь. Знание огневой усадки поможет определить, какого размера требуется отливка, чтобы после обжига получить изделие заданных размеров. Естественно, что при этом учитывают и воздушную усадку.

Если образцы, подвергшиеся обжигу для изучения спекаемости, хорошо сохранили форму и нанесенные на них риски отчетливо видны, определить огневую усадку можно с их помощью.

Для этого, применяя штангенциркуль или циркуль-измеритель, вновь измеряют расстояния между рисками на диагоналях образцов. Рассчитывают огневую усадку по той же формуле, что и воздушную усадку. Нужно только сопоставить расстояния между рисками после сушки с расстояниями после обжига. Обычно у большинства глин огневая усадка составляет 6...8%. Как уже говорилось, общая усадка равна сумме воздушной и огневой. Она для обычных глин, как правило, близка к 15%, но наблюдаются и существенные отклонения от этого значения.

Все эти сведения понадобятся, чтобы назначить состав сырьевой смеси, с которой придется работать, а также определить размеры форм и установить режимы сушки и обжига изделий.

Итак, со свойствами пластичной глиняной массы мы разобрались. Давайте познакомимся со специфическими свойствами жидкой литейной глины (шликером), которые понадобятся при изготовлении майолики сливным способом. Но сначала подготовим сито с размером ячейки 0,0053 мм, вискозиметр Энглера и секундомер. Все это вряд ли раздобудешь в небольшом городке, а уж тем более - в деревне. Но и сито, и вискозиметр можно изготовить самостоятельно. Подробно об этом будет в следующем разделе, специально посвященном оборудованию, приборам и устройствам, необходимым для работы с керамикой. А пока скажем, что сито по конструкции ничем не отличается от обычных сит, только вместо традиционных сетки здесь придется натянуть капроновый или нейлоновый чулок, который заменит сетку с размером ячейки 0,0053 мм. Вместо секундомера подойдут любые часы с секундной стрелкой - точности до 1 с вполне достаточно.

Еще понадобится фарфоровая ступка вместимостью не менее 0,5 л с фарфоровым же пестом. Еще лучше было бы приобрести лабораторную фарфоровую мельницу. Имейте в виду, что чугунная или бронзовая ступки в данном случае не подойдут, так как при измельчении компонентов в шликер попадет металл в виде мельчайшей пыли, что может заметно отразиться на свойствах шликера. Но если уж другого выхода нет, применяйте чугунную ступку.

Чтобы определить свойства шликера, последний надо сначала приготовить. Для этого возьмем 0,5 кг высушенной глины и добавим к ней воду, количество которой зависит от пластичности. Так, малопластичные глины разводим в 320 мл воды, глины средней пластичности - в 300 мл, высокопластичные - в 280 мл. (Влажность шликера в этом случае составит примерно 39%, 37,5% и 36% соответственно.)

Итак, глину и воду в нужных количествах помещают в ступку, после чего измельчают глину, растирая ее пестом. Когда под пестом перестанет ощущаться песок, можно первый раз определить тонкость измельчения (помола) шликера. Отвесив 100 г шликера, его выливают в сито с сеткой из чулка и струей воды промывают шликер до чистой воды. Отмытый остаток сушат и взвешивают. Если масса его окажется меньше 2г (в нашем случае меньше 2%), то шликер готов.

Масса остатка на сите 0053 (так обозначается сито с размером ячейки 0,0053 мм) характеризует тонкость помола шликера. Она не должна превышать 2%, иначе шликер станет интенсивно расслаиваться, то есть из него при формировании изделий начнут быстро оседать более крупные частицы, в результате стенки изделия приобретут неодинаковые структуру и плотность на разной высоте. Добавим также, что тонкость помола не должна быть и меньше 1%. В последнем случае шликер слишком быстро загустевает, поэтому плотность стенок изделий окажется разной по толщине. Если тонкость помола окажется недостаточной (остаток на сите превысит 2%), шликер придется дополнительно растирать, чтобы количество остатка вписалось в нужный диапазон.

Подготовив шликер необходимого качества, приступают к определению его текучести. Для этого шликер наливают в вискозиметр с закрытым сливным отверстием. Через 30 с сливное отверстие открывают и одновременно начинают отсчет по секундной стрелке часов. Когда в сосуд под вискозиметром выльется ровно 100 мл шликера, отверстие слива закрывают. Время, за которое из вискозиметра вытечет 100 мл шликера и есть его текучесть. Обычно нормальная текучесть литейного шликера составляет 20 с. При текучести больше 25 с в шликер необходимо вводить разжижающую (пластифицирующую) добавку. Если текучесть меньше 15 с, необходимо уменьшить влажность шликера, то есть добавлять в глину меньше воды. Словом, текучесть шликера, пригодного для литья, лежит в пределах 15...25 с.

Теперь разберемся с загустеваемостью шликера, которая проявляется в том, что текучесть шликера со временем уменьшается, то есть время истечения 100 мл шликера из вискозиметра через какой-то период возрастает. Определяют загустеваемость так. Шликер, оставшийся в вискозиметре после определения текучести, сохраняют в покое в течение 30 минут, не встряхивая и не перемешивая его. Затем снова измеряют время истечения 100 г шликера, как в первый раз. Это время будет, понятно, больше, чем первое. Разделив новое время истечения шликера на предыдущее, получают его степень загустевания. Если данное частное окажется больше 2,2, то шликер не пригоден для формирования. Его текучесть и время загустевания надо регулировать добавками.

Еще одно очень важное свойство шликера, от которого во многом зависят как формовочные свойства шликера, так и качество будущего черепка - плотность. Определяют плотность шликера с помощью ареометра (денсиметра) с интервалом градуировки 1,5...1,8 г/см³. Подобный ареометр раздобыть не всегда удается, но можно заменить его двумя или даже тремя ареометрами, диапазон измерений которых перекрывает названный интервал, например, один - от 1,5 до 1,6, другой - 1,55...1,65, а третий - 1,56...1,85.

При отсутствии ареометра плотность определяют, взвешивая известный объем шликера. Например, предварительно взвешенный с точностью до 0,1 г мерный сосуд емкостью не менее 100 мл наполняют шликером до метки, обозначающей этот объем. Взвесив сосуд со шликером, из получаемой массы вычитают массу пустого сосуда и делят результат (разность) на объем шликера О ш. Частное от деления (с некоторой оговоркой) можно считать плотностью шликера П ш:

П ш = (М ш - М п)/О ш г/см³.

Замечу, что в действительности значение плотности, вычисленное таким способом, будет несколько отличаться от значения, которое покажет ареометр. Полученный в первом случае удельный вес шликера, с плотностью по ареометру может и не совпасть.

Классификация керамических изделий

Номенклатура бытовой керамики широка. Ее классифицируют по строению, степени плотности, типам, видам и разновидностям черепка, наличию глазури и назначению.

По строению выделяют: грубую и тонкую керамику. К грубой керамике относят изделия, имеющие на изломе неоднородное крупнозернистое строение и естественную красновато-коричневую окраску черепка. Изделия тонкой керамики на изломе имеют однородное мелкозернистое строение и белый или слабоокрашенный черепок, не пропускающий воду, газы (фарфор, фаянс, майоликовые изделия).

По степени плотности различают керамику с плотным спекшимся (водопоглощение до 5%) и с пористым (водопоглощение свыше 5%) черепком. Изделия со спекшимся черепком на изломе имеют плотное раковистое строение, при постукивании издают высокий, долгое время не затухающий звук, в тонких слоях некоторые из них просвечивают. Изделия с пористым черепком на изломе рыхлы, при постукивании по черепку издают низкий, глухой, быстро затухающий звук, не просвечивают при любой толщине стенок. По наличию глазури различают изделия глазурованные и неглазурованные. Изделия тонкой керамики чаще всего изготовляют глазурованными, а грубокерамические -- неглазурованными. Глазурованные изделия имеют гладкую, ровную и глянцевую поверхность, не пропускают воду и газы. Поверхность неглазурованных изделий шероховатая, матовая; они, как правило, пропускают воду.

По наличию глазури различают изделия глазурованные и неглазурованные. Изделия тонкой керамики чаще всего изготовляют глазурованными - имеют гладкую, ровную и глянцевую поверхность, не пропускают воду и газы. А грубокерамические - неглазурованными - имеют шероховатую, матовую поверхность и пропускают воду.

По назначению керамические изделия делят на бытовые, архитектурно-строительные и технические.

К бытовым относят посуду и художественно-декоративные изделия (фарфоровые, фаянсовые, майоликовые и др.).

Изделия архитектурно-строительные -- преимущественно изделия грубой керамики, применяемые для кладки стен и кровли зданий и сооружений(кирпич, черепица), отделки и облицовки наружных и внутренних стен.

Изделия технические применяют в радиотехнической, авиационной, автомобильной и др. отраслях народного хозяйства, а также для оборудования лабораторий (посуда, ступки, пестики и др.)

Виды керамических товаров и их характеристика

Фарфор изготовляют двух видов: твердый и мягкий. По рецептурам твердого фарфора вырабатывают в основном посуду повседневного пользования для личного и общественного потребления.

Мягкий фарфор, отличающийся повышенными эстетическими свойствами, применяется преимущественно для изготовления изделий праздничного, а также сувенирного и подарочного назначения. Разновидностью твердого является низкотемпературный фарфор (низкоспекающийся), изделия из которого предназначаются для использования только на предприятиях общественного питания школьных, детских, лечебных и т. п. учреждений. К разновидностям мягкого относят высокополевошпатовый и костяной фарфор, их высокие эстетические свойства получены благодаря использованию повышенных количеств полевого шпата или соответственно костяной муки. Фаянс бывает твердым и мягким. Массы мягкого фаянса, дающие изделия с более низкими эксплуатационными свойствами, используются сейчас лишь в производстве печных изразцов (кафелей). Майолика бывает: фаянсовая и гончарная. Фаянсовая майолика по свойствам и внешним признакам приближается к фаянсу, только внешне покрыта цветными прозрачными или заглушёнными поливами. Гончарная майолика напоминает гончарную керамику, отличаясь от не более тонкими стенками, тщательностью обработки и декорирования, разнообразием ассортимента изделий. Полуфарфор и гончарная керамика на виды и разновидности не подразделяются.

Важнейшие физико-механические и химические свойства керамики, определяющие потребительную ценность изделий, обусловлены особенностями ее состава и строения.

Классический состав массы твердого фарфора включают: 50% глинистых веществ (в основном каолина), 25% полевого шпата, 25% кварца. Твердый фарфор получают из массы, содержащей 50% глины и каолина, 25% кварца и 25% полевого шпата. Это классический состав, который может быть изменен в зависимости от вида исходных материалов. Наиболее рациональный состав твердого фарфора -- 55% глинистых веществ и по 22,5% кварца и полевого шпата. Особенностью твердого фарфора является малое содержание оснований и повышенное количество глинозема.

Для получения плотного спекшегося черепка твердый фарфор обжигают при повышенной температуре --1350--1400°С.

Для твердого фарфора коэффициент кислотности равен 1,1--1,3, по мере перехода к мягкому фарфору он возрастает до 1,68--1,75. С повышением коэффициента кислотности увеличивается хрупкость черепка и способность к деформации.

Твердый фарфор характеризуется повышенным содержанием в массе каолина и глины, что придает ему высокую белизну, обусловливает образование кристаллической фазы и повышение термической стойкости. Каолин способствует диффузии ионов алюминия и растворимого дегидратированного остатка каолинита в расплав полевого шпата, что ведет к увеличению их концентрации и образованию муллита. Муллит и отвердевший при охлаждении расплав обусловливают механические, термические и химические свойства изделий. Твердый фарфор глазуруют тугоплавкими глазурями. Основную массу фарфоровых изделий в нашей стране изготовляют из этого фарфора.

Для мягкого полевошпатового фарфора содержание глинистых компонентов уменьшают на 5--8%, увеличивая соответственно количество вводимого полевого шпата. Мягкий костяной фарфор имеет в массе вместо полевого шпата 43--50% костяной муки. Глазурь для фарфора во всех случаях тугоплавкая, полевошпатовая.

В массе для получения мягкого фарфора содержится больше плавней и меньше глины и каолина. При увеличении в массе плавней количество стекловидной фазы в черепке возрастает и повышается и просвечиваемость. Масса для получения мягкого фарфора содержит 25--30% каолина и глины, 20--45% кварца и 30--36% полевого шпата. Иногда добавляют 1,5--2,5% мела и 1,2--4,0% окиси цинка.

Кристаллическая фаза (высокая прочность)- незначительна. Прочность и термическая стойкость мягкий фарфор - ниже. Обжиг его ведут при более низкой температуре -- 1250--1300°С.

Разновидностями мягкого фарфора являются фриттовый, костяной, бисквитный и др.

Фриттовый фарфор получают из массы, не содержащей кварц, полевой шпат и пластичные материалы. Состав его: 75--80% фритты, 17% мела и около 8% отмученного мергеля. Фритта -- это тонкоизмельченный сплав песка, гипса, соды, поваренной соли, калийной селитры и аммиачных квасцов. Этот фарфор занимает промежуточное положение между твердым фарфором и стеклом. Для придания пластичности при формовании в смесь добавляют специальные клеящие вещества. Фриттовый фарфор не получил широкого распространения ввиду сложности производства быстрым размягчением черепка, малой термической стойкости и высокой стоимости(деформация изделия). Трудности производства обусловлены быстрым размягчением черепка, что приводит к деформации изделий. Для глазурования применяют легкоплавкую глазурь. Краски, наносимые на такие изделия, сплавляются с глазурью и имеют высокий блеск и красивые тона.

В состав костяного фарфора входит от 20 до 60% костяной муки, каолина 20-45%, иногда частично заменяют пластичной беложгущейся глиной.

По свойствам этот фарфор занимает промежуточное место между твердым и фриттовым фарфором. Обжиг проводят до полного спекания черепка. Особенностью костяного фарфора является высокая просвечиваемость. Для глазурования используют боросвинцовую фриттованную глазурь.

Бисквитный фарфор не покрывают глазурью, имеет мягкий матовый блеск. Состав: глинистые материалы (33--36%), кварц (45%) и фритты (24%) или без нее.

Для получения фарфоровых изделий с высокой прочностью, малым термическим расширением и хорошей термостойкостью в состав массы вводят корунд, тальк, циркон, окись бериллия и др.

Свойства изделий взаимосвязаны: повышение одного из показателей свойств часто приводит к снижению или повышению других, например, повышение просвечиваемости черепка сопровождается понижением механической прочности. Основными свойствами фарфора являются физические и химические.

К физическим свойствам относятся плотность, белизна, просвечиваемость, механическая прочность черепка и глазури, блеск и твердость глазури, термическая стойкость, электрическая прочность и др. Они зависят от структурных элементов черепка, и, прежде всего от соотношения стекловидной и кристаллической фаз, а также от количества и характера пор и наличия дефектов в виде трещин. На некоторые свойства фарфора влияет также толщина черепка и глазури.

Плотность фарфора 2,4--2,5 г/см 3 , объемная масса на V 10 меньше плотности. Фарфор имеет плотный спекшийся черепок с пористостью по водопоглощению не более 0,2%.

Белизна- важный показатель качества фарфора. Зависит от наличия в сырьевых материалах примесей железа, титана, хрома и других окрашивающих соединений, а также от режима и среды в печи при обжиге. Исходные материалы очищают от окрашивающих примесей. Белизна фарфора повышается с увеличением в массе каолина, а с увеличением толщины глазурного слоя она снижается.

Определяют ее путем сравнения с эталоном (баритовая пластинка), белизна которого принята за 100%. Белизну фарфора учитывают при установлении сорта готовых изделий. Для обычного фарфора она должна быть в пределах от 55 до 63%, для изделий со знаком качества -- не менее 65%.

Просвечиваемость фарфора зависит от содержания стекловидной фазы. С увеличением в черепке полевошпатового стекла при одновременном снижении содержания глинистых материалов просвечиваемость возрастает. Она улучшается и при повышении температуры обжига. Кристаллы муллита, остаточного кварца, пузырьки газа и поры, снижают просвечиваемость. Просвечиваемость некоторых масс с увеличением толщины черепка с 1 до 2 мм снижается в несколько раз. Мягкий фарфор имеет более высокую просвечиваемость, чем твердый, так как у него показатель преломления стекловидной фазы близок к показателю преломления кристаллической фазы (1,56).

Механическая прочность имеет большое практическое значение. Для фарфора различают прочность черепка и прочность глазури. Прочность черепка зависит от количественного соотношения кристаллической и стекловидной фаз, его толщины и пористости. С увеличением кристаллической фазы прочность черепка повышается.

При увеличении толщины изделия на 0,5мм механическая прочность возрастает на 12--17%. Изделия из массы с повышенным содержанием глинистых материалов (50--54%) имеют более высокую механическую прочность. Фарфор в 12--13 раз лучше сопротивляется сжатию, чем растяжению.

Чем тоньше слой глазури, тем выше прочность изделий, особенно если глазурь находится в состоянии сжатия. Если глазурь находится в состоянии растяжения, то прочность изделий резко снижается.

Блеск и твердость глазури являются важными показателями фарфоровых изделий, характеризующими их внешний вид и пригодность для использования по назначению.

Блеск глазури придает изделиям красивый внешний вид и повышает их санитарно-гигиенические свойства, так как гладкие изделия меньше загрязняются и легче очищаются. Чем ровнее поверхность глазурного слоя и меньше шероховатость, тем выше блеск. По изменению блеска глазури можно судить о появлении микротрещин, которые со временем увеличиваются.

Блеск глазури зависит от ее состава, температуры обжига и среды, а также от наличия в ней различных газовых включений и коэффициента преломления.

Твердость глазури -- эксплуатационный показатель, характеризующий поведение глазурного слоя при пользовании режущими столовыми приборами. Глазурь не должна разрушаться столовыми приборами, на ней не должны оставаться штрихи от ножа, вилки. Твердость глазури зависит от ее химического состава. Более твердые полевошпатовые глазури, более мягкие -- свинцовые и баритовые.

Фарфоровые глазури являются твердыми, майоликовые -- мягкими, а фаянсовые глазури относятся к средним.

Термическая стойкость- надежность фарфоровых изделий и возможное использование их по назначению. Они в процессе эксплуатации часто подвергаются воздействию разных температур. Низкая термическая стойкость приводит к преждевременному износу и выходу из строя фарфоровых изделий. Термическая стойкость фарфора зависит от химического состава черепка и глазури, соответствия их коэффициентов термического расширения, сложности формы изделия, толщины черепка и глазури, прочности и модуля упругости черепка, а также от теплопроводности и плотности. Термическая стойкость изделий сложной конфигурации снижается c увеличением толщины глазурного слоя. На снижение термической стойкости влияют микротрещины и другие дефекты черепка и глазурного слоя.

Трещины глазури чаще всего образуются в тех случаях, когда коэффициент термического расширения глазури выше, чем черепка. Если термическое расширение черепка выше, чем глазури, то происходит отскок глазури, что ухудшает внешний вид изделий. С появлением трещин сильно снижается блеск глазури.

Химическая устойчивость -- важный показатель качества фарфоровых изделий. Следует различать химическую устойчивость глазури к воздействию влаги, соды, уксусной и лимонной кислот. Устойчивость глазури к различным средам зависит от ее химического состава: чем меньше в ней щелочей, тем выше ее химическая устойчивость. При малой химической стойкости глазури и украшений ухудшаются внешний вид готовых изделий и их санитарно-гигиенические свойства. При разрушении глазури ее поверхность становится шероховатой и снижается блеск.

Полуфарфор по составу близок к фарфоровым массам, отличается от них уменьшенным содержанием (9--10%) полевого шпата. Глазурь для полуфарфоровых изделий фриттованная и по составу близка к фаянсовым.

Тонкокаменные изделия получают из массы, состоящей из 50% пластичных материалов(17-30% каолина и 25% глины) и 50% кварцевого песка и полевого шпата. Глазуруют прозрачными и цветными глухими глазурями. Формуют тонкокаменные изделия пластическим методом в гипсовых формах и способом литья. Их подвергают 2-х кратному обжигу: утельному - при температуре и политому.

Полуфарфоровые изделия имеют белый черепок с поглощением от 3-5%. По свойствам они занимают промежуточное положение между фарфоровыми и фаянсовыми изделиями. Для формования этих изделий чаще всего применяют литье, реже- пластический метод; обжиг двукратный.

Схема приготовления фаянсовой массы, формования, сушки, обжига, декорирования и сортировки фаянсовых изделий в основном аналогична производству фарфора. Утельный фаянс проводят при более высокой температуре (1250--1280° С), чем политой (1140--1180 0 C). При обжиге их тщательно устанавливают в капсели на специальные подставки. Глазуруют фаянсовые изделия легкоплавкими глазурями методом окунания.

По составу, структуре и свойствам фаянс делят на твердый, мягкий и глинистый. Твердый фаянс -- полевошпатовый, получают из массы с повышенным содержанием глинистых веществ -- от 45 до 60%, полевого шпата -- от 5 до 15, кварца -- от 25 до 40% Мягкий фаянс -- известковый, содержит глинистых веществ от 35 до 55%, кварца --от 30 до 40, мела и доломита --от 15 до 20 и боя --от 5 до 7%. В глинистом фаянсе больше пластичных веществ (75--85%) и меньше кварцевого песка.

Наиболее распространенным является твердый фаянс, характеризующийся наибольшей механической прочностью. Формирование фаянсового черепка завершается при утельном обжиге - изделие приобретает высокую прочность и сохраняет пористость, необходимую для глазурования. Обжиг при максимальной температуре проводят в слабоокислительной или нейтральной среде. Цель политого обжига -- равномерное расплавление глазури по всей поверхности и закрепление ее. Политой обжиг ведут в окислительной среде, чтобы изделия не приобрели серый цвет за счет конденсации смолистых веществ.

Благодаря незначительному содержанию в массе плавней и невысокой температуре обжига стекловидная фаза развита слабо. Зерна дегидратированного глинистого вещества и кварца цементируются небольшим количеством расплава, образующегося при взаимодействии легкоплавких веществ с глиной и кварцем- образуются поры, обусловливающие глухой звук при ударе и повышенное водопоглощение черепка.

Производство майоликовых изделий в основном аналогично изготовлению фаянсовых. Формуют эти изделия пластическим методом и методом литья. Политой обжиг майоликовых изделий в отличие от фаянсовых проводят при более низкой температуре-- 1040--1100 0 C, поэтому для глазурования применяют свинцовые и другие легкоплавкие глазури. Декорируют их ангобированием -- частичное (барботин) или полное покрытие слоем беложгущейся или цветной глины, росписью, цветными глазурями или поливами однокрасочными либо многокрасочными. Часто для украшения их применяют кракле, кристаллические и потечные глазури.

Гончарные изделия - разновидность майоликовых. Они имеют пористый черепок, естественно окрашенный -- от желтого до коричневого цвета. Водопоглощение черепка составляет 15 -- 18%. Для изготовления этих изделий применяют легкоплавкие глины с добавлением от 10 до 20% кварцевого песка как отощителя. Цвет черепка зависит от содержания в глине окислов железа. Формуют эти изделия пластическим методом в гипсовых формах или методом литья. Сформованные изделия подвергают двукратному обжигу: утельному -- при температуре 1050--115O 0 C, политому -- 900--1000 0 C. Для глазурования используют обычные глазури кракле, потечные и др. Иногда применяют соляное глазурование: поваренную соль при обжиге изделий забрасывают в печь. Под действием температуры она разлагается, при этом окись натрия, осаждаясь на поверхности изделия, образует силикат натрия, который прочно закрепляется на поверхности.

Керамические изделия вследствие их разнообразия изготовляют разными технологическими приемами, но основные этапы их производства примерно одинаковы и состоят из добычи глины, подготовки массы для формования, формования сырца, сушки и обжига изделий.

Добыча глины, подготовка керамической массы и формование изделий.

В большинстве случаев глину добывают открытым способом, для чего используют одно- или многоковшовые экскаваторы, скреперы и другие механизмы. На завод глину доставляют рельсовым транспортом, автотранспортом, ленточными транспортерами, подвесными дорогами, люлечными конвейерами.

Карьерная глина обычно непригодна для получении изделий. Поэтому технология любого керамического изделия начинается с приготовления так называемой керамической, или рабочей, массы. Цель этой стадии производства - разрушить природную структуру глиняного сырья, удалить из него вредные примеси, крупные куски измельчить, а затем обеспечить равномерное смешивание всех компонентов с водой до получения однородной и удобоформуемой керамической массы. В зависимости pi вида изготовляемой продукции и свойств исходного сырья керамическую массу получают пластическим, полусухим и шликерным (мокрым) способами. В связи с этим выбирают и способ формования изделий - пластическое формование, полусухое или сухое прессование, литье.

При пластическом способе подготовки массы и формования исходные материалы при естественной влажности или предварительно высушенные смешивают друг с другом с добавкой воды до получения теста. Влажность получаемой массы колеблется от 15 до 25 % и более. Подготовленная глиняная масса поступает в формующий пресс, чаще всего в ленточный обычный или снабженный вакуум-камерой (3.3). Разрежение способствует удалению воздуха из глины и сближению ее частиц, что повышает однородность и формуемость массы и прочность сырца. Глиняный брус требуемого сечения, выходящий через мундштук пресса, разрезают резательным аппаратом на изделия (сырцовые изделия). Пластический способ подготовки массы и формования наиболее распространен при выпуске массовых материалов (кирпича сплошного и пустотелого, камней, черепицы, облицовочных плиток и т. п).

При полусухом способе подготовки сырьевые материалы вначале подсушивают, дробят, размалывают в порошок, а затем перемешивают и увлажняют водой или, что лучше, паром, так как при этом облегчается превращение глины в однородную массу, улучшаются ее набухаемость и формовочная способность. Керамическая масса представляет собой малопластичный пресспорошок с небольшой влажностью: 8..Л2 % при полусухом и 2...8 % (чаще 4...6%) при сухом способе формования. Поэтому изделия из таких масс формуют под большим давлением (15...40 МПа) на специальных автоматических прессах. Изделия после прессования иногда можно сразу обжигать без предварительной сушки, что ведет к ускорению производства, сокращению расхода топлива и удешевлению продукции. В отличие от пластического способа формования можно использовать малопла-стнчные глины, что расширяет сырьевую базу производства. Полусухим способом прессования изготовляют кирпич сплошной и пустотелый, облицовочные плитки, а сухим способом - плотные керамические изделия (плитки для полов, дорожный кирпич, материалы из фаянса и фарфора).

По шликерному способу исходные материалы предварительно измельчают и тщательно смешивают с большим количеством воды (влажность смеси до 40 %) до получения однородной текучей массы (шликера). Шликер используют непосредственно для изготовления изделий (способ литья) или для приготовления пресспорош-ка, высушивая его в распылительных башенных сушилках. Шликерный способ применяют в технологии фарфоровых и фаянсовых изделий, облицовочных плиток.

Сушка изделий .

Сушка - весьма ответственный этап технологии, так как трещины обычно возникают именно на этом этапе, а при обжиге они лишь окончательно выявляются. Обычно достаточным является высушивание сырца до остаточной влажности - 6...8%.

В процессе сушки продвижение влаги из толщи керамического изделия к наружным слоям происходит значительно медленнее, чем влагоотдача с поверхности, особенно это проявляется в ребрах и углах изделий. При этом возникает различная степень усадки внутренних и внешних слоев, а следовательно, создаются напряжения, которые могут привести к растрескиванию материала. Для предотвращения этого к жирным глинам прибавляют отощители, которые образуют жесткий скелет, препятствующий сближению глинистых частиц, увеличивают пористость изделия, что способствует продвижению воды из его внутренних слоев к наружным. Для уменьшения чувствительности глин к сушке применяют также паропрогрев и вакуумирование глин, используют некоторые органические вещества в малых дозах ЛСТ, дегтевые и битуминозные вещества и др. (см. гл. 5).

Прежде сырец сушили преимущественно в естественных условиях (в сушильных сараях). Естественная сушка, хотя и не требует затрат топлива, но в значительной степени зависит от погоды и длится очень долго (10... 20 сут). В настоящее время сушку сырца, как правило, производят искусственно в специальных сушилках периодического или непрерывного действия. В качестве теплоносителя используют дымовые газы обжигательных печей или горячий воздух из калориферов. Срок сушки сокращается до 2...3 сут, а иногда до нескольких часов.

Обжиг изделий .

Обжиг - важная и завершающая стадия технологического процесса керамических изделий. Суммарные затраты на обжиг достигают 35...40 % себестоимости товарной продукции. При обжиге сырца образуется искусственный каменный материал, который в отличие от глины не размывается водой и обладает относительно высокой прочностью. Это объясняется физико-химическими процессами, происходящими в глине под влиянием повышенных температур.

При нагреве сырых керамических изделий до 110 °С удаляется свободная вода и керамическая масса становится непластичной. Но если добавить воду, пластические свойства массы восстанавливаются. С повышением температуры до 500...700°С выгорают органические примеси и удаляется химически связанная вода, находящаяся в глинистых минералах и других соединениях керамической массы, а керамическая масса безвозвратно теряет свои пластические свойства. Затем происходит разложение глинистых минералов вплоть до полного распада кристаллической решетки и образования аморфной смеси АЬОз и SiO2. При дальнейшем нагреве до 1000°С вследствие реакций в твердой фазе возможно образование новых кристаллических силикатов, например силлиманита Al2O3-SiO2, и далее при 1200...1300°С переход его в муллит 3Al2O3-2SiO2. Одновременно с этим легкоплавкие соединения керамической массы и минералы плавни создают некоторое количество расплава (жидкой фазы). Расплав обволакивает нерасплавившиеся частицы, частично заполняет поры между ними и, обладая силой поверхностного натяжения, стягивает их, вызывая сближение и уплотнение. После остывания образуется камнеподобный черепок. Этот процесс называют спеканием. Результатом процесса спекания является уплотнение обжигаемого материала и, как следствие, уменьшение его открытой пористости.

Температурный интервал между огнеупорностью и началом спекания называют интервалом спекания глин (3.4). Интервал спекания зависит от состава глин. Чем он шире, тем меньше опасность деформации изделия при обжиге. Большинство легкоплавких глин имеет узкий интервал спекания. Обжиг изделий из них обычно ведут при температуре 900-1000 °С. Огнеупорные и тугоплавкие глины имеют большой интервал спекания (более 100°С) и применяются для получения изделий с плотным спекшимся черепком; обжигают их при 1150...1400 °С.

Для обжига керамических материалов используют специальные печи (кольцевые, туннельные, щелевые, роликовые и др.).

После обжига изделия охлаждают постепенно, чтобы предотвратить образование трещин.

Обожженные изделия могут различаться между собой как по степени обжига, так и по наличию внешних дефектов. После выгрузки из печи их сортируют с учетом ГОСТов.