Математические методы оптимизации использования принтеров. Динамическое программирование. Особенности оптимизационных задач, возникающих при моделировании СДС

Система m линейных уравнений c n неизвестными называется системой линейных однородных уравнений, если все свободные члены равны нулю. Такая система имеет вид:

где а ij (i = 1, 2, …, m ; j = 1, 2, …, n ) - заданные числа; х i – неизвестные.

Система линейных однородных уравнений всегда совместна, так как r (А) = r (). Она всегда имеет, по крайней мере, нулевое (тривиальное ) решение (0; 0; …; 0).

Рассмотрим при каких условиях однородные системы имеют ненулевые решения.

Теорема 1. Система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг её основной матрицы r меньше числа неизвестных n , т.е. r < n .

1). Пусть система линейных однородных уравнений имеет ненулевое решение. Так как ранг не может превосходить размера матрицы, то, очевидно, r n . Пусть r = n . Тогда один из миноров размера n n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: , , . Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r < n .

2). Пусть r < n . Тогда однородная система, будучи совместной, является неопределённой. Значит, она имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Рассмотрим однородную систему n линейных уравнений c n неизвестными:

(2)

Теорема 2. Однородная система n линейных уравнений c n неизвестными (2) имеет ненулевые решения тогда и только тогда, когда её определитель равен нулю: = 0.

Если система (2) имеет ненулевое решение, то = 0. Ибо при система имеет только единственное нулевое решение. Если же = 0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r < n . И, значит, система имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Обозначим решение системы (1) х 1 = k 1 , х 2 = k 2 , …, х n = k n в виде строки .

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка - решение системы (1), то и строка - решение системы (1).

2. Если строки и - решения системы (1), то при любых значениях с 1 и с 2 их линейная комбинация - тоже решение системы (1).

Проверить справедливость указанных свойств можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы.

Система линейно независимых решений е 1 , е 2 , …, е р называется фундаментальной , если каждое решение системы (1) является линейной комбинацией этих решений е 1 , е 2 , …, е р .

Теорема 3. Если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений (1) меньше числа переменных n , то всякая фундаментальная система решений системы (1) состоит из n – r решений.

Поэтому общее решение системы линейных однородных уравнений (1) имеет вид:

где е 1 , е 2 , …, е р – любая фундаментальная система решений системы (9), с 1 , с 2 , …, с р – произвольные числа, р = n – r .

Теорема 4. Общее решение системы m линейных уравнений c n неизвестными равно сумме общего решения соответствующей ей системы линейных однородных уравнений (1) и произвольного частного решения этой системы (1).

Пример. Решите систему

Решение. Для данной системы m = n = 3. Определитель

по теореме 2 система имеет только тривиальное решение: x = y = z = 0.

Пример. 1) Найдите общее и частные решения системы

2) Найдите фундаментальную систему решений.

Решение. 1) Для данной системы m = n = 3. Определитель

по теореме 2 система имеет ненулевые решения.

Так как в системе только одно независимое уравнение

x + y – 4z = 0,

то из него выразим x =4z - y . Откуда получим бесконечное множество решений: (4z - y , y , z ) – это и есть общее решение системы.

При z = 1, y = -1, получим одно частное решение: (5, -1, 1). Положив z = 3, y = 2, получим второе частное решение: (10, 2, 3) и т.д.

2) В общем решении (4z - y , y , z ) переменные y и z являются свободными, а переменная х – зависимая от них. Для того, чтобы найти фундаментальную систему решений, придадим свободным переменным значения: сначала y = 1, z = 0, затем y = 0, z = 1. Получим частные решения (-1, 1, 0), (4, 0, 1), которые и образуют фундаментальную систему решений.

Иллюстрации :

Рис. 1 Классификация систем линейных уравнений

Рис. 2 Исследование систем линейных уравнений

Презентации:

· Решение СЛАУ_матричный метод

· Решение СЛАУ_метод Крамера

· Решение СЛАУ_метод Гаусса

· Пакеты решения математических задач Mathematica, MathCad : поиск аналитического и числового решения систем линейных уравнений

Контрольные вопросы :

1. Дайте определение линейного уравнения

2. Какой вид имеет система m линейных уравнений с n неизвестными?

3. Что называется решением систем линейных уравнений?

4. Какие системы называются равносильными?

5. Какая система называется несовместной?

6. Какая система называется совместной?

7. Какая система называется определенной?

8. Какая система называется неопределенной

9. Перечислите элементарные преобразования систем линейных уравнений

10. Перечислите элементарные преобразования матриц

11. Сформулируйте теорему о применении элементарных преобразований к системе линейных уравнений

12. Какие системы можно решать матричным методом?

13. Какие системы можно решать методом Крамера?

14. Какие системы можно решать методом Гаусса?

15. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Гаусса

16. Опишите матричный метод решения систем линейных уравнений

17. Опишите метод Крамера решения систем линейных уравнений

18. Опишите метод Гаусса решения систем линейных уравнений

19. Какие системы можно решать с применением обратной матрицы?

20. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Крамера

Литература :

1. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н.Фридман. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2005. – 471 с.

2. Общий курс высшей математики для экономистов: Учебник. / Под ред. В.И. Ермакова. –М.: ИНФРА-М, 2006. – 655 с.

3. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред.В.И. Ермакова. М.: ИНФРА-М, 2006. – 574 с.

4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и магматической статистике. - М.: Высшая школа, 2005. – 400 с.

5. Гмурман. В.Е Теория вероятностей и математическая статистика. - М.: Высшая школа, 2005.

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. – М.: Оникс 21 век: Мир и образование, 2005. – 304 с. Ч. 1; – 416 с. Ч. 2.

7. Математика в экономике: Учебник: В 2-х ч. / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандара. – М.: Финансы и статистика, 2006.

8. Шипачев В.С. Высшая математика: Учебник для студ. вузов – М.: Высшая школа, 2007. – 479 с.


Похожая информация.


Один из способов решить сложную проблему оптимизации - сначала свести её к соответствующей, но более простой задаче, а затем постепенно увеличивать сложность, каждый раз решая новую проблему, и, в свою очередь, используя это решение в качестве руководства к решению последующей задачи. Такой подход, кажется, довольно хорошо работает на практике, но он никогда не был описан и подтвержден теоретически.

Эта последовательность графиков иллюстрирует применение метода исследователей к реальной проблеме компьютерного зрения. Решение каждой задачи (красные шарики) используется для инициализации (зеленые стрелки) поиска решения в последующей.

В январе на Международной конференции по методам геометрической оптимизации в компьютерном зрении и распознавании образов, Хоссейн Мобэхи (Hossein Mobahi), учёный, проводящий докторские исследования в Массачусетском технологическом институте информатики и лаборатории искусственного интеллекта (Computer Science and Artificial Intelligence Laboratory - CSAIL), и Джон Фишер (John Fisher), старший научный сотрудник в CSAIL, описали способ генерации последовательности упрощенных функций, что гарантирует наилучшее приближение у применяемого в настоящее время метода.

«На некоторые фундаментальные вопросы об этом методе мы отвечаем впервые», - говорит Мобэхи. - «Например, я сказал вам, что надо начинать с простой задачи, но не сказал, как выбрать эту простую задачу. Существует бесконечно много функций, с которых вы можете начать. Какая из них лучше? Даже если я скажу вам с какой функции стоит начать, есть бесконечно много способов её преобразования для определенной задачи. И это преобразование влияет на то, что вы получите в конце».

Достижение минимума

Чтобы понять, как работает оптимизация, предположим, что вы ритейлер консервированных продуктов. Вы пытаетесь сэкономить деньги на стали и хотите, чтобы соотношение площади поверхности банки к её объёму сводилось к минимуму. Это соотношение является функцией от высоты и радиуса, так что если вы сможете найти минимальное значение функции, то будете знать оптимальные размеры банки. Если вы дизайнер автомобилей, который старается сбалансировать затраты на компоненты, изготовленные из различных материалов, с весом и аэродинамическим сопротивлением автомобиля, ваша функция - известная в оптимизации как «функция затрат» - будет намного сложнее, но принцип останется все тем же.

Алгоритмы машинного обучения часто пытаются выявить особенности наборов данных, что полезно для задач классификации - скажем, визуальные черты, характерные для автомобилей. Поиск наименьшего такого набора функций с наибольшей прогностической ценностью также является проблемой оптимизации.

«Большинство эффективных алгоритмов, которые применяются в настоящее время для решения задач оптимизации, работают на основе локального поиска. При этом на начальном этапе вам необходимо задать им какое-либо значение, являющееся предполагаемым решением. Далее алгоритмы определяют в каком направлении стоит двигаться, чтобы улучшить его, а затем осуществляют этот шаг», - говорит Мобэхи. - «Используя эту технику, они могут сходиться к значению под названием ‘локальный минимум’, который является точкой, которая в сравнении с соседними, лежащими в окрестности, находится ниже. Но найденное решение не будет являться глобальным минимумом: может существовать, которая находится намного ниже, но дальше».

Однако локальный минимум гарантированно будет глобальным, если функция - выпуклая вниз. Функция f(x) = x 2 выпуклая, так как описывает параболу с центром в начале координат. Функция f(x) = sin х - нет, так как описывает синусоиду, которая колеблется вверх и вниз.

Сглаживание

Метод Мобэхи и Фишера пытается найти выпуклую аппроксимацию задачи оптимизации, используя технику, называемую сглаживание (фильтром) Гаусса. Сглаживание Гаусса преобразует функцию затрат в зависимую функцию, которая дает не значение, описывающее функцию стоимости, а взвешенное среднее всех ближайших значений. Это позволяет сглаживать резкие спады или подъемы на графике функции затрат.

Веса, присвоенные близлежащим значениям, определяются функцией Гаусса или нормальным распределением - колоколообразной кривой, знакомой из статистики. Близлежащие значения рассчитываются преимущественно по средним, а не отдаленным значениям.

Ширина гауссовой функции определяется одним параметром. Мобэхи и Фишер начали с очень широкого гауссиана (Gaussian) , который при определенных условиях дает выпуклую функцию. Затем они постепенно уменьшали ширину гауссиана, создавая серию промежуточных задач. На каждом этапе они используют решение последней задачи для инициализации поиска решения последующей. К тому времени, когда ширина распределения сократилась до нуля, они восстановили первоначальную функцию затрат, так как каждое значение представляло собой просто среднее значение.

«Метод продолжения оптимизации на самом деле широко используется в практике, в компьютерном зрении, для решения проблемы выравнивания, отслеживания и во многих других задачах, но сам он не очень понятный», - говорит Джон Райт (John Wright), доцент кафедры электротехники в Колумбийском университете. - «Самое интересное в работе Хоссейна в целом, и этой статье, в частности, в том, что он действительно копается в этом методе и пытается узнать, что можно сказать о нем с точки зрения аналитики».

«Практическая польза состоит в том, что может быть любое число различных способов, которыми вы могли бы пойти при выполнении сглаживания или попытке осуществить «грубо-точную» оптимизацию», - добавляет Райт. - «Но если вы заранее знаете о правильном пути, то вам не нужно тратить много времени на неверные методы. У вас уже есть рецепт, так зачем искать что-то иное?»

Введение

В настоящее время все более актуальными становятся задачи оптимизации, поиска, реализации распределенных и (или) параллельных систем. Многие из них легко реализуемы простыми классическими методами, но некоторые задачи требуют к себе особого подхода. Эти задачи либо не разрешимы простыми методами, либо их решение потребует значительного времени и объема ресурсов. Для решения подобного рода задач существуют особые методы и алгоритмы.

Алгоритм культурного обмена стал признанной методикой оптимизации, которая может конкурировать с почти всеми известными методиками и, которая, благодаря своей гибкости, может превосходить множество классических методик.

Целью выполнения данной работы является описание алгоритма культурного обмена и проведение экспериментального исследования средней трудоемкости алгоритма случайного поиска версии 3.20.

К работе прилагаются три приложения А, Б и В. В них приведены данные эксперимента в виде таблиц, а также графики зависимости функции качества(Fэ) от генотипа(N).

В пункте 1 - определяется ряд задач, которые необходимо решить в курсовой работе, описываются начальные условия.

В пункте 2 - приведено описание алгоритма TS, а также примеры использования его для решения ряда проблем оптимизации.

В пункте 3 - проведено экспериментальное исследование средней трудоемкости алгоритма.

Постановка задачи

Дан алгоритм оптимизации функций рациональных переменных - алгоритм культурного обмена (КО). КО имеет следующие фиксированные параметры:

Способ кодирования решения в генотипе: двоичное представление параметра, точность представления параметра (аргумента) функции принимается, если не задана для функции специально, равной = 0.01;

Длина генотипа: определяется способом кодирования решения.

Размер популяции: 120 индивидуумов;

Доля родителей от размера популяции: 1.0, т.е. количество родителей, участвующих в кроссовере равно 120.

Кроссовер: равномерно распределенный 2-х точечный. Т.е. хромосома разбивается в двух точках, причем положения точек разбиения не фиксировано, а равномерно распределены по генотипу.

Мутация: применяется к каждому новому индивидууму, к каждому гену.

Отбор в следующее поколение: элитный отбор.

Необходимо провести экспериментальное исследование средней трудоемкости алгоритма

Алгоритм оптимизации

Описание алгоритма оптимизации

Для культурного алгоритма, основанного на эволюционном программировании для решения ограниченных проблем оптимизации.

Такой подход позволяет включение знаний об этой проблеме во время поиска. Такие знания включение позволяет значительному сокращению числа фитнес-функций оценки требуемых алгоритму.

Справочная информация культурной эволюции общества позволяет развиваться и адаптироваться к среде на более высокий уровень, чем биологической эволюции основаны Преимущества и недостатки на генетических наследование только коммуникационный протокол и с течением времени люди разработали уникальный набор возможностей, которые поддерживают алгоритм формирования, Кодирования и передачи общие черты культурной информации.

Культура есть система символически кодируется концептуальных методов явления, которые являются социально и исторически, передаваемых в рамках Преимущества и недостатки культурных алгоритмов вычислительных моделей культурной эволюции протокола и связи. Другие методы культурных алгоритмов эволюционных алгоритмов, которые поддерживают будущие направления дополнительного механизма для извлечения информации в ходе исполнения приложения алгоритма, избегая необходимости кодирования

Алгоритм уменьшает необходимость для незрелых людей тратить энергию в обход проб и ошибок итераций, как правило, требуется получить информацию об окружающей среде. Он позволяет передачу больше информации, чем любые недостатки индивидуального генома мая реально содержит коммуникационный протокол алгоритма и культуры населения, дает общие черты культурной информации может передаваться быстрее, чем генетические материалы. Стабильность - культура способна упорно за жизнь одного человека протоколов.

Культурные связи протокола взаимодействия между населением и убеждений пространстве культурного алгоритма - лучших людей из населения может обновить веру пространства алгоритмов. Связанные с помощью функции обновления техники знания категорий убеждений пространстве может повлиять на население путем изменения генома или действия отдельных лиц Преимущества и недостатки протокола и алгоритма общие черты

С эволюционной точки зрения культурного алгоритма в микроэволюционной перспективе - передаче поведение между индивидуумами в области народонаселения и с макроэволюционной точки зрения (формирование обобщенных Преимущества и убеждений на основе индивидуального опыта) Недостатки коммуникации каждый человек может быть описан: алгоритм набора признаков. Общие черты лица опыта прошлого и прогнозы относительно будущего коммуникационные протоколы или обобщенного описания своего опыта вложение.

Основные культурные алгоритма инициализировать народонаселения космической POP (т), а также справочную и инициализировать убеждений космической BLF и повторяется до тех пор, пока прекращение состояния достигнуто. Преимущества и недостатки выполнять действия отдельных лиц в POP (т); протокола и связи оценки каждого отдельного используя функции; Алгоритм выбирает лучших людей стать родителями; Общие черты создать новое поколение потомков путем мутации и кроссовер; Другие лучшие люди могут обновить BLF (т) - признание функции.

Двойного наследования (по крайней населения и уровня знаний) соответствующие знания по методам руководства эволюции населения англ. Поддерживает иерархическую структуру населения и убеждений. Преимущества и области знаний, отделяется от лиц Недостатки Сообщение поддерживает себя адаптации на различных уровнях протокола и алгоритма эволюции может происходить с разной скоростью на разных уровнях общие черты (В алгоритме развивается 10 раз быстрее, чем биологические коммуникационные протоколы поддерживает гибридные подходы к решению проблем вложении Другие методы вычислительной в рамках которой многие все будущие направления различных моделей культурные изменения могут быть выражены

Алгоритм может поддержать возникновение иерархических структур в обоих алгоритмов. Похожие убеждений и населения методам нахождения количество доменных знаний (например, сдерживается смежным методам оптимизации проблем сложных систем, в которых адаптация может происходить на различных уровнях Справочная информация и на различных курсов в области народонаселения и убеждений пространстве и знания в различных формах и должна быть мотивированным минусы, по-разному коммуникационный протокол и гибридных систем, которые требуется сочетание Алгоритм поиска и базы знаний, основанные общие черты Подходит Проблемы проблема требует решения многочисленных групп населения и многочисленных коммуникационных пространств убеждений и их взаимодействие протоколов вложении Другие иерархически структурированной среде, где проблема Методы иерархическую структуру населения и знание элементов

Признание Функция культуры Алгоритм - все люди используются для обновления ограничений знаний культурныхх алгоритмов. Похожие рейтинг 20% (видный человек) являются использование используются методы обновления от нормативного знания использовать помехи для корректировки правил активных клеток. Недостатки Сообщение осуществимо протокола и невозможно Алгоритм полу-возможные общие черты Подходит Проблемы адаптации иерархическая структура, основанная на вышеупомянутое сообщение Протоколы сплит полу-возможно клеток на более мелкие ячейки, когда число вложении Другие лица становится слишком высокой Будущие направления слиянии невозможно детей в первоначальном родителей;

Похожие методы руководства миграции людей из менее продуктивными клеток, чтобы те, которые являются более продуктивными-это возможно и практически осуществимо клеток с видными Преимущества и недостатки отдельных лиц и коммуникационный протокол свидетельствует миграция из обычной клетки для выдающихся Алгоритм клеток общие черты как мало видных клеток коммуникационные протоколы перемещения лиц в невозможно клетки для них осуществимо вложении перехода от обычных людей на видных клеток

Население культурных моделей, используемых алгоритмов - генетических алгоритмов. Похожие методы англ. Недостатки Сообщение Эволюция стратегий (Робот играет в футбол) и Протокол Алгоритм Memetic моделей (Развитие сельского хозяйства) Общие черты агент на основе моделирования (Эволюция состояния окружающей среды Подходит Проблемы коммуникации воздействия)

Вариации культуры Алгоритм - генетических алгоритмов. Похожие методы англ. и космической руководствуясь генетические алгоритмы (VGA)

Микро-эволюционный процесс моделируетсяс использованием генетических алгоритмов.Недостатки протокола и убеждений пространство представляет схемы и обобщения отдельных хромосом, основанных на их поведении. Подходят будущие направления культуры Алгоритм - генетических алгоритмов. Похожие методы нескольких представлениях и народонаселения Преимущества и недостатки убеждений космической эволюции протокола Проектирование и культурных систем Алгоритм общие черты и структуры и решении проблем окружающей среды.

Использование доменов информации для повышения эффективности алгоритмов. Похожие эволюционного алгоритма. , коммуникационный протокол и разнообразию и изменениям в окружающей среде в популяциях.

Рисунок 1.Алгоритм культурного обмена.

В задачах линейного и нелинейного программирования оптимизируемый процесс считается статическим, т. е. независимым от времени. Оптимальное решение в таких задачах находится за один этап планирования. Такие задачи называются одноэтапными.

В задачах динамического программирования оптимизационный процесс зависит от времени (от нескольких этапов времени). Поэтому оптимальное решение находится последовательно для каждого этапа, обеспечивая при этом оптимальные решения всего процесса в целом. Задачи динамического программирования называют многоэтапными.

Управлением в динамическом программировании называется совокупность решений, принимаемых на каждом этапе с целью влияния на ход всего процесса. В прикладном плане задачи динамического программирования - это на 90 % задачи планирования: объемов производства, поставок сырья, величины финансирования и т. д. Например, совокупность решений, принимаемых в начале календарного года по обеспечению сырьем, замене оборудования, размерам инвестиций - это все этапное планирование, которое должно обеспечить генеральную задачу - максимальный выпуск продукции в конце года. И простыми мерами: использование оборудования на полную мощность, максимально возможные инвестиции - генеральную задачу не решить, т. к. начинают влиять другие факторы, например износ оборудования. В таком случае необходимо поэтапное планирование, т. е. замена оборудования при его износе на определенных этапах. Таким образом, выпуск продукции - многоэтапная задача, каждый из этапов которой осуществляет влияние на конкретную цель.

На рис. 4.5, а приведена область возможных состояний системы для одномерного случая, на рис. 4.5, б, в - для двумерного и трехмерного случая соответственно.

Область возможных состояний системы - это совокупность состояний, в которые может переходить система. Например, в случае а - это ось ОЛ" или ее участок, а управление - это закон движения точки из состояния х° х к.

Рис. 4.5.

Постановка задачи

Пусть состояние некоторого объекта описывается вектором фазового пространства х - (х, х 2 ,..., х я) е R„. Будем считать, что процесс является /V-шаговым, т. е. его эволюция происходит за N шагов по схеме

Переход между состояниями на к -м шаге осуществляется в соответствии с уравнением состояния

где й к е R"" - ш-мерный вектор управления на к -м шаге; J" k (x,Ti) - «-мерная векторная функция аргументов х , й.

Распишем компоненты вектора х к - /Дх*~", х*“",х к ~", и к, и к, н*). Таким образом, предполагается, что в результате к-vo шага система переходит в состояние х к, которое определяется только начальным состоянием этого шага х к ~" и выбранным на нем вектором управления й к и не зависит от предыстории процесса х°, х 1П, х (*~ 2) , н"’,..., н (*~ |) .


Показателем эффективности к -го шага является заданная числовая характеристика (целевая функция) этого шага:

А эффективность всего процесса складывается из этапных целевых функций

На фазовые траектории х и управления й наложены ограничения:

Множества Х к а U к заданы в пространствах R", R"".

Кроме того, заданы начальные и конечные условия:

Часто множества Х 0 и X N содержат по одной точке, определяющей начало и конец фазовой траектории.

Общую задачу многошаговой оптимизации можно записать следующим образом:

Требуется среди всех управлений ueU выбрать такое й" =(«*", м’ Л), для которого целевая функция (4.18) принимает экстремальное значение (минимальное или максимальное).

Пример 1. Сформулировать следующую оптимизационную задачу в виде многошаговой задачи оптимизации.

С помощью iV-ступенчатой ракеты с заданной стартовой массой М в космос выводится межпланетная станция массой т. За время работы каждая ступень ракеты получает добавочную скорость

A V = F(y,z),

где у - масса, разгоняемая этой ступенью; z - масса самой ступени.

Найти такое распределение массы ракеты (М) между ее ступенями, при котором конечная скорость ракеты максимальна.

Пусть й к (k = ,N ) - масса к -й ступени, начиная от межпланетной станции, т. е. на старте работает ступень массой г/ Л, в конце - и".

Обозначим х к (к = О...Л0 сумму масс межпланетной станции и к ступеней, примыкающих к ней.

Теория многошаговых оптимизационных задач разработана в 50-х годах американским математиком Р. Веллманом. Метод решения такой задачи носит название метода динамического протраммирования и основан он на принципе оптимальности Веллмана.

Оптимальная траектория обладает тем свойством, что каждая се завершающая часть, начинающаяся с к -го шага (& = 1, N - 1), является оптимальной для остающихся шагов процесса. Другими словами, на каждом этапе решения, учитывая развитие всего процесса, оптимизируют только один шаг. И таким образом, при принятии решения учитывают будущее. Однако в каждом процессе есть последний к -й шаг, который нс зависит от будущего. Поэтому на этом шаге управление позволяет получить максимальный эффект. Спланировав к -й шаг, к нему присоединяют - 1), затем - 2) и т. д. Процесс динамического программирования как бы разворачивается от конца к началу.

Чтобы спланировать к -й шаг, надо знать состояние системы на (/: - 1) шаге. Если состояние на - 1) шаге неизвестно, то делают различные предположения о возможных состояниях системы на этом шаге. Для каждого предположения выбирают оптимальное управление на последнем к -м шаге. Такое оптимальное управление называют условно оптимальным.

Рассмотрим ^-шаговый процесс (рис. 4.6). Сделаем ряд предположений о возможных состояниях процесса на - 1) шаге. Обозначим эти состояния S k _i , S k _ ] 2 ,..., S k ^ r . На последнем найдем для каждого из этих состояний условно оптимальное управление и к, (x t _,), и к 2 (х А._,),..., и к г (х 4 _, г).

Таким образом, к -й шаг спланирован. Действительно, какое бы состояние система ни принимала на - 1) шаге, уже известно как следует поступить на &-м.

Аналогично поступаем на (к - 1) шаге, только условно оптимальные управления необходимо выбирать, учитывая уже выбранные условно-оптимальные на к -м шаге. В итоге, выполнив все переходы, получим координату х°.

Для первого шага предположений не делаем, т. к. значение х° задано, далее находим оптимальные управления, учитывая все уже найденные. Проходя от х°к х*, получаем искомое оптимальное управление для всего процесса. Используя принцип оптимальности, найдем необходимые условия, которым должна удовлетворять оптимально управляемая последовательность и,..., м v _,.


Рис. 4.6.

Рассмотрим конечный участок траектории - интервал . И допустим, что для интервалов найдены оптимальные управления и оптимальная траектория, включая х к. Остается найти управление н А,...,м у на конечном участке. Из принципа оптимальности следует, что {w A ,...,w v } определяется только состоянием х к _ { и целью поиска экстремума, которая для [ к , N] имеет вид

при х-х ч, й = и ч целевая функция Z k имеет оптимальное значение (максимум или минимум). Обозначим его

Аналогично

Из принципа оптимальности можно записать следующие рекуррентные выражения:


Соотношения (4.19)-(4.20) позволяют последовательно найти функции Веллмана.

В„ (х Л -|), B N _ { {x N - 2),..., 5, (х°) - уравнения Веллмана.

Находя В к (х к ~"), к = N, N -мы одновременно находим управления ы,*(дг*’ 1), которые называются условно-оптимальными управлениями, а процесс их нахождения - условной оптимизацией.

Управление м.*(х*~"), найденное из уравнения (4.20), удовлетворяет принципу оптимальности: т. е. в зависимости от начального состояния х к ~" управления и к учитывает оптимизацию не только к-го шага, но и следующих за ним (N - к) шагов.

Итак, в результате условной оптимизации находят В к (х к ~") и и к (х к ~"), к = N, N- 1,..., 1. Теперь можно осуществить безусловную оптимизацию задачи (4.18), т. е. найти искомые оптимальные управления и = (ии ?) и оптимальную фазовую траекторию х = (х,°,..., х? ).

Т. к. значение B t (x°) равно оптимальному значению целевой функции всех N шагов, то

если х 0 - первая точка траектории, то х,° = х°.


Алгоритм метода динамического программирования

Этан I. Условная оптимизация.

Шаг 1. Находим условно-оптимальные управления г/*(х ЛЧ) и функцию Веллмана B N (x N ~") в соответствии с соотношением (4.19).

Шаг 2. Находим ^"""(х* -2) и /? v _,(x v ~ 2).

Шаг N. Находим м"(х°)и 5,(х°).

Этап II. Безусловная оптимизация.

Шаг 0. Находим х.° в соответствии с (4.21).

Шаг 1. Находим и 1 . и х по формулам (4.22).

Шаг N. Находим w. v и x. v .

Итак, метод динамического программирования даст эффективный алгоритм оптимизации решений. Алгоритм основан на решении рекуррентных уравнений Веллмана. При этом однократное решение сложной задачи заменяется многократным решением более простой. Все же процедура динамического программирования слишком громоздка, т. к. на каждом шаге решения необходимо запоминать В к (х*_,), и* (х*_,).

И хотя метод динамического программирования существенно упрощает исходные задачи, однако непосредственное его применение, как правило, сопряжено с громоздкими вычислениями. Для преодоления этих трудностей существуют приближённые методы динамического программирования.

Этап I. Условная оптимизация.

Найдем уравнения Веллмана по формуле (4.19).

Шаг 1. Я,(х 2) = шах

Диапазон и 3 найден из следующих соображений: так как

Учитывая, что х г е, получаем диапазон изменения м 3:

Функция - при всех значениях х является возрастающей аргу-

мента и поэтому ее максимум

Шаг 2. С учетом формулы (4.20)

Находим стационарную точку из условия -^-:

ШагЗ. B,(x°)= max (2 , -1 + -).