Космические ракеты. Космические ракеты (доклад). Силы, действующие на ракету в полёте

23 ноября 1972 года был произведён ставший последним четвёртый пуск сверхтяжелой ракеты-носителя Н-1. Все четыре запуска были неуспешными и через четыре года работы по Н-1 были свернуты. Стартовая масса этой ракеты составляла 2 735 т. Мы решили рассказать о пяти самых тяжелых космических ракетах в мире.

Советская ракета-носитель сверхтяжёлого класса H-1 разрабатывалась с середины 1960-х годов в ОКБ-1 под руководством Сергея Королёва. Масса ракеты составляла 2735 тонн. Первоначально она предназначалась для вывода на околоземную орбиту тяжёлой орбитальной станции с перспективой обеспечения сборки тяжелого межпланетного корабля для полётов к Венере и Марсу. Поскольку СССР включился в «лунную гонку» с США программа Н1 была форсирована и переориентирована для полета на Луну.

Однако все четыре испытательных запуска Н-1 были неуспешными на этапе работы первой ступени. В 1974 году советская лунно-посадочная пилотируемая лунная программа была фактически закрыта до достижения целевого результата, а в 1976 году также официально закрыты и работы по Н-1.

«Сатурн-5»

Американская ракета-носитель «Сатурн-5» остаётся самой грузоподъемной, наиболее мощной, самой тяжелой (2965 тонн) и самой большой из существующих ракет, выводивших полезную нагрузку на орбиту. Она была создана конструктором ракетной техники Вернером фон Брауном. Ракета могла вывести на низкую околоземную орбиту 141 т и на траекторию к Луне 47 т полезного груза.

«Сатурн-5» использовалась для реализации программы американских лунных миссий, в том числе с её помощью была осуществлена первая высадка человека на Луну 20 июля 1969 года, а также для выведения на околоземную орбиту орбитальной станции «Скайлэб».

«Энергия»

«Энергия» - советская ракета-носитель сверхтяжёлого класса (2400 т), разработанная НПО «Энергия». Она являлась одной из самых мощных ракет в мире.

Была создана как универсальная перспективная ракета для выполнения различных задач: носитель для МТКК «Буран», носитель для обеспечения пилотируемых и автоматических экспедиций на Луну и Марс, для запуска орбитальных станций нового поколения и т.д. Первый запуск ракеты состоялся в 1987 году, последний - в 1988 году.

«Ариан 5»

«Ариан 5» - европейская ракета-носитель семейства «Ариан», предназначенная для выведения полезной нагрузки на низкую опорную орбиту (НОО) или геопереходную орбиту (ГПО). Масса ракеты по сравнению с советскими и американскими не столь велика - 777 т. Производится Европейским космическим агентством. РН «Ариан 5» является основной ракетой-носителем ЕКА и останется таковой по крайней мере до 2015 года. За период 1995–2007 гг. было произведено 43 запуска, из которых 39 успешных.

«Протон»

«Протон» (УР-500, «Протон-К», «Протон-М») - ракета-носитель тяжёлого класса (705 т), предназначенная для выведения автоматических космических аппаратов на орбиту Земли и далее в космическое пространство. Разработана в 1961–1967 годах в подразделении ОКБ-23 (ныне ГКНПЦ им. М. В. Хруничева).

«Протон» явилась средством выведения всех советских и российских орбитальных станций «Салют-ДОС» и «Алмаз», модулей станций «Мир» и МКС, планировавшихся пилотируемых космических кораблей ТКС и Л-1/«Зонд» (советской лунно-облётной программы), а также тяжёлых ИСЗ различного назначения и межпланетных станций.

До космической ракеты-носителя .

В военной терминологии слово ракета обозначает класс, как правило, беспилотных летательных аппаратов , применяемых для поражения удалённых целей и использующих для полёта принцип реактивного движения. В связи с разнообразным применением ракет в вооружённых силах , различными родами войск , образовался широкий класс различных типов ракетного оружия .

История [ | ]

Существует предположение, что некое подобие ракеты было сконструировано ещё в Древней Греции Аликсом Сином. Речь идёт о летающем деревянном голубе Архита Тарентского (др.-греч. Ἀρχύτας ὁ Ταραντίνος ). Его изобретение упоминается в произведении древнеримского писателя Авла Геллия (лат. Aulus Gellius ) «Аттические ночи» (лат. «Noctes Atticae» ). В книге говорится, что птица поднималась с помощью разновесов и приводилась в движение дуновением спрятанного и скрытого воздуха. До сих пор не установлено, приводился ли голубь в движение действием воздуха, находящегося у него внутри, или воздуха, который дул на него снаружи. Остаётся неясным, как Архит мог получить сжатый воздух внутри голубя. В античной традиции пневматики нет аналогов такого использования сжатого воздуха.

Истоки возникновения ракет большинство историков относят ко временам китайской династии Хань (206 год до н. э. - год н. э.), к открытию пороха и началу его использования для фейерверков и развлечений. Сила, возникающая при взрыве порохового заряда, была достаточной, чтобы двигать различные предметы. Позже этот принцип нашёл применение при создании первых пушек и мушкетов . Снаряды порохового оружия могли летать на далёкие расстояния, однако не были ракетами, поскольку не имели собственных запасов топлива . Тем не менее, именно изобретение пороха стало основной предпосылкой возникновения настоящих ракет. Описание летающих «огненных стрел», применявшихся китайцами, показывает, что эти стрелы были ракетами. К ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Такие стрелы применялись в ряде случаев при осаде укреплений, против судов, кавалерии.

Известно, что ракеты применялись русскими казаками, начиная с XVI -XVII веков. Многоступенчатые ракеты были описаны в XVI веке Конрадом Хаасом и в XVII веке литовским военным инженером Казимиром Семеновичем .

Двухступенчатая ракета XVI века

Ракетная артиллерия широко применялась вплоть до конца XIX века. Ракеты были более лёгкими и подвижными, чем артиллерийские орудия. Точность и кучность ведения огня ракетами была небольшой, но сопоставимой с артиллерийскими орудиями того времени. Однако во второй половине XIX века появились нарезные артиллерийские орудия, обеспечивающие большую точность и кучность огня и ракетная артиллерия была всюду снята с вооружения. Сохранились лишь фейерверочные и сигнальные ракеты .

В конце XIX века стали предприниматься попытки математически объяснить реактивное движение и создать более эффективное ракетное вооружение. В России одним из первых этим вопросом занялся Николай Тихомиров в 1894 году.

Теорией реактивного движения занимался Константин Циолковский . Он выдвигал идею об использовании ракет для космических полетов и утверждал, что наиболее эффективным топливом для них было бы сочетание жидких кислорода и водорода . Ракету для межпланетных сообщений он спроектировал в 1903 году.

17 августа 1933 года была запущена ракета «ГИРД 9», которую можно считать первой советской зенитной ракетой. Она достигла высоты 1,5 км. А следующая ракета «ГИРД 10», запущенная 25 ноября 1933 года, достигла уже высоты в 5 км.

В 1957 году в СССР под руководством Сергея Павловича Королёва как средство доставки ядерного оружия была создана первая в мире межконтинентальная баллистическая ракета Р-7 , которая в том же году была использована для запуска первого в мире искусственного спутника Земли . Так началось применение ракет для космических полётов.

Ракетные двигатели [ | ]

Большинство современных ракет оснащаются химическими ракетными двигателями . Подобный двигатель может использовать твёрдое, жидкое или гибридное ракетное топливо . Химическая реакция между топливом и окислителем начинается в камере сгорания , получающиеся в результате горячие газы образуют истекающую реактивную струю, ускоряются в реактивном сопле (соплах) и выбрасываются из ракеты. Ускорение этих газов в двигателе создаёт тягу - толкающую силу, заставляющую ракету двигаться. Принцип реактивного движения описывается третьим законом Ньютона .

Однако не всегда для движения ракет используются химические реакции. В паровых ракетах перегретая вода, вытекающая через сопло, превращается в высокоскоростную паровую струю, служащую движителем . Эффективность паровых ракет относительно низка, однако это окупается их простотой и безопасностью, а также дешевизной и доступностью воды. Работа небольшой паровой ракеты в 2004 году была проверена в космосе на борту спутника UK-DMC. Существуют проекты использования паровых ракет для межпланетной транспортировки грузов, с нагревом воды за счёт ядерной или солнечной энергии.

Ракеты наподобие паровой, в которых нагрев рабочего тела происходит вне рабочей зоны двигателя, иногда описывают как системы с двигателями внешнего сгорания . Другими примерами ракетных двигателей внешнего сгорания может служить большинство конструкций ядерных ракетных двигателей .

Силы, действующие на ракету в полёте [ | ]

Наука, исследующая силы, действующие на ракеты или другие космические аппараты, называется астродинамикой .

Основные силы, действующие на ракету в полёте:

Применение [ | ]

Военное дело [ | ]

Ракеты используются как способ доставки к цели . Небольшие размеры и высокая скорость перемещения ракет обеспечивает им малую. Так как для управления боевой ракетой не нужен пилот , она может нести заряды большой разрушительной силы, в том числе ядерные. Современные системы самонаведения и навигации дают ракетам большую точность и манёвренность.

Существует множество видов боевых ракет, отличающихся дальностью полёта, а также местом старта и местом поражения цели («земля» - «воздух»). Для борьбы с боевыми ракетами используются системы противоракетной обороны .

Ракетные метеорологические исследования предшествовали спутниковым, поэтому на первых метеоспутниках стояли те же приборы, что и на метеорологических ракетах. В первый раз ракета была запущена с целью изучить параметры воздушной среды 11 апреля 1937 года , но регулярные ракетные запуски начались с 1950-х годов, когда были созданы серии специализированных научных ракет. В Советском Союзе это были метеорологические ракеты МР-1 , М-100 , МР-12 , ММР-06 и геофизические типа «Вертикаль ». В современной России в сентябре 2007 года использовались ракеты М-100Б . За пределами России применялись ракеты «Аэроби », «Black Brant », «».

Существуют также специальные противоградовые ракеты, предназначенные для защиты сельскохозяйственных угодий от градовых облаков. Они несут в головной части реагент (обычно йодистое серебро), который при взрыве распыляется и приводит к образованию дождевых облаков вместо градовых. Высота полета ограничивается 6-12 км.

Космонавтика [ | ]

Создателем космонавтики как науки считается Герман Оберт , впервые доказавший физическую возможность человеческого организма выносить возникающие при запуске ракеты перегрузки, а также состояние невесомости.

Чаще всего в качестве ракет-носителей используются многоступенчатые баллистические ракеты. Старт ракеты-носителя происходит с Земли, или, в случае долгого полёта, с орбиты

Двухступенчатая ракета космического назначения легкого класса "Космос-3М" (11К65М) предназначена для выведения космических аппаратов на эллиптические и околокруговые орбиты высотой до 1700 км с наклонениями плоскости орбиты 66 o , 74 o и 83 o . Используется для запусков низкоорбитальных навигационных и связных спутников, космических аппаратов международной системы поиска КОСПАС-SARSAT и военного назначения. Ранее она использовалась для запусков геодезических космических аппаратов первого поколения и искусственных спутников Земли по программе "Интеркосмос".

Создана под руководством М.К. Янгеля в начале шестидесятых годов в Особом конструкторском бюро №586 (ныне - ГКБ "Южное", г. Днепропетровск) на базе одноступенчатой баллистической ракеты средней дальности Р-14У. Была передана для изготовления и дальнейшего конструкторского сопровождения в производственное объединение "Полет" (г. Омск).

Ракета-носитель состоит из двух ступеней, соединенных по схеме "тандем". На внешней поверхности второй ступени установлены баки системы малой тяги. Двигательные установки обеих ступеней работают на самовоспламеняющейся топливной паре: окислитель - 27-процентный раствор четырехокиси азота в азотной кислоте ; горючее - несимметричный диметилгидразин . Запуск двигательной установки первой ступени происходит по "пушечной" схеме, когда компоненты топлива начинают поступать в камеры сгорания под рабочим давлением, и двигатель за доли секунды выходит на основной режим. Такая схема запуска сокращает непроизводительные достартовые расходы ракетного топлива и увеличивает эффективность его использования в ходе полета ракеты-носителя. Двигательная установка второй ступени может до двух раз выходить на основной режим, между ними полет второй ступени происходит при работе двигателя в режиме малой тяги. Возможность перевода двигателя на режим пониженной тяги позволяет осуществлять одновременное выведение группы космических аппаратов на разные по высоте орбиты, лежащие в одной плоскости. Групповое выведение восьми искусственных спутников Земли при одном пуске ракеты-носителя "Космос-3М" регулярно проводится на космодроме "Плесецк" с апреля 1970 года. Стартовая масса ракеты-носителя "Космос-3М" составляет около 109 тонн, длина - 32,4 метра. На низкую круговую приполярную орбиту высотой 250 км она может выводить до 1400 кг полезного груза, на круговые орбиты высотой 1000 км - до 950 кг. Первый пуск ракеты-носителя "Космос-3М" с космодрома "Плесецк" состоялся 15 мая 1967 года ("Космос-158"). По состоянию на 1 января 1999 года проведено 397 пусков, из них 373 полностью успешных. Частота успешных пусков составила 93,95%. Выведено на орбиты спутников Земли 707 космических аппаратов, из них 6 субспутников.

С 15 апреля 1992 года пуски РКН "Космос-3М" проводятся с учетом реализации мер по защите окружающей среды от проливов ракетного топлива, которое остается в отработавших первых ступенях. Количество топливо, остающееся в баках ступени уменьшено на 15%.

Основные характеристики:

Тип носителя жидкостная двухступенчатая ракета
Компоненты топлива:
окислитель 27% раствор четырехокиси азота в азотной кислоте (АК-27И)
горючее несимметричный диметилгидразин (НДМГ)
Система управления автономная, инерциальная
Условия пуска:
температура воздуха от -40 o С до +50 o С
скорость ветра у земли не более 20 м/с
Длина, м 32.4
Диаметр, м 2.4
Максимальный диаметр, м 2.8
Стартовая масса, тонн до 109
Масса конструкции РКН, тонн 7.2
Максимальная масса КА, кг:
H кр = 250 км 1350
H кр = 1000 км 950
Масса заправляемого топлива, тонн:
окислитель 71.0
горючее 29.5
Тяга двигательной установки, тонн
1 ступень (у земли) 151.1
2 ступень (в пустоте) 16.0

Баллистические данные

Выведение спутников на заданные орбиты осуществляется по схеме с двукратным включением двигательной установки 2 ступени. После первого включения полет 2 ступени происходит по переходной траектории, в расчетной точке которой вторым включением двигательной установки обеспечивается дополнительное приращение скорости, необходимое для выведения КА на требуемую орбиту.

Циклограмма полета РКН с КА типа "Надежда" и "Цикада"
Наименование команд Время, час:мин:сек Траектория полета
Высота, км Скорость, м/с Удаление от СК, км
Старт РКН 0:00:00 0 0 0
Предварительная команда на выключение ДУ 1 ступени (ПК) 0:02:10 58 2536 77
Механическое разделение 1 и 2 ступеней 0:02:12 59 2584 80
Сброс створок головного обтекателя (СГО) 0:02:27 76 2568 114
Предварительная команда на выключение ДУ 2 ступени (ПК1) 0:07:57 150 7907 1488
Главная команда на выключение ДУ 2 ступени (ГК1) 0:08:03 150 7937 1535
Команда на разгон гироинтеграторов (ПВ) 0:52:19 930 7170 20461
Команда на повторный запуск ДУ2 ступени (ВК) 1:02:19 1003 7116 24055
Предварительная команда на выключение ДУ 2 ступени (ПК2) 1:02:24 1003 7252 24085
Главная команда на выключение ДУ 2 ступени (ГК2) 1:02:30 1003 7287 24122
Отделение КА (ОК) 1:02:50 1003 7292 24244

Примечание. Повторный запуск ДУ 2 ступени и отделение космического аппарата происходят над Антарктидой (берег Принцессы Марты).

Слово космос является синонимом слова Вселенная. Часто космос разделяют несколько условно на ближний, который возможно исследовать в настоящее время при помощи искусственных спутников Земли, космических аппаратов, межпланетных станций и других средств, и дальний - все остальное, несоизмеримо большее. По сути дела, под ближним космосом понимается Солнечная система, а под дальним - необъятные просторы звезд и галактик.

Буквальный смысл слова «космонавтика», представляющего собой сочетание двух греческих слов - «плавание во Вселенной». В обычном употреблении это слово означает совокупность различных отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и небесных тел с помощью космических летательных аппаратов - искусственных спутников, автоматических станций различного назначения, пилотируемых космических кораблей.

Космонавтика, или, как ее иногда называют, астронавтика, объединяет в себе полеты в космическое пространство, совокупность отраслей науки и техники, служащих для исследования и использования космического пространства в интересах нужд человечества с использованием различных космических средств. Началом космической эры человечества считается 4 октября 1957 г. - дата, когда в Советском Союзе был запущен первый искусственный спутник Земли.

Теория космических полетов, представлявших давнюю мечту человечества, превратилась в науку в результате основополагающих трудов великого русского ученого Константина Эдуардовича Циолковского. Им были изучены основные принципы баллистики ракет, предложена схема жидкостного ракетного двигателя, установлены закономерности, определяющие реактивную силу двигателя. Так же были предложены схемы космических кораблей и даны широко вошедшие сейчас в практику принципы конструирования ракет. В течение продолжительного времени, до того момента, когда идеи, формулы и чертежи энтузиастов и ученых стали в конструкторских бюро и в цехах заводов превращаться в объекты, изготовленные «в металле», теоретический фундамент космонавтики покоился на трех китах: 1) теории движения космических аппаратов; 2) ракетной технике; 3) совокупности астрономических знаний о Вселенной. Впоследствии в недрах космонавтики зародился широкий цикл новых научно-технических дисциплин, таких, как теория систем управления космическими объектами, космическая навигация, теория космических систем связи и передачи информации, космическая биология и медицина и т. д. Сейчас, когда нам трудно представить себе космонавтику без этих дисциплин, полезно вспомнить о том, что теоретические основы космонавтики закладывались К. Э. Циолковским в то время, когда производились лишь первые опыты над использованием радиоволн и радио не могло считаться средством связи в космосе.

В течение многих лет в качестве средства связи всерьез рассматривалась сигнализация с помощью лучей солнечного света, отражаемых в сторону Земли зеркалами, находящимися на борту межпланетного корабля. Сейчас, когда мы привыкли не удивляться ни прямому телевизионному репортажу с поверхности Луны, ни полученным по радио фотографиям, сделанным вблизи Юпитера или на поверхности Венеры, в это трудно поверить. Поэтому можно утверждать, что теория космической связи, несмотря на всю свою важность, не является все же главным звеном в цепи космических дисциплин. Таким главным звеном служит теория движения космических объектов. Именно ее можно считать теорией космических полетов. Специалисты, занимающиеся этой наукой, сами называют ее по-разному: прикладная небесная механика, небесная баллистика, космическая баллистика, космодинамика, механика космического полета, теория движения искусственных небесных тел. Все эти названия имеют один и тот же смысл, точно выражаемый последним термином. Космодинамика, таким образом, является частью небесной механики - науки, изучающей движение любых небесных тел, как естественных (звезды, Солнце, планеты, их спутники, кометы, метеорные тела, космическая пыль), так и искусственных (автоматические космические аппараты и пилотируемые корабли). Но есть нечто, выделяющее космодинамику из небесной механики. Родившаяся в лоне небесной механики космодинамика пользуется ее методами, но не умещается в ее традиционных рамках.

Существенное отличие прикладной небесной механики от классической заключается в том, что вторая не занимается и не может заниматься выбором орбит небесных тел, в то время как первая занимается отбором из огромного числа возможных траекторий достижения того или иного небесного тела определенной траектории, которая учитывает многочисленные, зачастую противоречивые требования. Главное требование - минимальность скорости, до которой разгоняется космический аппарат на начальном активном участке полета и соответственно минимальность массы ракеты-носителя или орбитального разгонного блока (при старте с околоземной орбиты). Это обеспечивает максимальную полезную нагрузку и, следовательно, наибольшую научную эффективность полета. Учитываются также требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете), условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п. Космодинамика предоставляет в распоряжение проектировщиков космической операции методы оптимального перехода с одной орбиты на другую, способы исправления траектории. В поле ее зрения находится неведомое классической небесной механике орбитальное маневрирование. Космодинамика представляет собой фундамент общей теории космического полета (подобно тому как аэродинамика представляет собой фундамент теории полета в атмосфере самолетов, вертолетов, дирижаблей и других летательных аппаратов). Эту свою роль космодинамика делит с ракетодинамикой - наукой о движении ракет. Обе науки, тесно переплетаясь, лежат в основе космической техники. Обе они являются разделами теоретической механики, которая сама представляет собой обособившийся раздел физики. Будучи точной наукой, космодинамика использует математические методы исследования и требует логически стройной системы изложения. Недаром основы небесной механики были разработаны после великих открытий Коперника, Галилея и Кеплера именно теми учеными, которые внесли величайший вклад в развитие математики и механики. Это были Ньютон, Эйлер, Клеро, Даламбер, Лагранж, Лаплас. И в настоящее время математика помогает решению задач небесной баллистики и в свою очередь получает толчок в своем развитии благодаря тем задачам, которые космодинамика перед ней ставит.

Классическая небесная механика была чисто теоретической наукой. Ее выводы находили неизменное подтверждение в данных астрономических наблюдений. Космодинамика привнесла в небесную механику эксперимент, и небесная механика впервые превратилась в экспериментальную науку, подобную в этом отношении, скажем, такому разделу механики, как аэродинамика. На смену поневоле пассивному характеру классической небесной механики пришел активный, наступательный дух небесной баллистики. Каждое новое достижение космонавтики - это вместе с тем свидетельство эффективности и точности методов космодинамики. Космодинамика делится на две части: теорию движения центра масс космического аппарата (теорию космических траекторий) и теорию движения космического аппарата относительно центра масс (теорию «вращательного движения»).

Ракетные двигатели

Основным и почти единственным средством передвижения в мировом пространстве является ракета, которая для этой цели была впервые предложена в 1903 г. К. Э. Циолковским. Законы ракетного движения представляют собой один из краеугольных камней теории космического полета.

Космонавтика обладает большим арсеналом ракетных двигательных систем, основанных на использовании различных видов энергии. Но во всех случаях ракетный двигатель осуществляет одну и ту же задачу: он тем или иным способом выбрасывает из ракеты некоторую массу, запас которой (так называемое рабочее тело) находится внутри ракеты. На выбрасываемую массу со стороны ракеты действует некоторая сила, и согласно третьему закону механики Ньютона - закону равенства действия и противодействия - такая же сила, но противоположно направленная, действует со стороны выбрасываемой массы на ракету. Эта последняя сила, приводящая ракету в движение, называется силой тяги. Интуитивно ясно, что сила тяги должна быть тем больше, чем большая масса в единицу времени выбрасывается из ракеты и чем больше скорость, которую удается сообщить выбрасываемой массе.

Простейшая схема устройства ракеты:

На данном этапе развития науки и техники существуют ракетные двигатели, основанные на разных принципах действия.

Термохимические ракетные двигатели.

Принцип действия термохимических (или просто химических) двигателей не сложен: в результате химической реакции (как правило, реакции горения) выделяется большое количество тепла и нагретые до высокой температуры продукты реакции, стремительно расширяясь, с большой скоростью истечения выбрасываются из ракеты. Химические двигатели относятся к более широкому классу тепловых (теплообменных) двигателей, в которых истечение рабочего тела осуществляется в результате его расширения посредством нагревания. Для таких двигателей скорость истечения в основном зависит от температуры расширяющихся газов и от их среднего молекулярного веса: чем больше температура и чем меньше молекулярный вес, тем больше скорость истечения. По этому принципу работают жидкостные ракетные двигатели, ракетные двигатели твердого топлива, воздушно-реактивные двигатели.

Ядерные тепловые двигатели.

Принцип действия этих двигателей почти не отличается от принципа действия химических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «постороннего» тепла, выделяющегося при внутриядерной реакции. По этому принципу проектировались пульсирующие ядерные тепловые двигатели, ядерные тепловые двигатели на термоядерном синтезе, на радиоактивном распаде изотопов. Однако опасность радиоактивного заражения атмосферы и заключение договора о прекращении ядерных испытаний в атмосфере, в космосе и под водой, привели к прекращению финансирования упомянутых проектов.

Тепловые двигатели с внешним источником энергии.

Принцип их действия основан на получении энергии извне. По этому принципу проектируют гелиотермический двигатель, источником энергии которому служит Солнце. Концентрируемые с помощью зеркал солнечные лучи используются для непосредственного нагрева рабочего тела.

Электрические ракетные двигатели.

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Это и электротермические двигатели, электростатические (ионные) двигатели, электромагнитные (плазменные) двигатели, электрические двигатели с забором рабочего тела из верхних слоев атмосферы.

Космические ракеты

Современная космическая ракета представляет собой сложное сооружение, состоящее из сотен тысяч и миллионов деталей, каждая из которых играет предназначенную ей роль. Но с точки зрения механики разгона ракеты до необходимой скорости всю начальную массу ракеты можно разделить на две части: 1) масса рабочего тела и 2) конечная масса, остающаяся после выброса рабочего тела. Эту последнюю часто называют «сухой» массой, так как рабочее тело в большинстве случаев представляет собой жидкое топливо. «Сухая» масса (или, если угодно, масса «пустой», без рабочего тела, ракеты) состоит из массы конструкции и массы полезной нагрузки. Под конструкцией следует понимать не только несущую конструкцию ракеты, ее оболочку и т. п., но и двигательную систему со всеми ее агрегатами, систему управления, включающую органы управления, аппаратуру навигации и связи, и т. п.,- одним словом, все то, что обеспечивает нормальный полет ракеты. Полезная нагрузка состоит из научной аппаратуры, радиотелеметрической системы, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения космического корабля и т. п. Полезная нагрузка - это то, без чего ракета может совершить нормальный полет.

Набору скорости ракеты благоприятствует то, что по мере истечения рабочего тела масса ракеты уменьшается, благодаря чему при неизменной тяге непрерывно растет реактивное ускорение. Но, к сожалению, ракета состоит не из одного лишь рабочего тела. По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету мертвым грузом, затрудняя ее разгон. Целесообразно в некоторые моменты отделять эти части от ракеты. Построенная таким образом ракета называется составной. Часто составная ракета состоит из самостоятельных ракет- ступеней (благодаря этому из отдельных ступеней можно составлять различные ракетные комплексы), соединенных последовательно. Но возможно и параллельное соединение ступеней, бок о бок. Наконец, существуют проекты составных ракет, в которых последняя ступень входит внутрь предыдущей, та заключена внутри предшествующей и т. д.; при этом ступени имеют общий двигатель и уже не являются самостоятельными ракетами. Существенный недостаток последней схемы заключается в том, что после отделения отработавшей ступени резко возрастает реактивное ускорение, так как двигатель остался прежним, тяга поэтому не изменилась, а разгоняемая масса ракеты резко уменьшилась. Это затрудняет точность наведения ракеты и предъявляет повышенные требования к прочности конструкции. При последовательном же соединении ступеней вновь включаемая ступень обладает меньшей тягой и ускорение не изменяется резким скачком. Пока работает первая ступень, мы можем рассматривать остальные ступени вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После отделения первой ступени начинает работать вторая ступень, которая вместе с последующими ступенями и истинной полезной нагрузкой образует самостоятельную ракету («первую субракету»). Для второй ступени все последующие ступени вместе с истинным полезным грузом играют роль собственной полезной нагрузки и т. д. Каждая субракета добавляет к уже имеющейся скорости собственную идеальную скорость, и в результате конечная идеальная скорость многоступенчатой ракеты складывается из суммы идеальных скоростей отдельных субракет.

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0%) стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счет того, что в полете ступень, выработавшая свое топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полета.

Варианты компоновки ракет. Слева направо:

  1. Одноступенчатая ракета.
  2. Двухступенчатая ракета с поперечным разделением.
  3. Двухступенчатая ракета с продольным разделением.
  4. Ракета с внешними топливными емкостями, отделяемыми после исчерпания топлива в них.

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.

При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема дает возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток ее заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для нее пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от двух до восьми), располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй, и работающих одновременно. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая таким образом суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двухступенчатой.

Существует и комбинированная схема разделения - продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода - отечественный носитель "Союз".

Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль Спейс Шаттл, первая ступень которого состоит из двух боковых твердотопливных ускорителей, на второй ступени часть топлива содержится в баках орбитера (собственно многоразового корабля), а большая часть - в отделяемом внешнем топливном баке. Сначала двигательная установка орбитера расходует топливо из внешнего бака, а когда оно будет исчерпано, внешний бак сбрасывается и двигатели продолжают работу на том топливе, которое содержится в баках орбитера. Такая схема позволяет максимально использовать двигательную установку орбитера, которая работает на всем протяжении вывода корабля на орбиту.

При поперечном разделении ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках, на которых данный переходник входит в состав ракеты. При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.

Элементы, соединяющие части составной ракеты, сообщают ей жесткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт - это крепежный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантированно оторвать головку, а, с другой - не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подается импульс тока, и соединение освобождается.

Далее ступени должны быть разведены на безопасное расстояние друг от друга. (Запуск двигателя высшей ступени вблизи низшей может вызвать прогар ее топливной емкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует ее полет.) При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твердотопливные ракетные двигатели.

На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.

Увеличение числа ступеней дает положительный эффект только до определенного предела. Чем больше ступеней, тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полета, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырех ступеней, как правило, не делается.

При выборе числа ступеней важное значение имеют также вопросы надежности. Пироболты и вспомогательные твердотопливные ракетные двигатели - элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полета ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надежность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.

Космические скорости

Чрезвычайно важно отметить, что скорость, развиваемая ракетой (а вместе с ней и всем космическим летательным аппаратом) на активном участке пути, т. е. на том сравнительно коротком участке, пока работает ракетный двигатель, должна быть достигнута очень и очень высокая.

Поместим мысленно нашу ракету в свободное пространство и включим ее двигатель. Двигатель создал тягу, ракета получила какое-то ускорение и начала набирать скорость, двигаясь по прямой линии (если сила тяги не меняет своего направления). Какую скорость приобретет ракета к моменту, когда ее масса уменьшится от начальной m 0 до конечной величины m k ? Если допустить, что скорость истечения w вещества из ракеты неизменна (это довольно точно соблюдается в современных ракетах), то ракета разовьет скорость v, выражающуюся формулой Циолковского , определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил:

где ln обозначает натуральный, а log - десятичный логарифмы

Скорость, вычисляемая по формуле Циолковского, характеризует энергетические ресурсы ракеты. Она называется идеальной. Мы видим, что идеальная скорость не зависит от секундного расхода массы рабочего тела, а зависит только от скорости истечения w и от числа z = m 0 /m k , называемого отношением масс или числом Циолковского.

Существует понятие так называемых космических скоростей: первой, второй и третьей. Первой космической скоростью называется такая скорость, при достижении которой тело (космический аппарат), запущенное с Земли, может стать ее спутником. Если не учитывать влияния атмосферы, то непосредственно над уровнем моря первая космическая скорость составляет 7,9 км/с и с увеличением расстояния от Земли уменьшается. На высоте 200 км от Земли она равна 7,78 км/с. Практически первая космическая скорость принимается равной 8 км/с.

Для того чтобы преодолеть притяжение Земли и превратиться, например, в спутник Солнца или достигнуть какой-нибудь другой планеты Солнечной системы, запускаемое с Земли тело (космический аппарат) должно достигнуть второй космической скорости, принимаемой равной 11,2 км/с.

Третьей космической скоростью у поверхности Земли телу (космическому аппарату) необходимо обладать в том случае, когда требуется, чтобы оно могло преодолеть притяжение Земли и Солнца и покинуть Солнечную систему. Третья космическая скорость принимается равной 16,7 км/с.

Космические скорости по своему значению огромны. Они в несколько десятков раз превышают скорость звука в воздухе. Только из этого ясно видно, какие сложные задачи стоят в области космонавтики.

Почему же космические скорости такие огромные и почему космические аппараты не падают на Землю? Действительно, странно: Солнце огромными силами тяготения удерживает около себя Землю и все другие планеты Солнечной системы, не дает им улететь в космическое пространство. Странно, казалось бы, то, что Земля около себя удерживает Луну. Между всеми телами действуют силы тяготения, но не падают планеты на Солнце потому, что находятся в движении, в этом-то и секрет.

Все падает вниз, на Землю: и капли дождя, и снежинки, и сорвавшийся с горы камень, и опрокинутая со стола чашка. А Луна? Она вращается вокруг Земли. Если бы не силы тяготения, она улетела бы по касательной к орбите, а если бы она вдруг остановилась, то упала бы на Землю. Луна, вследствие притяжения Земли, отклоняется от прямолинейного пути, все время как бы "падая" на Землю.

Движение Луны происходит по некоторой дуге, и пока действует гравитация, Луна на Землю не упадет. Так же и с Землей - если бы она остановилась, то упала бы на Солнце, но этого не произойдет по той же причине. Два вида движения - одно под действием силы тяготения, другое по инерции - складываются и в результате дают криволинейное движение.

Закон всемирного тяготения, удерживающий в равновесии Вселенную, открыл английский ученый Исаак Ньютон. Когда он опубликовал свое открытие, люди говорили, что он сошел с ума. Закон тяготения определяет не только движение Луны, Земли, но и всех небесных тел в Солнечной системе, а также искусственных спутников, орбитальных станций, межпланетных космических кораблей.

Законы Кеплера

Прежде чем рассматривать орбиты космических аппаратов, рассмотрим законы Кеплера, которые их описывают.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник - объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами - Сатурна и Юпитера - он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса - тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников - казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. И задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Из школьного курса геометрии - эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек - фокусов - равна константе. Или иначе - представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, - это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно - Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности. Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца: каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу - тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать все сначала - накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам - гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним - и угловые скорости галактик в целом. Труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Орбиты

Большое значение имеет расчет траекторий полета космических аппаратов, в котором должна преследоваться основная цель - максимальная экономия энергии. При расчете траектории полета космического аппарата необходимо определять наиболее выгодное время и по возможности место старта, учитывать аэродинамические эффекты, возникающие в результате взаимодействия аппарата с атмосферой Земли при старте и финише, и многое другое.

Многие современные космические аппараты, особенно с экипажем, имеют относительно малые бортовые ракетные двигатели, главное назначение которых - необходимая коррекция орбиты и осуществление торможения при посадке. При расчете траектории полета должны учитываться ее изменения, связанные с корректировкой. Большая часть траектории (собственно, вся траектория, кроме активной ее части и периодов корректировки) осуществляется с выключенными двигателями, но, конечно, под воздействием гравитационных полей небесных тел.

Траектория движения космического аппарата называется орбитой. Во время свободного полета космического аппарата, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, то движение космического аппарата подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса или окружности (частный случай эллипса).

Орбиты характеризуются рядом параметров - система величин, определяющих ориентацию орбиты небесного тела в пространстве, ее размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущенную орбиту, по которой движение тела происходит в соответствии с законами Кеплера, определяют:

  1. Наклонение орбиты (i) к плоскости отсчета; может иметь значения от 0° до 180°. Наклонение меньше 90°, если для наблюдателя, находящегося в северном полюсе эклиптики или в северном полюсе мира, тело представляется движущимся против часовой стрелки, и больше 90°, если тело движется в противоположном направлении. В применении к Солнечной системе, за плоскость отсчета обычно выбирают плоскость орбиты Земли (плоскость эклиптики), для искусственных спутников Земли за плоскость отсчета обычно выбирают плоскость экватора Земли, для спутников других планет Солнечной системы за плоскость отсчета обычно выбирают плоскость экватора соответствующей планеты.
  2. Долгота восходящего узла (Ω) - один из основных элементов орбиты, используемых для математического описания формы орбиты и ее ориентации в пространстве. Определяет точку, в которой орбита пересекает основную плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, основная плоскость - эклиптика, а нулевая точка - Первая точка Овна (точка весеннего равноденствия).
  3. Большая полуось (а) - это половина главной оси эллипса. В астрономии характеризует среднее расстояние небесного тела от фокуса.
  4. Эксцентриситет - числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия и характеризует «сжатость» орбиты.
  5. Аргумент перицентра - определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
  6. Средняя аномалия для тела, движущегося по невозмущенной орбите - произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.

Существуют различные типы орбит - экваториальные (наклонение "i" = 0°), полярные (наклонение "i" = 90°), солнечно-синхронные орбиты (параметры орбиты таковы, что спутник проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время), низкоорбитальные (высоты от 160 км до 2000 км), среднеорбитальные (высоты от 2000 км до 35786 км), геостационарные (высота 35786 км), высокоорбитальные (высоты более 35786 км).

На сегодняшний день Российская Федерация обладает самой мощной в мире космической отраслью. Россия является безоговорочным лидером в области пилотируемой космонавтики и к тому же обладает паритетом с США в вопросах космической навигации. Некоторые отставания нашей страны имеются лишь в исследованиях далеких межпланетных пространств, а также в разработках по дистанционному зондированию Земли.

История

Космическая ракета впервые была задумана российскими учеными Циолковским и Мещерским. Они же в 1897-1903 годах создали теорию ее полета. Намного позже данное направление стали осваивать зарубежные ученые. Это были немцы фон Браун и Оберт, а также американец Годдард. В мирное межвоенное время вопросами реактивного движения, а также создания для этой цели твердотопливных и жидкостных двигателей занимались лишь три страны в мире. Это были Россия, США и Германия.

Уже к 40-м годам 20 века наша страна могла гордиться успехами, достигнутыми в вопросах создания твердотопливных двигателей. Это позволило во время Второй мировой войны использовать такое грозное оружие, как "Катюши". Что касается создания больших ракет, оснащенных жидкостными двигателями, то здесь лидером была Германия. Именно в этой стране на вооружение приняли "Фау-2". Это первые баллистические ракеты, имеющие малую дальность. В период Второй мировой войны "Фау-2" использовали для бомбардировок Англии.

После победы СССР над гитлеровской Германией основная команда Вернера фон Брауна под его непосредственным руководством развернула свою деятельность в США. При этом они забрали с собой из поверженной страны все разработанные ранее чертежи и расчеты, на основании которых должна была быть построена космическая ракета. Только мизерная часть команды немецких инженеров и ученых продолжила свою работу в СССР вплоть до середины 50-х годов 20 века. В их распоряжении были отдельные части технологического оборудования и ракет без каких-либо расчетов и чертежей.

В дальнейшем как в США, так и в СССР были воспроизведены ракеты "Фау-2" (у нас это Р-1), что и предопределило развитие ракетостроения, направленного на увеличение дальности полета.

Теория Циолковского

Этого великого русского ученого-самоучку и выдающегося изобретателя считают отцом космонавтики. Им еще в 1883 году был написана историческая рукопись "Свободное пространство". В этом труде Циолковский впервые высказал мысль о том, что перемещение между планетами возможно, и нужен для этого специальный который называется "космическая ракета". Сама теория реактивного прибора была обоснована им в 1903 г. Она содержалась в труде под названием "Исследование мирового пространства". Здесь автор приводил доказательства того, что космическая ракета является тем аппаратом, с помощью которого можно покинуть пределы земной атмосферы. Эта теория явилась настоящей революцией в научной сфере. Ведь о полете на Марс, Луну и на другие планеты человечество мечтало давно. Однако ученые мужи так и не смогли определить, каким образом должен быть устроен летательный аппарат, который будет перемещаться в абсолютно пустом пространстве без опоры, способной дать ему ускорение. Данная задача была решена Циолковским, который предложил использование для этой цели Только с помощью такого механизма можно было покорить космос.

Принцип действия

Космические ракеты России, США и других стран до настоящего времени выходят на орбиту Земли при помощи ракетных двигателей, предложенных в свое время Циолковским. В этих системах происходит преобразование химической энергии топлива в кинетическую, которой обладает выбрасываемая из сопла струя. Особый процесс происходит в камерах сгорания таких двигателей. В них в результате реакции окислителя и горючего выделяется теплота. При этом продукты сгорания расширяются, нагреваются, разгоняются в сопле и выбрасываются с огромной скоростью. Ракета при этом движется благодаря закону сохранения импульса. Она получает ускорение, которое направлено в противоположную сторону.

На сегодняшний день существуют такие проекты двигателей, как космические лифты, и т. д. Однако на практике они не применяются, так как пока еще находятся в разработке.

Первый космический аппарат

Ракета Циолковского, предложенная ученым, представляла собой металлическую камеру продолговатой формы. Внешне она была похожа на аэростат или дирижабль. Переднее, головное пространство ракеты предназначалось для пассажиров. Здесь же были установлены приборы управления, а также хранились поглотители углекислоты и запасы кислорода. В отсеке для пассажиров предусматривалось освещение. Во второй, основной части ракеты Циолковский расположил горючие вещества. При их смешении происходило образование взрывчатой массы. Она зажигалась в отведенном ей месте в самом центре ракеты и выбрасывалась из расширяющейся трубы с огромной скоростью в виде горячих газов.

В течение долгого времени имя Циолковского было малоизвестно не только за рубежом, но и в России. Многие считали его мечтателем-идеалистом и чудаком-фантазером. Истинную оценку труды этого великого ученого получили только с приходом советской власти.

Создание ракетного комплекса в СССР

Значительные шаги в освоении межпланетного пространства были сделаны после окончания Второй мировой войны. Это было время, когда США, являясь единственной атомной державой, стали оказывать на нашу страну политическое давление. Первоначальной задачей, которая ставилась перед нашими учеными, было наращивание военной мощи России. Для достойного отпора в условиях развязанной в эти годы холодной войны необходимо было создать атомную, а затем и Вторая, не менее сложная задача, состояла в доставке созданного оружия до цели. Для этого и требовались боевые ракеты. С целью создания данной техники уже в 1946 г. правительством были назначены главные конструкторы гироскопических приборов, реактивных двигателей, систем управления и т. д. Ответственным за увязку в единое целое всех систем стал С.П. Королев.

Уже в 1948 г. первая из разработанных в СССР баллистических ракет прошла успешные испытания. Аналогичные полеты в США были осуществлены на несколько лет позже.

Запуск искусственного спутника

Кроме наращивания военного потенциала правительство СССР ставило перед собой задачу освоения космического пространства. Работы в этом направлении велись многими учеными и конструкторами. Еще до того как в воздух поднялась ракета межконтинентальной дальности, разработчикам подобной техники стало понятно, что, сократив полезный груз летательного аппарата, можно было добиться скорости, превышающей космическую. Этот факт говорил о вероятности вывода на земную орбиту искусственного спутника. Данное эпохальное событие произошло 4.10.1957 г. Оно стало началом новой вехи в освоении космического пространства.

Работа по освоению безвоздушного околоземного пространства потребовала огромных усилий со стороны многочисленных коллективов конструкторов, ученых и рабочих. Создатели космических ракет должны были разработать программу вывода летательного аппарата на орбиту, отладить работу наземной службы и т. д.

Перед конструкторами стояла сложная задача. Необходимо было увеличить массу ракеты и сделать возможным достижение ею второй Именно поэтому в 1958-1959 годах в нашей стране был разработан трехступенчатый вариант реактивного двигателя. С его изобретением стало возможным производить первые космические ракеты, в которых на орбиту мог подняться человек. Трехступенчатые двигатели открыли и возможность полета на Луну.

Далее ракеты-носители все более и более усовершенствовались. Так, в 1961 г. была создана четырехступенчатая модель реактивного двигателя. С ним ракета могла достичь не только Луны, но и добраться до Марса или Венеры.

Первый пилотируемый полет

Старт космической ракеты с человеком на борту впервые состоялся 12.04.1961 г. От поверхности Земли оторвался корабль «Восток», пилотируемый Юрием Гагариным. Это событие явилось эпохальным для человечества. В апреле 1961 г. получило свое новое развитие. Переход к пилотируемым полетам потребовал от конструкторов создания таких летательных аппаратов, которые могли бы возвращаться на Землю, безопасно преодолевая слои атмосферы. Кроме того, на космической ракете должна была быть предусмотрена система жизнеобеспечения человека, включающая регенерацию воздуха, питание и многое другое. Все эти задачи были успешно решены.

Дальнейшее освоение космоса

Ракеты типа «Восток» еще долгое время способствовали удержанию ведущей роли СССР в сфере исследования околоземного безвоздушного пространства. Их использование продолжается и до настоящего времени. Вплоть до 1964 года летательные аппараты «Восток» превосходили все существующие аналоги по своей грузоподъемности.

Несколько позже в нашей стране и в США были созданы более мощные носители. Название космических ракет такого типа, сконструированных в нашей стране, - «Протон-М». Американский подобный аппарат - «Дельта-IV». В Европе была сконструирована ракета-носитель «Ариан-5», принадлежащая к тяжелому типу. Все эти летательные аппараты позволяют выводить 21-25 тонн груза на высоту в 200 км, где располагается низкая околоземная орбита.

Новые разработки

В рамках проекта полета человека на Луну были созданы РН, принадлежащие к сверхтяжелому классу. Это такие космические ракеты США, как «Сатурн-5», а также советская Н-1. Позднее в СССР была создана сверхтяжелая ракета «Энергия», которую в настоящее время не используют. Мощным американским РН стал «Спейс шаттл». Эта ракета позволяла выводить на орбиту космические корабли массой в 100 тонн.

Производители летательных аппаратов

Космические ракеты проектировались и создавались в ОКБ-1 (Особом конструкторском бюро), ЦКБЭМ (Центральном конструкторском бюро экспериментального машиностроения), а также в НПО (Научно-производственном объединении) «Энергия». Именно здесь увидели свет отечественные баллистические ракеты всех типов. Отсюда вышли и одиннадцать стратегических комплексов, которые взяла на вооружение наша армия. Усилиями работников данных предприятий была создана и Р-7 - первая космическая ракета, которая считается самой надежной в мире и в настоящее время. С середины прошлого века на этих производствах инициировались и велись работы по всем направлениям, касающимся развития космонавтики. С 1994 г. предприятие получило новое название, став ОАО РКК «Энергия».

Сегодняшний день производителя космических ракет

РКК «Энергия» им. С.П. Королева является стратегическим предприятием России. Оно играет ведущую роль в разработке и производстве пилотируемых космических систем. Большое внимание на предприятии уделяется вопросам создания новейших технологий. Здесь разрабатываются специализированные автоматические космические системы, а также РН для вывода на орбиту летательных аппаратов. Кроме того, РКК «Энергия» активно внедряет наукоемкие технологии для производства продукции, не относящейся к освоению безвоздушного пространства.

В составе этого предприятия, помимо головного конструкторского бюро, находятся:

ЗАО «Завод экспериментального машиностроения».

ЗАО «ПО «Космос».

ЗАО «Волжское КБ».

Филиал «Байконур».

Самыми перспективными программами предприятия являются:

Вопросы дальнейшего освоения космоса и создания пилотируемой транспортной космической системы новейшего поколения;

Разработка пилотируемых летательных аппаратов, которые способны освоить межпланетные пространства;

Конструирование и создание энергетических и телекоммуникационных космических систем с использованием специальных малогабаритных рефлекторов и антенн.