Из чего делают лопасти винта вертолета. Физические параметры лопастей и их влияние на поведение модели. Готовимся к сборке

Физические параметры лопастей
и их влияние на поведение модели.

Лопасти для вертолета как резина для автомобиля. Мягкие лопасти сглаживают реакции вертолета, делают его более ленивым. Жесткие, напротив, заставляют вертолет реагировать на управление без задержек. Тяжелые лопасти замедляют реакции, легкие обостряют. Лопасти с высоким профилем отбирают больше энергии, а с низким склонны к срыву потока, когда подъемная сила резко снижается. Выбирая лопасти, стоит учесть их параметры и выбрать те, что подойдут вашему стилю и опыту больше всего.

Когда мы выбираем лопасти, то в первую очередь смотрим на их длину, поскольку длина лопасти зависит от класса вертолета. Чаще под длиной подразумевается расстояние от крепежного отверстия лопасти до ее концевой части. Некоторые немногочисленные производители указывают полную длину лопасти от комля до концевой части. К счастью таких случаев мало.

От длины зависит подъемная сила, и сопротивление вращения которые создает лопасть. Длинная лопасть способна создать большую подъемную силу, но при этом отнимает больше энергии на вращение. С длинными лопастями модель стабильнее при висении и обладает большей "летучестью", т.е. способна на более крупные маневры и лучше выполняет авторотацию.

Хорда (ширина лопасти)

Важный параметр лопасти, который чаще всего не указывают вовсе, и остается только измерить хорду самостоятельно. Чем шире лопасть, тем больше подъемную силу она может создать при тех же углах атаки и тем резче вертолет при управлении по циклическому шагу. Широкая лопасть имеет более высокое сопротивление вращения и потому сильнее нагружает силовую установку. При использовании лопастей с широкой хордой важна точная работа шагом, иначе можно легко "задушить" мотор. Наибольший разброс ширины встречается у лопастей для вертолетов 50-ого класса и выше.

Материал

Следующее, на что нужно обратить внимание, это материал, из которго сделаны лопасти. Сегодня наиболее распространенные материалы, из которых изготавливают лопасти вертолетов это карбон и стеклопластик. Деревянные лопасти постепенно сходят со сцены, так как не обладают достаточной прочностью и сильно ограничивают вертолет в летных возможностях. К тому же деревянные лопасти склонны к изменению формы, что приводит к постоянному появлению «бабочки». Пожалуй, наименьшее, на что сегодня стоит соглашаться, это стеклопластиковые лопасти. Они не страдают изменением формы, обладают достаточной жесткостью для выполнения легкого 3D и отлично подойдут начинающим вертолетчикам. Пилоты со стажем непременно выберут карбоновые лопасти как наиболее жесткие, позволяющие вертолету выполнять экстремальные фигуры высшего пилотажа и наделяют вертолет молниеносной реакцией на управление.

Важный параметр - вес лопасти. При прочих равных более тяжелая лопасть сделает вертолет более стабильным, снизит скорость управления по циклическому шагу. Тяжелая лопасть добавит стабильности и размеренности и запасет больше энергии при выполнении авторотации, что сделает маневр более комфортным. Если вы стремитесь к 3D полетам, выбирайте более легкие лопасти.

Прямая, трапециевидная. Чаще встречается прямая форма, трапециевидная скорее относится к экзотике. Последняя позволяет снизить сопротивление вращения ценой снижения отдачи.

Симметричный - высота профиля одинаковая сверху и снизу лопасти. Лопасти с симметричным профилем способны создавать подъемную силу только при ненулевом шаге. Такие лопасти наиболее распространены среди современных вертолетов и используются на всех моделях, выполняющих 3D пилотаж.

Полусимметричный – снизу лопасти профиль имеет меньшую высоту. Такие лопасти способны создавать подъемную силу даже при нулевых углах атаки, т.е. Создают подъемную силу аналогично тому, как это делает крыло самолета. Такие лопасти используются редко, как правило, только на больших копийных вертолетах.

Высота профиля

Чем выше профиль, тем лучше он сопротивляется срыву потока, но тем выше его сопротивление. Деревянные лопасти обычно имеют более высокий профиль, но лишь для того, что бы обладать достаточной прочностью.

Толщина комля напрямую связана с размером цапф вашего вертолета. Если комель толще, то лопасть не влезет в цапфу, если наоборот – будет болтаться. Обычно в пределах одного класса вертолетов толщина комля стандартна, тем не менее, при покупке лопастей убедитесь, что они подходят к вашему вертолету. Некоторые производители комплектуют лопасти шайбами-проставками, которые можно использовать, если посадочное место цапфы больше толщины комля. Такие шайбы надо устанавливать парами сверху и снизу комля, что бы лопасть была закреплена по центру цапфы.

Диаметр крепежного отверстия

Диаметр отверстия должен совпадать с диаметром крепежного винта цапфы. Как и толщина комля, этот параметр стандартный, тем не менее, стоит его проверить перед покупкой лопастей.

Положение крепежного отверстия относительно наступающей кромки

Определяет то, насколько наступающая кромка лопасти выступает вперед цапфы. Смещенное назад отверстие приводит к тому, что при вращении лопасть отстает от цапфы, что делает такие лопасти более стабильными. Напротив, смещение отверстия к наступающей кромке заставляет лопасть при вращении выдвигаться вперед цапфы, и такое положение делает лопасть менее стабильной.

Форма концевой части влияет на сопротивление вращения ротора. Различают прямую, закругленную и скошенную форму. Более прямая форма создает подъемную силу по всей длине лопасть, но и имеет наибольшее сопротивление вращения.

Продольный центр тяжести

Положение центра тяжести в продольном направлении. Чем ближе центр тяжести к концевой части лопасти, тем лопасть более стабильна и лучше выполняет авторотацию. Наоборот, смещение центра тяжести к комлю делает лопасть более маневренной, но страдает накопление лопастью энергии при авторотации.

Поперечный центр тяжести

Положение центра тяжесть поперек лопасти, от наступающей кромки к отступающей. Обычно стараются размещать центр тяжести так, чтобы при вращении лопасть не отставала от цапфы и не выступала вперед. Лопасть с сильно смещенным назад центром тяжести выступает при вращении вперед цапфы и, следовательно, более динамична.

Динамическая балансировка: выступающая/отступающая лопасть

Параметр зависит от положения крепежного отверстия, веса, положения поперечного и продольного центров тяжести. В целом, если лопасть при вращении выступает вперед цапфы, то такая лопасть более маневренная и больше подходит для 3D полетов, но делает вертолет недостаточно стабильным. Если напротив лопасть при вращении отстает от цапфы, то такая лопасть более стабильная. Если лопасть не отстает и не выступает, то это нейтральная лопасть, Такая лопасть наиболее универсальная и одинаково хорошо подходит как для маневров висения и для 3D полетов.

Ночные лопасти

Ночные лопасти со встроенными светодиодами и встроенным, либо съемным аккумулятором служат для комплектации вертолета для ночных полетов. Совместно с лопастями используются различные способы подсветки корпуса вертолета.

Лопасти с защитным стержнем

Стержень не дает лопасти разлетаться на отдельные части в случае падения. Очень полезный элемент безопасности, который к сожалению присутствует только в дорогих лопастях известных производителей. Случается, что обломки лопастей, не оборудованных таким стержнем, разлетаются на расстояние до 10 метров от места падения и могут привести к травме.

Олег Муринский (Aarc)

Условия работы лопасти несущего винта вертолета во многом отличаются от условий работы крыла самолета. Основная особенность в том, что действующие на нее нагрузки являются переменными во времени. Поэтому при выборе материала элементов лопасти в качестве главных выдвигаются следующие требования:

    Усталостная прочность: трещино стойкость (сопротивление распространению усталостной трещины) и слабая чувствительность к концентраторам напряжений;

    Неизменность механических свойств материала элементов и их соединений от заданного времени эксплуатации, температуры и атмосферных условий окружающей среды;

    Технологические требования: возможности производства по обеспечению заданных форм сечения элементов конструкции; повышение ресурса элементов конструкции методами упрочнения; контроль за качеством соединений и заданными геометрическими

размерами при изготовлении элементов конструкции в процессе сборки лопасти; ремонтопригодность конструкции лопасти в процессе ее эксплуатации.
Кроме перечисленного, необходимо учитывать стоимость материала и технологического процесса изготовления лопасти и стоимость ее эксплуатации.

С учетом вышеизложенных требований выбирают тот материал, а который имеет максимальные удельную прочность - и удельный Е модуль упругости - р.

При формировании лонжерона лопасти из гибридных композиционных материалов стремятся к максимальной их совместимости с материалом матрицы, например, по величине динамического удлинения, степени адгезии, по коэффициенту линейного и объемного расширения, влагоёмкости, времени старения, чувствительности к ударным нагрузкам.

Чувствительность к ударным нагрузкам определяется величиной ударной вязкости. Для волокнистых композитов ударная вязкость характеризуется отношением. Одним из способов повышения ударной вязкости композитов является введение в их состав более прочных и менее жестких волокон, например стеклянных или органических - в углепластики.

В процессе развития вертолетостроения основной силовой элемента лопасти - лонжерон - выполнялся из дерева, легированных сталей, алюминиевых сплавов, нержавеющей стали, титановых сплавов. В настоящее время широко практикуется изготовление лонжерона из композиционных материалов.

Агрегаты каркаса - обшивка, нервюры, хвостовой стрингер, ранее изготовляемые из фанеры, полотна, алюминиевых сплавов, в современных лопастях изготавливаются также из КМ.
Дерево нашло применение в практике Ухтомского вертолетного завода им. Ы.И. Камова в период его становления. Определяющими в выборе этого материала являлись следующие соображения: древесина малочувствительна к концентраторам напряжений, трещино стойкая; она не требует сложного технологического оборудования при изготовлении лонжерона и каркаса лопасти; затраты на изготовление лопасти не велики.

Центральная часть лонжерона выполнялась из дельта- древесины (склеенные тонкие листы древесины), носовая часть профиля состояла из набора склеенных сосновых реек. Хвостовая часть представляла собой каркас из фанерной обшивки, приклеенной к пенопласту. Поверхность лопасти покрывалась полотном и влагостойким лаком.
В процессе эксплуатации выявились существенные недостатки деревянной лопасти:

    Несмотря на влагостойкое покрытие поверхности лопасти элементы конструкции насыщались влагой, что приводило к изменению центра тяжести сечения (смещался назад) и уменьшению критической скорости флаттера лопасти;

    Пропитка антисептиками не устраняла в процессе эксплуатации гнилостного разрушения древесины, при том что ее механические свойства ухудшались.

В практике Московского вертолетного завода им. М.Л. Миля в лопастях НВ применялась смешанная конструкция - лонжерон выполнялся из стальной трубы, а в элементах каркаса использовалось дерево и полотно.

Требования прочности, жесткости и аэродинамики с учетом технологических возможностей привели к необходимости изменения форм сечения лонжерона по радиусу с цилиндрической на эллиптическую. Металлургическая промышленность не располагала оборудованием для формирования данного лонжерона из одной заготовки. Поэтому конструкторы вынуждены были ввести телескопические стыки, соединенные стальными заклепками, с использованием упрочняющей технологии (дорнирование отверстий), плавные переходы жесткости в месте стыка, продольную шлифовку внутренней и внешней поверхностей каждой части лонжерона.

Учитывая характер аэродинамических нагрузок по хорде профиля, переднюю часть профиля лопасти выполняли из фанеры, а заднюю - из полотна в комлевой части лопасти и фанерной обшивки в средней и концевой ее части.

Аэродинамические нагрузки и центробежная сила, действующая на каркас, через нервюры передавались на лонжерон. Передача сил и моментов на лонжерон осуществлялась через фланцы, приклепанные к лонжерону и стенке нервюры.

В процессе эксплуатации выявился ряд недостатков принятой конструктивно-силовой схемы лопасти. Наличие стыков и заклепочных соединений существенно усложнило процесс достижения необходимого ресурса лопасти. Использование в хвостовой части без моментной обшивки (полотна) приводило к тому, что под действием внешних аэродинамических сил и центробежной силы воздуха, находящегося внутри каркаса, существенно искажался профиль лопасти, что ухудшало его аэродинамические характеристики.

Введение дренажного отверстия на нижней поверхности в конце лопасти привело к местным потерям на перетекание воздуха внутри каркаса под действием центробежных сил. Устранение этого недостатка за счет отказа от полотна и переход па фанерную обшивку по всей поверхности лопасти существенно увеличило массу лопасти и сдвигало центр масс лопасти назад. В результате совместной деятельности конструкторов, технологов и металлургов по устранению отмеченных недостатков был создан лонжерон заданного переменного сечения без стыков, а хвостовую часть лопасти стали выполнять из дюралюминевой обшивки, подкрепленной сотовым блоком, не изменяющей форму под действием аэродинамических нагрузок.

Для трубчатого лонжерона применяется обычно труба из высоколегированной стали типа ЗОХГСА или 40ХНМА, закаленной и отпущенной на прочность (с^ = 1100-1300 МПа). После горячей и холодной прокатки, формообразования и закалки наружная и внутренняя поверхности трубы полируются. На внешней и внутренней поверхностях лонжерона создается наклеп виброударным способом, повышающий предел выносливости до а ю = 280-300 МПа mi» при постоянной части нагружения ат= 200-250 МПа.

В конструкции лопасти, основанной на стальной трубе, лонжерон обычно защищен каркасом и не может быть механически поврежден в эксплуатации.

Использование прессованного профиля из дюралюминиевого материала позволило формировать профиль лонжерона с наиболее целесообразным сечением (2.3.1). Применение замкнутого профиля, полученного методом прессования (экструзия), ограничил диапазон использования существующих дюралюминиевых сплавов. В процессе прессования происходит разделение материала на две части, поэтому в формирующем профиль инструменте (фильере) эти две части должны соединяться и свариваться давлением. Чтобы структура материала в местах сварки не ухудшалась, необходимо применять материал с высокой коррозионной стойкостью, Усталостная прочность дюралюминиевого лонжерона может снизиться из- за дефектов, возникающих в процессе прессования профиля и механической обработки.лонжерона. Поэтому необходимо не только наружную, но и внутреннюю поверхности лонжерона упрочнять виброударным способом. Предел выносливости может быть доведен до а = 55-60 МПа при о т= 60 МПа. Для исключения минимальной возможности коррозионного повреждения прессованных лонжеронов в процессе производства и в условиях эксплуатации необходимо применять гальванические покрытия (например, анодирование) после промежуточных операций его обработки.

Процесс прессования не позволяет изменять форму сечения по заданному закону, поэтому требуемую высоту профиля по длине лопасти можно обеспечить только за счет фрезерования внешней поверхности. В результате конструктор имеет возможность разрабатывать конструктивно-силовую схему лопасти только прямоугольной формы в плане (сужение r| = 1).

Контакт поверхности лонжерона с потоком воздуха привел к необходимости защиты этой поверхности от эрозионного повреждения.

Была сделана попытка формирования лонжерона лопасти из многослойного тонкого листа нержавеющей стали, соединенного в монолит при помощи склейки. Предполагалось создание конструкции, обладающей большой стойкостью к распространению усталостной трещины. Органическим недостатком данной конструкции была невозможность обеспечения качественной склейки и устранения выявленных дефектов клеевых поверхностей.

Лопасти с лонжероном замкнутой формы позволяют использовать технические средства постоянного контроля усталостных разрушений материала лонжерона. Система сигнализации повреждения цельнометаллических лонжеронов состоит из сигнализатора давления воздуха и заглушек на концах лонжерона (2.3.2). Внутренняя полость лонжерона заполняется воздухом под давлением, превышающим давление начала срабатывания сигнализатора.

В случае появления в лонжероне трещины давление воздуха в нем падает. Информация о разгерметизации полости лонжерона поступает от сигнализатора давления в виде выдвижения красного колпачка сильфона, установленного в комлевой части каждой лопасти.

Индикация давления воздуха в лонжеронах в кабину экипажа не выводится, т.к. процесс роста трещины до разрушения лонжерона в несколько раз превышает время максимально возможной длительности полета вертолета. Контроль за состоянием лопасти осуществляется при меж полетном осмотре по положению сигнализатора.

Давление воздуха в лонжероне создается с учетом температуры окружающего воздуха и с учетом давления начала срабатывания сигнализатора.

В лопастях вертолета Ми-26 стальные трубчатые лонжероны по наружной поверхности облицованы стеклолентой, за счет чего при возникновении трещины в лонжероне исключается возможность обнаружения повреждения лонжерона с помощью пневматической системы сигнализации. Для обеспечения надежного функционирования системы сигнализации повреждения лонжерона по всей длине его внешней поверхности укладываются двойные фторопластовые шнуры (2.3.3) и после обмотки лентами из стеклоткани производится полимеризация в пресс-форме. Фторопластовые шнуры вытягиваются, образуя воздушные каналы диаметром

2 мм, открытые со стороны внешней поверхности трубы лонжерона. Появление усталостной трещины в зоне воздушных каналов приводит к падению давления в полости лонжерона и срабатыванию сигнализатора. Каналы выполняются двойными по технологическим соображениям - всегда имеется вероятность обрыва фторопластового шнура при его вытягивании из полости длиной 14 м.

Анизотропность композиционных материалов открыла широкие возможности применения их в лопастях НВ. Применение КМ позволяет направленно формировать жесткостные характеристики лопасти (изгибные и крутильные) за счет соответствующей ориентации армирующих волокон композита с учетом сложного характера ее нагружения.

Вертолетостроение является наиболее передовой отраслью авиационной техники, здесь стали смело применять КМ в таком ответственном и сложно нагружаемом агрегате, как лопасть НВ.

Эффективность применения КМ в силовых элементах лопастей определяется рядом преимуществ этих материалов по сравнению с металлами. В частности, аэродинамические и аэроупругие параметры лопастей композитов могут выбираться без учета ограничений, вызываемых технологическими процессами получения катаных, экструдированных (прессованных) или механически обработанных металлических конструктивных элементов.

Композитным конструкциям можно придать сложные аэродинамические формы, а регулируемая анизотропия материала позволяет создавать требуемую жесткость в пределах заданных аэродинамических и аэроупругих параметров. В результате достигается большая аэродинамическая эффективность винтов, определяемая отношением подъемной силы к аэродинамическому сопротивлению.

С помощью КМ, обладающих более высокой удельной прочностью, изготавливают лопасти меньшей массы, чем металлические. Снижение массы лопастей, в свою очередь, оказывает влияние па центробежные силы, инерцию ротора, частотные и другие характеристики.

Регулируемая в широких пределах анизотропия КМ позволяет получать необходимые конструктивные и демпфирующие параметры лопасти.

Частота собственных колебаний лопасти может быть изменена не только перераспределением массы, но и выбором армирующих волокон, имеющих низкий или высокий модуль упругости, включая их гибридизацию (смешивание), степени армирования и ориентации армирующих волокон относительно оси лопасти. Крутильная жесткость лопасти может быть существенно увеличена за счет добавления слоев с ориентацией ± 45° относительно размаха лопасти при незначительном изменении частот продольных колебаний.

Одним из возможных критериев оптимальности панели из КМ, обеспечивающим минимум ее массы, является условие совпадения траектории армирования с траекторией максимального главного напряжения. Как правило, КМ представляет собой совокупность однонаправленных или тканевых слоев с различными толщинами и углами ориентации волокон. Свойства такого материала определяются свойствами отдельных слоев и структурой.

Эффективная реализация достоинств композитов в конструкциях лопастей требует решения комплекса задач, связанных с выбором взаимно согласованных исходных компонентов (волокон и матрицы), определением рациональной структуры материала, соответствующей характеру внешних нагрузок и других воздействий с учетом специфических свойств материала и технологических ограничений при разработке элементов лопасти.

Механическое поведение КМ определяется высокой прочностью армирующих волокон, жесткостью матрицы и прочностью связи на границе «матрица - волокно».

Наибольшее применение получили стеклопластиковые КМ на эпоксидной матрице. Это объясняется в первую очередь низкой стоимостью стеклопластика. Дальнейшее развитие конструкции лопасти из КМ связано с использованием гибридных композиций

Сочетания углеволокна с органоволокном и других подобных вариантов.

Углепластик, обладая высокой прочностью, чувствителен к ударным нагрузкам. Введение менее жесткого материала и защита поверхности лонжерона от каких-либо повреждений предоставляет возможности широкого применения подобных композиций.

Лонжерон с замкнутым коробчатым сечением £)-образной формы может быть изготовлен методом намотки однонаправленной лентой на оправке. Этот метод изготовления лонжеронов лопасти широко применяется при крупном серийном производстве, где целесообразно максимально автоматизировать процесс изготовления. В практике ОКБ Н.И. Камова выбрана технология изготовления лонжерона частями методом выкладки из различных тканей или лент однонаправленного материала на оправках.

Листы материала лонжерона собирают в пакеты и подвергают предварительной опрессовке в автоклаве при невысокой температуре. Листы при этом слипаются, пакеты приобретают необходимые для дальнейшей сборки форму и жесткость, а полимеризации связующего практически не происходит. После опрессовки пакеты представляют собой профиль открытого контура.

Затем пакеты собираются совместно с центровочными грузами, нагревательным элементом и комлевыми пластинами в один блок, внутри которого располагается технологическая резиновая пресс- камера. Блок пакетов с пресс- камерой помещают в специальную пресс-форму, внутренний контур которой соответствует внешнему контуру носовой части лопасти.

В пресс-камеру подается сжатый азот, а пресс-форму нагревают. При этом лонжерон приобретает необходимую форму, связующее полимеризуется и все элементы лонжерона прочно склеиваются между собой. По окончании процесса прессования лонжерон извлекают из пресс-формы, удаляют из него пресс-камеру и обрезают припуски. Такой способ производства позволяет получить лонжерон замкнутого контура из различных армирующих наполнителей на разных связующих, в любом сочетании с неограниченными возможностями по их размещению в конструкции. К сборочному приспособлению для изготовления лонжерона заданного сечения предъявляется ряд требований при назначении режимов давления, нагрева, охлаждения и выдержки при отвердении. Эти требования направлены для исключения остаточных деформаций и коробления за счет температурных напряжений и неравномерности распределения массы материала и толщин в процессе формирования лонжерона.

Тип исходных КМ для лонжеронов выбирается в зависимости от летно-технических данных вертолета. Для малонагруженных лопастей вертолетов используется дешевая стеклоткань сатинового переплетения. Для высоконагруженных лопастей используются гибридные КМ на основе высокопрочной стеклоткани, углеродной ленты и технической ткани на эпоксидном связующем.

Применение гибридных КМ позволяет основной силовой элемент - лонжерон - изготавливать с практически любым заданным распределением масс и жесткостей по длине лопасти.

В силу требований, предъявляемых к лопастям, и учитывая действующие нагрузки, хвостовые секции лопасти должны отвечать следующим требованиям: прочность конструкции, минимальная масса, жесткость конструкции, достаточный ресурс (не менее ресурса лонжерона лопастей), гладкость аэродинамической поверхности, возможность изготовления в серийном производстве, возможность ремонта в полевых условиях и др.

В эксплуатации хорошо зарекомендовали себя хвостовые секции лопасти трёхслойной сотовой конструкции. Такая секция имеет обшивку, торцевые нервюры и стрингеры из технической ткани на основе органических волокон и заполнитель из сот. Применение в конструкции хвостовых секций самого легкого КМ дает возможность снизить массу секций по сравнению со стеклопластиком и увеличить ресурс.

Большой опыт, накопленный при эксплуатации вертолетов «Ка», показал, что лопасти из КМ имеют наилучшие эксплуатационные качества. Важнейшие из них состоят в следующем:

Большой запас прочности при фактически неограниченном по условиям выносливости ресурсе. Практический срок службы лопастей из КМ определяется степенью их естественного износа, зависящего от условий эксплуатации;

Повышение срока службы не только лопастей несущего винта, но и всего вертолета за счет снижения статических и динамических нагрузок в несущей системе, благоприятных частотных характеристик и уменьшения уровня вибраций вертолета. Это обеспечивается технологическим процессом, который позволяет изготавливать лонжерон с переменными по длине формой сечения и толщиной стенки, а также применять совместно разные типы армирующего материала с разной ориентацией. Эти важнейшие качества дают существенные преимущества не только перед металлическими лопастями, но и перед другими конструкциями лопастей из КМ;

Высокая степень ремонтопригодности. Благодаря ценным свойствам КМ - высокой стойкости к концентраторам напряжений и низкой скорости разрушения материала - достигается простота и доступность ремонта даже крупных повреждений лопасти в полевых условиях;

Высокая стойкость лопастей практически ко всем видам агрессивных веществ, топливам, ядохимикатам, маслам и пр.;

Стабильность летно-технических характеристик лопасти в процессе длительной эксплуатации в любых климатических условиях. Длительный опыт эксплуатации вертолетов с лопастями из КМ показал, что изменения механических свойств материала настолько незначительны, что они не влияют ни на летно-технические характеристики, ни на срок службы лопастей.

На характеристики КМ в процессе эксплуатации оказывает влияние влажность.

Приобретая все больше поклонников, на сегодня становятся не только проще, но и безопаснее. В нашем топе мы рассмотрим самые маленькие вертолеты в мире .
1 Вертолет GEN H-4 (Япония)

На сегодня это — самый маленький вертолет в мире, что засвидетельствовано даже в Книге Рекордов Гиннеса. GEN H-4, созданный одноименной японской компанией, имеет лопасти длиной 4 метра и вес всего лишь в 70 кг. У этого вертолета нет хвоста, т.к. он оснащен винтами соосного принципа действия, и это позволило значительно уменьшить его размеры. Грузоподъемность этого «малыша» впечатляет – он способен летать с весом в 210 кг (то есть ровно втрое больше собственного весе). Продаваться вертолет будет в разобранном виде, как конструктор, и, по замыслу производителей, будет собираться владельцем за 30 часов. Предложение более чем интересное, а что касается стоимости, то предположительно она будет начинаться с 200 тыс. долларов США.

2 Вертолет


На второе место мы ставим именно этот вертолет. Название уже говорит само за себя – «Москит»! Его разработка велась почти 10 лет, и «Москит» соединил в себе высокую надежность и легкость в управлении с маленькими размерами и очень хорошей маневренностью. Двигатель вертолета мощностью в 60 л.с. и 5-тиметровые лопасти с легкость поднимают в воздух машину и пилота общим весом до 300 кг. При этом сама машина весит всего 115 кг. Стоимость этой машины и ее модификаций стартует от 40 тыс. долларов.

3 Вертолет


Впервые этот вертолет взлетел в 2004 году, и изначально задумывался для экстремальных забав. Но на сегодня он и патрульный, пограничный, почтовый, а также учебный, поскольку, как оказалось, он имеет хорошие летные характеристики и очень надежен в использовании. Вес AirScooter II — всего 136 кг, объем двигателя — 65 л.с., скорость — 90 км/ч, потолок – 3 тыс. метров. На сегодня этот аппарат «разлетелся» (во всех смыслах) в 23 страны по цене в 50 тыс. долларов за единицу.

4 Вертолет


Этот легкий двухместный вертолет впервые поднялся в воздух в 2004 году. Он также мал и максимально удобен в эксплуатации, имеет высокие летные характеристики. Двигатель в 130 л.с. разгоняет машину до 160 км/ч на высоту в 3,6 км. Диаметр винта — 7 метров, грузоподъемность — 230 кг. Поставляется в разобранном виде, сборка требует около 250 часов. Стоимость вертолета составляет 95 тыс. евро.

5 Вертолет


Итальянцы также стараются не отставать в малой авиации. Они изготовили и продали уже более 400 своих сверхлегких вертолетов марки СН-7. Популярность он стал приобретать практически сразу с момента своего производства в 1996 году. Диаметр винта — 5,8 м., вес — 200 кг, максимальная скорость – 192 км/ч. В некоторых модификациях стоимость аппарата достигает 85-90 тыс. евро.

6 Вертолет


Легкий вертолет этой марки можно смело назвать «дедушкой» современных сверхлегких вертолетов. Созданный еще в 1975 году, он существует в более чем 3 тыс. экземпляров, эксплуатируемых в 60-ти странах мира. Основная масса современных вертолетов использует в своих конструкциях решения, найденные именно в R22. Сегодня этот вертолет стоит 258 тыс. долларов.

7 Вертолет DF Helicopters DF334 (Италия)


Двухместный сверхлегкий вертолет, также разработанный уже довольно давно — в 1980-х годах, за это время только подтвердивший свою надежность (вот уж точно, «в бой идут одни старики»…). Вес — всего 290 кг., винт – 6,8 м., скорость — 148 км/ч, стоимость — от 120 тыс. евро.

8 Вертолет Skyline SL-222 (Украина)


Легкий многоцелевой вертолет, который производится с 2011 года. Так же, как и его «собратья», может транспортироваться на обычном автоприцепе, прост и надежен в эксплуатации. Вес составляет 377 кг, стоимость — 149 тыс. долларов.

9 Вертолет


С 2003 года именно эта машина стала одной из самых популярных в своем классе. С весом всего в 445 кг и скоростью в 185 км/ч «EXEC» поднимается на 3048 м. Стоимость — от 280 тыс. долларов.

10 Вертолет Беркут-ВЛ (Россия)


Сегодня разработка этого вертолета находится в стадии окончательных испытаний, но имеет хорошие перспективы развития. Двигатель в 140 л.с. поднимает 477 кг (вес вертолета) на высоту в 4 км и развивает скорость в 185 км/ч. В скором времени ждем достойного представителя России на рынке легкой авиации!
Легкая авиация может воплотить мечту каждого человека о полете. И мы видим, что на сегодня уже существуют вертолеты стоимостью с хороший автомобиль. Поэтому очень вероятно, что в скором времени появятся и более доступные аппараты, а может быть, и еще меньших размеров!

Этот текст почти целиком написан Тимофеем. Я его только чуть подредактировал и запостил.

В авиации общего назначения стран Запада наиболее популярным вертолётом является Bell-206; в областях военного применения не менее массово присутствуют различные варианты UH-1 (Bell-204/205/212). Эти аппараты отличаются довольно высоко расположенным двухлопастным несущим винтом на длинной колонке.
Итак, почему у западных легких вертолетов такая высокая колонка?

Чаще всего на этот вопрос можно услышать ответ, что это сделано для безопасности людей, находящихся рядом с вертолетом. Подняв несущий винт выше, конструкторы сделали так, что человек может стоять во весь рост под вращающимся винтом, не опасаясь быть задетым даже в случае отклонения винта от конструктивной плоскости вращения (например, согласно отклонению ручки управления или под действием внешнего потока - ветра).

Но это будет не полный ответ на вопрос. Вторая часть ответа более сложна и кроется в улучшении управляемости вертолетов, имеющих несущие винты с совмещенными горизонтальными шарнирами. Для представления особенности таких несущих винтов удобнее всего будет рассмотреть работу обычного несущего винта (НВ) с разнесенными горизонтальными шарнирами (ГШ).
Обычные многолопастные НВ имеют горизонтальные шарниры, которые отстоят на некотором расстоянии от оси вращения винта – так называемый разнос ГШ. Это вынужденное конструктивное решение имеет побочный эффект, который выражается в положительном влиянии на управляемость вертолета.
Рассмотрим две противоположные лопасти несущего винта на режиме висения вертолета.

Как видно, лопасти отклонились вверх на некоторый угол, называемый углом конусности несущего винта. Это угол отклонения одинаков по обе стороны винта (у обеих лопастей), т.к. на них действуют одинаковые силы.
А теперь представим, что пилот отклонил ручку управления, желая наклонить вертолет и начать горизонтальный полет. Наша картина с положением лопастей изменится: через систему управления и автомат перекоса команда пилота поступит на лопасти, увеличив углы установки на одной стороне НВ и уменьшив на другой. В соответствии с этим, угол взмаха лопасти на одной стороне винта станет больше, а на другой меньше, из-за разницы подъемных сил.

Эта разница и наклоняет вертолет в нужную сторону, как того желал пилот. Но… не только она.

Если на режиме висения вертолета положение лопастей было симметричным и результирующие силы от противоположных лопастей сходились на валу в одной точке, то при их отклонении результирующие силы "расходятся вдоль оси" – пересекают вал винта в разных местах (см. Рисунок 2). А это создает дополнительный момент, наклоняющий вертолет в нужную сторону. Т.е. вертолет начинает лучше реагировать на управление.

Наглядно механизм действия разноса горизонтальных шарниров и перемещения результирующих сил при отклонении лопастей можно продемонстрировать на простом примере. Для этого нам понадобится карандаш и нитки. Возьмем две нитки и привяжем каждую одним концом к карандашу. Карандаш у нас будет изображать вал несущего винта, а нитками мы сымитируем действие результирующих сил от двух лопастей. Положим карандаш на стол так, чтобы нитки были по разные стороны от него: слева и справа. Совместим узелки, которыми нитки привязаны к карандашу, вместе как можно плотнее – это будет режим висения вертолета, когда результирующие силы лопастей встречаются на валу в одной точке. Потащим за ниточки в разные стороны. Как видим, карандаш никуда не поворачивается (если мы тянем с одинаковой силой и узелки плотно совпадают). Так происходит на вертолете: силы уравновешивают друг-друга. Теперь немного, на один-два миллиметра, раздвинем узелки на нашем карандаше. Потянем ниточки и сразу же получим то, что карандаш поворачивается вслед за нитками. Так и несовпадающие результирующие силы от лопастей поворачивают вал, а за ним и вертолет.

Как можно легко убедиться, чем больше мы разносим узелки, тем лучше поворачивается карандаш. Так же происходит и на вертолете: чем на большее расстояние расходятся результирующие силы от лопастей, тем лучше управляется вертолет, т.е. лучше реагирует на команды пилота.

В реальности величина разноса горизонтальных шарниров, которая и определяет насколько разойдутся силы, составляет всего несколько процентов от радиуса несущего винта. Но и этого оказывается достаточно, т.к. силы от лопастей очень большие – тысячи и десятки тысяч кгс.

Но вернемся к несущим винтам с совмещенными горизонтальными шарнирами, которые имеют большинство легких вертолетов. В их случае ГШ объединены в один шарнир, находящийся на оси вала винта. Таким образом у них отсутствует какой-либо разнос ГШ и результирующие силы лопастей всегда сходятся в одной точке на валу – добавки к управлению, которую мы рассмотрели выше, нет. Чтобы компенсировать ее отсутствие, конструкторы увеличили высоту колонки несущего винта. Т.е. увеличили расстояние от втулки НВ до центра масс вертолета, или плечо действия аэродинамических сил.

Вертолет стал выше, но у него улучшилась управляемость: при сохранении силы большее плечо ее действия дает больший момент.

Вертолет летает потому, что сверху у него крутится большой несущий винт. У винта есть лопасти. Они по форме напоминают крылья самолета. И когда лопасти быстро крутятся на винте, возникает сила, которая поднимает эту машину в воздух.

У разных вертолетов на несущем винте – по-другому он называется ротором – может быть разное количество лопастей.

У вертолета средних размеров обычно бывает три лопасти.

Самые большие вертолеты, у которых четыре лопасти на несущем винте, могут одновременно перевозить много людей или большие грузы.
Они могут летать в разных направлениях.
Пилот, управляя вертолетом, может наклонить несущий винт влево. И тогда его воздушная машина начнет двигаться в сторону левого бока. А стоит наклонить несущий винт вправо, и машина станет двигаться в сторону правого бока.
Если наклонить ротор вперед или назад, то и вертолет будет двигаться вперед или назад – вот такая это послушная машина.
Вертолеты умеют даже зависать в воздухе. Такое свойство очень полезно для разных дел. И оно недоступно другим крылатым машинам.

Это интересно:
На самом верху вертолета укреплен большой пропеллер – ротор. Если ротор из горизонтального положения наклонить в ту или иную сторону, что может с помощью рычагов управления сделать пилот, то вертолет начнет двигаться именно в сторону наклона ротора. Потому что к подъемной силе вращающихся лопастей прибавляется еще и сила их поступательного горизонтального движения. На хвосте у каждого вертолета есть дополнительный маленький пропеллер. Он расположен вертикально и нужен для того, чтобы вертолет не закручивало при работе главного несущего винта.