Советские рлс в локальных войнах. Радары ссср. История развития радиолокации в ссср

Печора, ЗГРЛС "ДАРЬЯЛ"

Печора, Коми, ЗГРЛС 5Н79 "ДАРЬЯЛ". В/ч 96876

Разработана в составе эскизного проекта в 1968 г. Эту станцию, рассчитанную на большую излучаемую мощность и имеющую огромную площадь антенного полотна, предполагалось оснастить ядерными автономными источниками питания. Согласно первоначальному замыслу, данная РЛС должна быть размещена на крайнем Севере СССР в районе Земли Франца-Иосифа с целью достижения максимального времени предупреждения. Этот проект, уникальный и сложный, претерпел ряд доработок, выдержал конкурс с альтернативным проектом НИИДАР.

14 апреля 1975 года было принято решение о создании на базе РЛС «Дарьял» двух узлов - РО-30 в районе города Печора и РО-7 в Азербайджане в районе г. Габала. Весной 1975 года началось ускоренное строительство узла РО-30. Уже в мае 1975 года был отрыт котлован для передающего центра, а в мае 1977 года окончен монтаж конструкций технологической решетки ФАР. Строительные работы выполнялись военными строителями 43 УИРа (управление инженерных работ) под контролем главка ГУССМО.

Строительные нормативы характеризуют цифры: при высоте приемной антенны в 100 м верх ее при ветре 50 м/с не должен был отклониться более чем на 10 см; мощность водо- и энергоснабжения узла была эквивалентна городу со стотысячным населением.

По мере готовности помещений под технологическое оборудование специалисты Головного производственно-технологического предприятия (ГПТП) и его филиалов (Ленинградским, Рязанским, Николаевским) совместно с представителями монтажно-настроечных служб головных заводов (ДМЗ, ЗЭМЗ, МРЭЗ, ЮРЗ и др.) преступали к монтажно-настроечным работам.

В ходе монтажно-наладочных работ не обошлось и без чрезвычайных ситуаций. Летом 1979 года в ходе настроечных работ на передающем центре выгорело почти 80% радиопрозрачного укрытия АФУ и около 70% (недалеко от расположенных передатчиков) обгорели или покрылись сажей. В здании образовалась дыра примерно 100 на 100 м. Под угрозой срыва оказались работы не только на этом узле и на узле РО-76 в Азербайджане. Последствия пожара все же удалось быстро устранить. К 1981 году монтажно-настроечные работы на РО-30 были практически завершены. Начались заводские испытания, а позднее совместные испытания.

Так как через сектор обзора Печорского узла проходили трассы испытательных и учебных пусков БР, то это дало возможность отработать аппаратуру и программы РЛС по реальному космическому фону и ускорить проведение испытаний.

Большую помощь по созданию объекта и вводу его в строй оказывали представители заказчика ГУВ ПВО (М.И. Ненашев, А.Т. Потапов, О.М. Лосев, А.В. Прохоров, Н.И. Петров и др.), командир в/ч 73570 М.М. Коломиец и главный инженер этой части В.В. Рожков, специалисты Е.М. Захарчук и его подчиненные.

К концу 1983 года Госкомиссия (председатель – заместитель главкома ПВО Е.С. Юрасов) успешно завершила совместные испытания.

20 марта (января?) 1984 года (после более чем десятилетней гигантской работы) Печорская РЛС «Дарьял» была принята на вооружение.

Балхаш-9, Казахстан, ЗГРЛС «Дарьял-У». Узел ОС-2

Город Балхаш-9 - "девятка", затерянный в казахской степи гарнизон Российской Армии
Объект 1102 (5Н15, Балхаш).

Разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих баллистических ракет (БР) и космических объектов начиналась в Радиотехническом институте (РТИ) АН СССР Эта РЛС прошла полигонную отработку на 10-м государственном испытательном полигоне Минобороны, и 15 ноября 1962 г. было задано создание 4-х таких РЛС в районах Мурманска, Риги, Иркутска и Балхаша.

Первая РЛС «Днепр», предусмотренная эскизным проектом 1972 г., прошла совместные испытания на дополнительной ячейке узла ОС-2 (РЛЯ № 5) Балхаша и принята на вооружение Советской Армии в 1974 году. Гульшад, объект 1291

Следующая РЛС «Днепр» была создана несколько позже на узле РО-4 в г. Севастополе и на узле РО-5 (г. Мукачево, Украина).

День 29 октября 1976 г. стал днем рождения отечественной СПРН. Систему в составе командного пункта СПРН, узлов РО-1 (Мурманск), РО-2 (Рига), ОС-1 (Иркутск) и ОС-2 (Балхаш) на базе РЛС "Днепр" поставили на боевое дежурство.

Впервые в мировой практике в УПП (УПП – универсальная приемная позиция и ТПП – типовая передающая позиция) было предусмотрено создание адаптивной фазированной антенной решетки. Головной образец приемной позиции, которая называлась "Даугава-2", предполагалось разместить на узле ОС-2 (Балхаш), а первые ТПП - на узлах Мукачево и Рига.

Впоследствии на основе этих решений началось создание РЛС "Дарьял-У" на узлах Балхаш, Иркутск и Енисейск (Красноярск) и РЛС "Дарьял-УМ" на узлах Мукачево и Рига. Главным конструктором "Дарьяла-У" был назначен Александр Васильев, а "Дарьяла-УМ" - Виктор Иванцов.

Даръял - "Всевидящий глаз"

По результатам рассмотрения проекта 1976-1977 гг. было задано создание трех РЛС "Дарьял-У" в районах городов Балхаш, Иркутск и Енисейск, двух РЛС "Дарьял-УМ" в районах Мукачево и Риги и развернуты работы по разработке серии РЛС "Волга".

Проектировщик "Дарьял-У" - Радиотехнический Институт имени Минца. (РТИ), Москва, улица 8-го Марта. Там теперь БиЛайн находится. А начальник антенного отдела, тов. Зимин, стал одним из отцов-основателей этого БиЛайна. Называлось это вначале КБ Импульс.

Загоризонтная радиолокационная станция "Дарьял-У" (сооружение №1 («единица») -передатчик, сооружение №2 («двойка») - приемник) смотрела в космос и предназначалась для дальнего надгоризонтного обнаружения баллистических ракет уже на орбите и космических объектов на "южном ракетоопасном направлении" - в секторе Западный Китай – Иран.

Коридоры и кабинеты "двойки" напоминали фантастическую космическую станцию. Передатчик (по размеру больше приемника) находился в паре километров от приемника. С ним украинцы и завод Вымпел экспериментировали, когда включали - у слабых здоровьем казахов кровь с носа и ушей шла, даже защиту от обратных лепестков излучения собирались строить, т.к. эти лепестки были направлены на городок и на казармы.

На Балхашском узле к концу 80-х годов строительные и монтажные работы по созданию РЛС «Дарьял-У» проводились замедленными темпами.
С 1984 года образовалась в/ч 52175.
В 1991 году завершались заводские испытания с замечаниями строительного характера.

В январе 2003-го сооружения №1 и №2 были переданы Казахстану.
17 сентября 2004-го "двойку" сожгли.


Дарьял-УМ, Скрунда-2, Рига

Скрунда-2 является военным городком, расположенным в 5 км севернее обычной Скрунды.
Объект 1511-1 (Скрунда), РО-2 (Рига, "Днестр").

Ко второй половине 1950-х гг. в Радиотехническом институте (РТИ) АН СССР началась разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих баллистических ракет (БР) и космических объектов. 15 ноября 1962 г. было задано создание 4-х таких РЛС в районах Мурманска, Риги, Иркутска и Балхаша.

На РЛС "Скрунда" строительство радиолокационного комплекса раннего обнаружения РО-2 с РЛС "Днестр-М" начато в 1963-64гг. Станция начала функционировать в 1969г, и занимала площадь вместе с военным городком 164 га. РЛС осуществляла контроль за воздушным и космическим пространством над Западной Европой и Северной Америкой и при старте БР время предупреждения составило бы 25 минут.

РЛС "Днестр-М" представляла собой здание излучателя высотой 40 м и две расположенные в ряд антенны приемника. Площадь РЛС 1800 кв.м.

25 августа 1970 г. на вооружение Советской Армии был принят комплекс раннего обнаружения (РО) атакующих БР в составе командного пункта (КПК РО) и узлов РО-1 (Мурманск), РО-2 (Рига). Этот комплекс работал по принципу разнесенного на местности радиолокатора, когда функции источников информации сводились к формированию единичных измерений и передаче их на КПК РО, а задачей командного пункта комплекса являлось построение траекторий баллистических ракет и космических объектов и определение параметров их движения в автоматическом режиме. Создание узлов РО-1 и РО-2 обеспечило надежный контроль ракетных баз США.

На РЛС "Скрунда" в 1972г началось строительство радиолокационного комплекса раннего обнаружения "Днепр-М". Он стал вторым локатором в Скрунде. В 1977 году локатор встал на боевое дежурство. Параллельно с возведением второй РЛС "Днепр-М", были проведены работы по модификации первой РЛС "Днестр-М" до "Днепр-М". Таким образом, в Скрунде в конце 1979г. стало две РЛС "Днепр-М".

РЛС "Днепр-М" от своей предшественницы "Днестр-М" внешне отличалась в основном только приемной частью. Две разнесенные антенны, выполнены по Y-конфигурации, образуя между собой угол 120°. Площадь РЛС 900кв.м.

В конце 1979г все СПРН СССР были интегрированы и успешно обеспечивали информацию практически по всем ракетоопасным направлениям.

Следующим этапом СПРН явилась система "Дарьял".
По результатам рассмотрения проекта 1976-1977 гг. было задано создание трех РЛС "Дарьял-У" в районах городов Балхаш, Иркутск и Енисейск, двух РЛС "Дарьял-УМ" в районах Мукачево и Риги и развернуты работы по разработке серии РЛС "Волга". РЛС "Дарьял-УМ" разрабатывалась так, чтобы работать вместе с уже существующими РЛС типа "Днестр" и "Днепр".

Система состояла из приемника и передатчика, разнесенных между собой на 1.5км. РЛС типа "Дарьял" и "Дарьял-У" планировалось построить В Скрунде (Латвия), Мукачево (Украина), Печоре, Енисейске, Мишелевке (Иркутск), Балхаше (Казахстан) и Габале (Азербайджан).
В 1985г (86 г.?) на РЛС "Скрунда" началось строительство радиолокационного комплекса раннего обнаружения "Дарьял-УМ". Он стал третьим локатором в Скрунде. Сначала строили здание приемника 80x80м. Оно так и не было закончено. Здание антенны передатчика 30x40м даже и не начали строить.

После 1991 г судьба РЛС "Скрунда" была предрешена. По требованию латвийского правительства, в 1994 году заключен двусторонний договор о выводе российских войск с территории Латвии, по которому станция должна прекратить существование. С начала 1990-х годов станция находилась на условиях аренды, стоимость которой составляла 5 млн. долларов в год. Летом 1994 года был объявлен конкурс среди фирм, готовых снести РЛС "Дарьял-УМ". Локатор был взорван американской фирмой "Control Demolition Incorporated". 5-го мая 1995г. (или 4 мая) в присутствии военачальников из разных стран НАТО, взорвали и здание приемной антенны РЛС "Дарьял-УМ".

РЛС "Днепр-М" продолжали работать до 1998 г. Станция перестала действовать 31 августа 1998 года и 1 сентября 1998 начались работы по ее демонтажу, финансирование которых осуществлялось Россией. На уничтожение, взрыв и последующую очистку территории РЛС было выделено 7 млн. долларов, несмотря на то, что ее уничтожение обошлось в 3-3,5 млн. Работы по демонтажу станции были завершены 19 октября 1999 года и было подписано соглашение о передаче земельных участков, а также оставшихся инженерных сооружений и военного городка под юрисдикцию Латвии. В июне 2000 года руководство Латвии, из-за отсутствия средств на содержание военного городка "Скрунда-2", приняло решение об его консервации, на что было выделено 1,7 млн. долл.

Азербайджан, Габала-2, РЛС "Дарьял".

Габала (Габеля, до 1991 Куткашен) находится в 63 км от железнодорожной станции Ляки.

Конструкторские работы начались в 1977 г.
Строительство РЛС (также Мингечаурская РЛС) на узле "Габала" (РО-7) объект 754 началось в 1982 году вблизи поселка Куткашен (строительство в Азербайджане выпрашивал ЦК коммунистической партии республики Азербайджан). Началось строительство объекта “Стопор” с 16 этажным зданием РЛС "Дарьял". Узел был сдан и станция заступила на боевое дежурство в 1985 году. Строительство было завершено в 1987 году.

Станция контролирует территории Ирана, Турции, Китая, Пакистана, Индии, Ирака, Австралии, большую часть стран Африки и острова Индийского и Атлантического океанов, просматривает территорию дальностью свыше 6000 км. РЛС не способна обрабатывать информацию самостоятельно, а передает ее режиме реального времени на объекты “Квадрат” и “Швертбот” под Москвой.

Энергопитание было организовано не так, как на американских аналогах. Стояли тысячные трансформаторы и ПСЧ для снабжения аппаратуры переменным током с частотой 400 герц. Приэтом была полная гальваническая развязка, чтобы подключившись к сети питания не снимали информацию.
В качестве резервного питания стояли МГД генераторы. Говорят, когда их включали - "горы раскалывались".

Судьба РЛС была одним из вопросов на переговорах между Россией и Азербайджаном в Москве 1997 года. За период с января 1992 по июль 1997 года задолженность РФ перед Республикой Азербайджан составила около 100 млн. деноминированных рублей. На основании этого указом Президента Азербайджана узел был снят с боевого дежурства. Все три комплекта аппаратуры станции поддерживались в режиме "готовность к боевой работе" или "холодный резерв, регламентные работы" с периодическими кратковременными включениями одного из них в режим "боевая работа" для выполнения поступающих от системы ККП целеуказаний на уточнение параметров орбитальных обьектов.
В начале 2002 года определился статус, принципы и условия использования узла РО-7 в Азербайджане. Россия будет использовать её на правах аренды. Пока срок аренды определен в 10 лет. Этот узел занимает ключевое положение в СПРН.

В 2007 году Путин предложил Бушу совместно использовать радиолокационную станцию в Азербайджане.

Иркутск, «Днепр», «Дарьял-У»

Уз ел ОС-1, объект 1291 (1102 ?), Сибирь, Иркутская область, пос. Мишелевка. г. Усолье-Сибирское-7.

Первые разработки систем предупреждения о ракетном нападении (СПРН) и ракетно-космической обороны в целом (РКО) начались в Советском союзе в 50-x годах, в тот период, когда в СССР и США появились межконтинентальные баллистические ракеты (БР). В это время в Радиотехническом институте (РТИ) АН СССР, под руководством А.Л. Минца, началась разработка первой отечественной РЛС "Днестр", предназначенной для обнаружения атакующих БР и космических объектов. Дальность обнаружения БР до 3250км.

После того, как опытный образец РЛС "Днестр" завершил полигонную отработку в июле 1962 г., 15 ноября этого же года было задано создание 4-х таких РЛС в районах Мурманска (Оленегорска, Кольский полуостров), Скрунды (Рига, Латвия), Мишелевки (вблизи Иркутска) и Балхаша (Казахстан). В такой конфигурации СПРН должна была обеспечивать контроль на потенциально опасных направлениях. На северо-западе отслеживались пуски БР из Атлантики, с акваторий Норвежского и Северного морей и из Северной Америки, на юго-востоке отслеживались пуски БР из Индийского и Тихого океанов, и также с западного побережья США.

В 1971 году было осуществлено информационное подключение к КП СПРН нижних РЛЯ Иркутского и Балхашского узлов. Это дало возможность контролировать (хотя и не полностью) возможные пуски БР, прежде всего со стороны Китая (ракетный полигон Урумчи), отношения с которым в то время ухудшились. Это событие уже было предтечей следующего этапа – этапа создания комплексной системы.

13 февраля 1973 г. приняты на вооружение РЛС "Днестр" на узлах, предназначенных для обнаружения спутников (ОС) Земли - ОС-1 (Иркутск) и ОС-2 (Балхаш). Узлы ОС-1 и ОС-2 существенно расширили возможности по контролю космического пространства и прикрыли юго-восточное ракетоопасное направление.

В 1968 г. в РТИ АН СССР разработали первый эскизный проект СПРН с использованием РЛС "Днепр", созданной на базе локатора "Днестр" и обладающей по сравнению с ним более высокими тактико-техническими характеристиками, и перспективной РЛС "Дарьял".

В последствии РЛС «Днестр-М» были доработаны до РЛС «Днепр-М, кроме радио-локационных ячеек (РЛЯ) №№ 3 и 4.

29 октября 1976 г. объединенную СПРН в составе командного пункта СПРН, узлов РО-1 (Мурманск), РО-2 (Рига), ОС-1 (Иркутск) и ОС-2 (Балхаш) на базе РЛС "Днепр" поставили на боевое дежурство. Задачей системы было снабжение информацией о БР и спутниках, а не организация ответно-встречного удара.

Строительство РЛС "Дарьял-У" на ОРТУ "Мишелевка" началось в 1979 году на позициях РЛС "Днепр" и продолжалось по 1984 год в 100 км к северо-западу от Иркутска, вблизи поселка Усолье-Сибирское. РЛС первоначально входила в состав Военно-космических сил СССР, затем в состав РВСН.

Далее, имеющаяся информация по станции разнится. Пишут, что строительство "Дарьял-У" продолжалось по 1984 год. С завершением постройки станция начала контроль территории Китая.
По информации из других источников, создание станции «Дарьял-У» (третьей по счету в СССР) на Иркутском узле не было доведено даже до этапа заводских испытаний в силу незначительного в конце 80-х и начале 90-х годов финансирования, потере производственных мощностей, морального старения элементов и технологий за время растянувшегося на долгие годы строительства.

В октябре 1999 года США предложили России помощь в завершени строительства РЛС в обмен на изменение Договора по ПРО, так как затраты на завершение строительства могут составить несколько десяткаов млн долларов. Россия отнеслась к этому предложению негативно.

В 1999 году станция была передана Сибирскому отделению РАН для организации наблюдений за верхними слоями атмосферы. По сообщениям заведующего отделом расположенного в Иркутске Института солнечно-земной физики Александра Потехина, на станции проводятся исследования совместно с учеными обсерватории Массачуссетского технологического института США.

С помощью американских специалистов радар частично переоборудован и включен в мировую сеть наблюдений за состоянием атмосферы на высоте от 150 до 1000 и более километров.

Также, по иркутскому узлу встречалась такая информация: .г. Ангарск, антенна передатчика "Кондор" (чуть меньше "Дуги-1"), высота 175 м, длина 175м, три башни, 16 широкополосных вибраторов.
КВ от 6 до 16 МГц., мощность - 2 МВт непрерывно. Функционирует.

Красноярск, «Днепр», «Дарьял-У»

В 1983 году на ОРТУ "Енисейск-15" для создания непрерывного радиолокационного поля по внешней границе СССР на северо-восточном ракетоопасном направлении, после неоднократных обращений высшего командования ВС СССР в 1983 году было развернуто строительство нового узла надгоризонтной радиолокационной станции «Дарьял-У» под Енисейском - Енисейск-15. Специалисты прогнозировали нахождение у западного побережья США баз атомных подводных лодок с ракетами «Трайдент» и «Трайдент-2», способных атаковать всю территорию СССР.

Первоначально рассматривались места под Норильском и Якутском. Последний район отпал из-за недостатка энергоресурсов, а Норильск – из-за условий вечной мерзлоты, удаленности от удобных транспортных артерий и соответственно высокой стоимости доставки строительных материалов и оборудования, что могло отразиться на сроках и стоимости введения в строй этого ключевого в СПРН узла.из-за. Строительство новой РЛС было развернуто в районе Енисейска в нарушение Договора между СССР и США по ограничению систем ПРО 1972 года, которым разрешалось размещение РЛС СПРН только по периметру государственной территории.

К началу 1987 года строительство технологических помещений на узле было закончено и начались монтажно-наладочные работы. В это время американская сторона обвинила Советский Союз в нарушении Договора и дальнейшее строительство станции было прекращено, при этом затраты на строительство по состоянию на 1 января 1987 года составили 203,6 млн. рублей, а на закупки технологического оборудования - 131,3 млн. рублей.

Размеры антенны передатчика РЛС 30х40 м; антенна включает десятки передатчиков под единым управлением. Приемная антенна имела габариты 80х80 м, частотный диапазон работы РЛС - метровый.
Предложения Советской стороны по использованию РЛС в качестве международного средства обнаружения спутников (ОС-3) не получили одобрения.

В мае 1987 года станция была проинспектирована группой американских специалистов. На основе полученных данных был подготовлен подготовлен подробный доклад о состоявшейся поездки для спикера палаты представителей:

"На основании того, что мы видели своими глазами, мы считаем, что вероятность использования Красноярской станции в качестве РЛС ПРО крайне низка. Отсутствие защиты, независимых источников энергоснабжения и неподходящая частота - все это говорит против использования ее в таких целях. Мы считаем, что в данный момент станция не нарушает Договор по ПРО". Важное место в докладе имеет и второй раздел - "доступ к информации": "...мы стали свидетелями проявления такой открытости, которое нельзя не назвать впечатляющим. Девять американцев (включая Уильяма Брода, научного обозревателя газеты "Нью-Йорк таймс") получили возможность посетить РЛС и провести там почти четыре часа. За это время было сделано свыше 1000 фотоснимков, были сняты две видеоленты, сделана магнитофонная запись".

Во время начавшейся перестройки и политики односторонних уступок со стороны руководства СССР под давлением США в 1987 году строительство станции было остановлено и в 1989 году под нажимом США было принято решение о демонтаже практически полностью построенной станции.

Подмосковье, пос. Фрязино. РЛС «Дон-2Н»

Одним из серьезных добавлений к СПРН стала постройка РЛС типа Дон-2Н возле подмосковных г. Фрязино и г. Пушкино, которая заменила станции Дунай и Дунай 3У.

Многофункциональная РЛС 5Н20 «Дон-2Н», Софрино-1, объект 2311.
Проектировщик - РТИ (Радиотехнический институт).
Главный конструктор МРЛС «Дон-2Н» системы ПРО А-135) - В.К. Слока.

МРЛС «Дон-2Н» является уникальной РЛС с обзором 360”, которая является моноимпульсной многофункциональной радиолокационной станцией сантиметрового диапазона с крупномодульными фазированными активными антенными решетками (ФАР), электронным управлением характеристиками и положением в пространстве передающей и приемной диаграммами направленности, цифровой обработкой радиолокационных сигналов, а также информационно-управляющей и вычислительной системой, способной одновременно осуществлять обнаружение и сопровождение сложных баллистических и аэробаллистических целей, а затем и наведение на них противоракет дальнего и ближнего перехвата. Представляет собой стационарный наземный комплекс радиотехнической аппаратуры, сопряженный с вычислительной системой КВП-135 и размещенный в одном из двух сблокированных зданий специального инженерного сооружения.

Самая мощная и эффективная на планете станция «Дон-2Н» противоракетной обороны является основой единственной в мире развернутой системы ПРО – A-135 предназначенной для защиты Московского региона и прилегающих областей от ядерного удара (в радиусе до 100 км). Строительство системы началось в 80-х гг., в 1995 г. она была введена в строй в полном объеме.

Сооружение представляет правильную четырехугольную усеченную пирамиду с длиной стороны по отметке 6 м - 144 метра, по кровле - 100 метров, высотой 33,6 (по неподтвержденным данным ~35) м. Кроме того, по неподтвержденным данным, этажи сооружения уходят под землю на глубину ок. 6 м. В любом случае сооружения под зданием РЛС значительные. На всех четырех боковых поверхностях сооружения расположены круглые фазированные антенные решетки сопровождения целей и противоракет (диаметр антенны 16 м) и квадратные (10.4х10.4 м) фазированные антенные решетки передачи команд наведения на борт противоракет. Радиолокационная станция "Дон" обеспечивает одновременный обзор всей верхней полусферы в зоне ответственности комплекса.

На ее командно-вычислительный пункт, в Солнечногорске (КП Солнечногорск-7 , п Тимоново), защищенный от поражающих факторов ядерного взрыва, через командный пункт СПРН (тоже Солнечногорск) поступает информация от всех действующих узлов раннего обнаружения, как от расположенного на северо-западном ракетоопасном направлении узла «Барановичи». Эти исходные данные вместе с полученными от самой РЛС «Дон-2Н» в случае необходимости будут использованы для наведения противоракет. Их на сегодняшний день в составе системы A-135 сотня – 68 ракет 53T6 (по классификации НАТО «Gazelle»), рассчитанных на перехват в атмосфере, и 32 ракеты 51T6 («Gorgon»), призванные осуществлять перехват за пределами атмосферы.

На ней существуют автономные системы электро- и водоснабжения, мощное холодильное оборудование, устраняющее перегрев везде, где он может возникнуть, ремонтный цех или завод.

Все системы дублированы, поэтому замена элементов, узлов, агрегатов оборудования может производиться без отключений.

Ежедневно в 9.00 и 21.00 на дежурство, длиной 12 часов, заступает 100 человек. На каждого из обслуживающего персонала станции приходится по 12-14 дежурств на человека в месяц. Из-за нехватки кадров многим приходится дежурить сутки через двое. Эксплуатацию станции проводят только офицеры. Солдат на объекте нет.

Операторы РЛС регулярно выполняют учебные стрельбы по поражению БР по специальным компьютерным программам, имитирующим реальные боевые условия. Программы разделяются по различным траекториям полета БР, количеством ГЧ и ложных целей, степенью сложности поражения. В учебном бою участвуют все системы обороны. Бой идет в режиме реального времени и в реальном географическом измерении.

В мирной обстановке РЛС "Дон-2Н" работает в режиме малой излучаемой мощности. Перевод станции в более активный режим осуществляется в случае необходимости детальной разведки ККП и т.п.

В классификации НАТО станция "Дон-2Н" получила обозначение "Pill Box".

Аналогов в мире РЛС "Дон-2Н" не имеет.

РЛС «Волга», г. Барановичи, Беларусь

Узел «Барановичи» СПРН Космических войск ВС РФ занимает не менее 200 га в районе между пос. Ганцевичи и г. Барановичи, республика Беларусь. Представляет собой радиолокационную станцию 70М6 «Волга», предназначенную для обнаружения стартов баллистических ракет, космических объектов над всей территории Европы (за исключением районов Восточного Средиземноморья) и контроль над районами патрулирования подлодок НАТО в значительной части акватории Северной Атлантики (Северного и Норвежского морей, западной части Средиземного). Сектор контроля на севере ограничен о. Исландия, на юге – о. Мадейра. Но при этом с командного пункта станции, можно заглянуть даже в Африку.

Объект замыкается на «ядерный чемоданчик» президента России. Сверхчувствительные антенны «Волги» круглосуточно отслеживают, любой ракетный запуск на расстоянии в пять тысяч километров. Дежурные офицеры наблюдают и за всеми космическими объектами, аппаратура позволяет увидеть на любой из орбит даже шарик диаметром несколько миллиметров. Глубоко под землей спрятан вычислительный комплекс – электроника позволяет моментально расшифровать изображение любой зафиксированной «Волгой» пусковой вспышки и за считанные секунды определить предполагаемую траекторию полета ракеты.

«Волга» – целый тщательно охраняемый город, в любой момент способный перейти в полностью автономный режим. Глубоко под землей находятся мощные дизель-генераторы, холодильный завод, куда каждые сутки из десятка артезианских скважин закачивается 3,5 тысячи тонн воды. Вода необходима для охлаждения фазированной антенной решетки – «фары», которая состоит из сотен приемо-передающих устройств.

«Волга» стала совместным детищем ВПК России и Беларуси. Так, уникальные компьютерные программы разработаны белорусскими учеными, обслуживанием уникальной аппаратуры рука об руку занимаются инженеры двух государств. Немало рабочих мест занято местными жителями, с соседними хозяйствами военные наладили самые тесные отношения, закупают продукты.

РЛС разработана в соответствии с проектом 1976 года и последующих его корректировок.
В середине 1984 года появилось решение о создании головной станции «Волга» на западном ракетоопасном направлении в Белоруссии, в районе г. Барановичи у пос. Ганцевичи (Минский узел).
Строительство РЛС «Волга» на узле «Барановичи» развернулось в 1986 году.
В 1990 году создание станции РЛС «Волга» приближалось к завершению. Но в 90-е годы этот процесс резко затормозился (практически приостановился).
После завершения строительных, монтажно-наладочных и испытательных работ, станция «Волга» в 2003 году была поставлена на боевое дежурство в составе СПРН.

По сравнению с аналогичными объектами в Азербайджане и Украине, или России, узел СПРН «Волга» является технически совершенным, на ней единственной применяется полная цифровая обработка сигналов.

Узлы дециметрового диапазона на базе РЛС «Волга» в Советском Союзе должны были быть построены между радиолокационными узлами метрового диапазона типа «Дарьял», что позволяло создать двухдиапазонное сплошное радиолокационное поле по всей периферии СССР.

Соседями барановичской «Волги» должны были стать, к югу – «Дарьял-УМ» на узле Берегово близ узла Мукачево (Закарпатская область Украины), к северу – «Дарьял-УМ» на узле Скрунда близ узла Рига.

Севатополь, РЛС "Днепр"

Первая РЛС «Днепр» прошла совместные испытания на дополнительной ячейке узла ОС-2 (РЛЯ № 5, Балхашский узел, Казахстан) и была поставлена на дежурство в 1974 году.

Следующие РЛС 5Н86 «Днепр» были построены несколько позже 1979 г. на узле РО-4 «Николаев» в г. Севастополе, мыс Херсонес и на узле РО-5 (г. Мукачево, п. Пестрялово Украина). ОРТУ "Николаев" включал РЛС "Днепр" на мысе Херсонес, в дальнейшем модернизированную до РЛС "Днепр-М", что обеспечило возможность контроля юго-западного направления.

РЛС на мысе Херсонес постоянно следит за территорией Турции, Саудовской Аравии, Израиля и части Ирана. Во время первой войны в Персидском заливе именно она первой обнаружила пуски иракских ракет "Скад". Станция также обнаружила единственный пуск БР

"Иерихон" на испытаниях в Израиле.

В 1988 году на ОРТУ "Николаев", вблизи Севастополя, на основе РЛС "Днепр", началось строительство РЛС "Дарьял-У". Строительство продолжалось до 1993 года.

После распада Советского Союза РЛС, находящаяся на ОРТУ "Николаев", стала собственностью Украины и организационно входят в состав украинских Вооруженных сил и эксплуатируются украинским военным персоналом. В оперативном отношении сохраняется взаимодействие дислоцированных на украинской территории ОРТУ с 3-й армией, и узлы продолжают решать задачи в интересах системы ПРН Российской Федерации.

Срок службы РЛС "Днепр" , которые были установлены в начале 70-х годов прошлого века, истек в 1995-96 годах, однако после проведения определенных работ, его удалось увеличить.

В одном из своих интервью в 1997 году командующий войсками РКО России заявил, что "все станции СПРН (в Казахстане, Украине, Азербайджане) исправно выдают информацию, решая свои задачи на рекетоопасных направлениях". Соглашение, регламентирующее работу этой станции, а также РЛС в Николаеве, было подписано в 1997 году. В начале 1999 года оно было ратифицировано в России.

В 1997 году было заявлено о полном переходе финансирования станций на Россию. На начало марта 1997 года задолженность России перед Украиной за эксплуатацию станции составляла 2,5 млн. долларов.
Информация с обеих РЛС поступает на центральный командный пункт системы предупреждения о ракетном нападении, подчиненной космическим войскам России. Обслуживают станцию украинский персонал.

В далбнейшем, Киев настаивал, чтобы Москва платила больше за информацию, которую получает с двух радиолокационных станций "Днепр М" в Мукачеве и Севастополе. За аренду РЛС "Дарьял" в Азербайджане Россия платит ежегодно по пять миллионов долларов, Украине за информацию с двух украинских станций - только 1,2 миллиона.


В Советском Союзе, ещё в середине 1950-х годов было принято решение разрабатывать новые радиолокационные станции не в виде передвижных устройств на автомобильных шасси и прицепах, а в виде стационарных помещений, расположенных на закреплённых за ними позициях. Это позволяло создавать большие антенны, не экономить на числе аппаратуры и её размерах, а так-же расположить аппаратуру с защитой её от морозов или зноя. Одной из таких новых разработок РЛС получившая название Лена-М или П-70, или как её ныне часто называют Лена П-70. Станция была разработана в Горьковском НИИ Радиотехники в период 1960-1968 годы и предназначалась для работы на протяжённых границах страны. Главным конструктором стал Овсянников Василий Иванович, автор уже зарекомендовавшей себя РЛС П-14 или Лена.

Станция П-70 работала в метровом диапазоне волн и обладала несколькими выдающимися особенностями. Во-первых, она имела максимальную отдачу мощности с единицы площади антенны, а именно 17000 Ватт с квадратного метра. Для примера, РЛС П-14 могла отдать лишь 500 Вт с квадрата. При этом мощность передатчика составляла около 20 кВт.

Во-вторых, на Лене П-70 был впервые в мире применён зондирующий сигнал сложной формы. Представьте, что РЛС при своей работе испускает в пространство простые радиосигналы, например "пиу", "пиу", "пиу". Отразившись от предметов, они возвращаются, антенна их ловит и определяет где и что находится. Однако, эти сигналы весьма просты и различного вида помехи изменяют картинку, рождая ложные "пиу", которые легко принять за самолёт. Что-бы уменьшить влияние шумов и помех, применяют сложные сигналы. То есть, станция отправляет уже не "пиу", а скажем "пи-пи-пиу-пиу-пи-пиу-пиу-пи-пи". Вероятность появления помехи такой формы уже куда меньше, чем простой помехи, что увеличивает эффективность работы станции.

Идея со сложным сигналом достаточно простая, но в послевоенные годы наталкивалась на теоретические и технические трудности связанные с требованиям излучать мощные но короткие сигналы (мощность влияла на дальность обнаружения, длительность сигнала на разрешающую способность, но техника не позволяла добиться такого сочетания и выходило либо мощно-коротко, либо слабо-длинно.) Наконец, учёные пришли к решению генерировать мощный но длинные сигнал, а затем сжимать его. Теория сжатия сигналов была разработана ко второй половине 50х годов (засекречена в Союзе до начала 70х). Таким образом, сжимая сигналы в 50 раз, Лена П-70 позволила обнаруживать цели на расстоянии до 2300 километров, обогнав по разрешающей способности предыдущую разработку в 10 раз). Конечно, это предельная граница в идеальных условиях, а на практике цель с отражающей способностью эквивалентной самолёту Миг-17 обнаруживалась за 390 километров (высота полёта 10 км). При высоте полёта 100 метров, расстоянии сокращалось до 40 километров.

В процессе создания станции было решено ещё множество других проблем, рассмотрение которых тянет на отдельную специальную статью, посему мы оставим их и перейдем к описанию самой станции. Всего было построено 11 Лен, из них одна на территории завода и одна на полигоне Капустин-Яр. Остальные восемь были расположены по периметру границ Советского Союза и последняя в Монгольской Народной Республике.

Вся аппаратура РЛС размещалась в двухэтажном здании, обитом железом и оборудованного гермодверьми. В полярных районах вечной мерзлоты, здание устанавливали на сваи. Комплект для сбора станции состоял из 605 ящиков и 30 кабельных бобин. Для транспортировки комплекта к месту сборки требовалось привлечение двух четырёхосных вагонов, 35 полувагонов, 128 автомашин Краз-2556, 150 вертолётов типа В-10 и 22 самолётов Ан-22. При всём этом станция собралась специальным подразделением в количестве 45 человек за 210 дней.


В центре второго этажа располагался центральный пульт управления с индикаторами кругового обзора установленных в дугообразной консоли. В его составе находилось два индикатора кругового обзора, один индикатор "азимут-дальность", один индикатор скорости помехи, два индикатора контроля, устройства дистанционного управления аппаратурой и контроля аппаратуры.


Позади экранов центральная стойка электропитания. В дежурном режиме станция потребляла не более 100 кВт по аппаратуре и 145 кВт на вращение антенны. В боевом режиме (включены оба канала) мощности возрастали в два раза.


Рядом размещались два одинаковых комплекта приемников, аппаратуры обработки и защиты от помех, в том числе самонаводящихся снарядов.


Самый большой зал второго этажа занимало оборудование передатчика. На фото стойки усилителя мощности в открытом и закрытом состоянии.


Стойки опоясывают многометровые, вертикально пронизывающие здание, трубы и аппаратура перестройки ПДУ.


Элементы усилителя. Всего на станции было четыре усилительных каскада.


Трубки воздушного охлаждения усилителей.


Блоки модуляторов усилителей передатчика.


Анодный отсек задающего генератора.


Кроме того, на втором этаже размещались учебный класс, лаборатория и мастерская, комнаты ЗИП и отдыха обслуживающего персонала, библиотека, кухня, туалет. Интересно, что пищевой холодильник был оборудован открытым - внутри здания, но без отопления, отгороженный гермодверьми.


Библиотека. В ней находятся десятки некогда грифованых томов технического описания станции - схемы, фотографии, рисунки, описания. На многих из них стоит гриф даже не "для служебного пользования", а самое настоящее "секретно".


На первом этаже элементы системы электропитания. Время полного включения станции составляло 8-9 минут (при работающих преобразователях частоты напряжения), а без них 12 минут. Включение из горячего резерва укладывалось в минуту.


Механизмы привода поворота антенны. Так-же в этом зале находись преобразователи частоты напряжения в колчичестве пяти штук, но они не сохранились.


Значительная часть аппаратуры была выполнена на новой (по тем временам) элементной базе - миниатюрных пальчиковых лампах, использование которых позволило разработать набор типовых функциональных модулей, встраиваемых в стойки. Кроме того было применено большое количество радиоэлектронных сборок - по сути небольшая печатная платка на десяток радиодеталей, расположенная в пластиковом корпусе с выступающими ножками-контактами. Это был далёкий предок современных микросхем. Вообще, в конструкции РЛС применялось 8309 полупроводников и 8615 радиоламп.


Что же касается радиоламп - то практически все крупные лампы не сохранились (отсутствуют в гнёздах), однако я таки смог найти несколько весьма немаленьких. Кроме того, забегаю вперёд, скажу что на КП местного ПВО был обнаружен целый склад радиоламп. Десятки видов упакованных в картонные коробки.

Вылезем на крышу к антенне. Размеры её параболического отражателя 48 на 28 метров, при этом огромная массивная конструкция вращалась по кругу, катаясь на опорных катках. Круглый антенный элемент в центре основного зеркала отдельная антенна систем опознавания "свой-чужой". Вес вращающейся части составлял 42 тонны. Антенна могла вращаться со скоростью 2,5 оборота в минуту при скоростях ветра до 30 м/c или 5 оборотов в минуту при скорости до 20 м/c. Выдерживая постоянный ветер до 50 м/c и наледь до 20 мм, антенна была оборудована системой защиты от гололёда и позволяла (путём пропускания тока 120 вольт через конструкции) за 40 минут растопить лёд толщиной до 5 мм, потребляя при этом 300-350 кВт.


Как видно, в центре поворотного круга царит полный разгром - следствие изъятия кабелей. Кроме того, была повалена небольшая вспомогательная антенна, располагавшаяся с другой стороны главного зеркала.

На отдельной штанге в сторону отходит блок антенн-облучателей, включающий в себя как антенны формирования зондирующих импульсов, антенны системы пеленга и запросчика "свой-чужой".


Заключительный взгляд на Леночку. А потом я расскажу про выносной пост, входивший к комплект каждой из станций.


Список использованных источников

1. Радиолокационный комплекс П-70, инструкция по эксплуатации, часть 1.
2. Радиолокационный комплекс П-70, техническое описание, введение и глава 1.
3. Радиолокационный комплекс П-70, фотоснимки и рисунки к главе 2 технического описания.
4. Радиолокационный комплекс П-70, фотоснимки и рисунки к главе 9 технического описания.
5. Александр Зачепицкий, Журнал "Воздушно-космическая оборона", статья "Страж советского неба".

Современная война стремительна и быстротечна. Зачастую победителем в боевом столкновении выходит тот, кто первым сумеет обнаружить потенциальную угрозу и адекватно на нее среагировать. Уже более семидесяти лет для поиска противника на суше, море и в воздухе используется метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от различных объектов. Устройства, посылающие и принимающие подобные сигналы, называются радиолокационными станциями (РЛС) или радарами.

Термин «радар» - это английская аббревиатура (radio detection and ranging), которая была запущена в оборот в 1941 году, но давно уже стала самостоятельным словом и вошла в большинство языков мира.

Изобретение радара – это, безусловно, знаковое событие. Современный мир трудно представить без радиолокационных станций. Их используют в авиации, в морских перевозках, с помощью РЛС предсказывается погода, выявляются нарушители правил дорожного движения, производится сканирование земной поверхности. Радиолокационные комплексы (РЛК) нашли свое применение в космической промышленности и в системах навигации.

Однако наиболее широкое применение радары нашли в военном деле. Следует сказать, что эта технология изначально создавалась для военных нужд и дошла до стадии практической реализации перед самым началом Второй мировой войны . Все крупнейшие страны-участницы этого конфликта активно (и не без результата) использовали радиолокационные станции для разведки и обнаружения судов и самолетов противника. Можно уверенно утверждать, что применение радаров решило исход нескольких знаковых сражений как в Европе, так и на Тихоокеанском театре боевых действий.

Сегодня РЛС используются для решения чрезвычайно широкого спектра военных задач, от отслеживания запуска межконтинентальных баллистических ракет до артиллерийской разведки. Каждый самолет, вертолет, военный корабль имеет собственный радиолокационный комплекс. Радары являются основой системы противовоздушной обороны. Новейший радиолокационный комплекс с фазированной антенной решеткой будет установлен на перспективный российский танк «Армата». Вообще же, многообразие современных радаров поражает. Это абсолютно разные устройства, которые отличаются размерами, характеристиками и назначением.

С уверенностью можно заявить, что сегодня Россия является одним из признанных мировых лидеров в области разработки и производства РЛС. Однако прежде чем говорить о тенденциях развития радиолокационных комплексов, следует сказать несколько слов о принципах работы радаров, а также об истории радиолокационных систем.

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

  • импульсные;
  • непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

Антенна импульсного радара работает и на прием, и на передачу. После испускания сигнала передатчик отключается на время и включается приёмник. После его приема происходит обратный процесс.

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

В импульсных радиолокационных станциях в качестве источника сигнала обычно используют магнетроны, или лампы бегущей волны.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Типичным доплеровским радиолокатором является радар, который используют сотрудники дорожной полиции для определения скорости автомобилей.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Кроме первичных РЛС, существуют и так называемые вторичные радиолокаторы, которые используются в авиации для опознания воздушных судов. В состав таких радиолокационных комплексов, кроме передатчика, антенны и приемного устройства, входит еще и самолетный ответчик. При облучении его электромагнитным сигналом ответчик выдает дополнительную информацию о высоте, маршруте, номере борта, его государственной принадлежности.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9-6 м (частота 50-330 МГц) и 0,3-1 м (частота 300-1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5-15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

История радиолокации

Идея радиолокации возникла практически сразу после открытия радиоволн. В 1905 году сотрудник немецкой компании Siemens Кристиан Хюльсмейер создал устройство, которое с помощью радиоволн могло обнаружить крупные металлические объекты. Изобретатель предлагал устанавливать его на кораблях, чтобы они могли избегать столкновений в условиях плохой видимости. Однако судовые компании не заинтересовались новым прибором.

Проводились эксперименты с радиолокацией и в России. Еще в конце XIX века русский ученый Попов обнаружил, что металлические объекты препятствуют распространению радиоволн.

В начале 20-х годов американские инженеры Альберт Тейлор и Лeo Янг сумели с помощью радиоволн засечь проплывающее судно. Однако состояние радиотехнической промышленности того времени было таково, что создать промышленные образцы радиолокационных станций было затруднительно.

Первые радиолокационные станции, которые можно было использовать для решения практических задач, появились в Англии примерно в середине 30-х годов. Эти устройства были очень большими, устанавливать их можно было только на суше или на палубе больших кораблей. Только в 1937 году был создан прототип миниатюрной РЛС, которую можно было установить на самолет. К началу Второй мировой войны англичане имели развернутую цепь радиолокационных станций под названием Chain Home.

Занимались новым перспективным направлением и в Германии. Причем, нужно сказать, небезуспешно. Уже в 1935 году главнокомандующему германского флота Редеру был продемонстрирован действующий радиолокатор с электронно-лучевым дисплеем. Позже на его основе были созданы серийные образцы РЛС: Seetakt для военно-морских сил и Freya для ПВО. В 1940 году в немецкую армию стала поступать система радиолокационная управления огнем Würzburg.

Однако несмотря на очевидные достижения германских ученых и инженеров в области радиолокации, немецкая армия начала использовать радиолокаторы позже англичан. Гитлер и верхушка Рейха считали радары исключительно оборонительным оружием, которое не слишком нужно победоносной немецкой армии. Именно по этой причине к началу битвы за Британию у немцев было развернуто только восемь радиолокационных станции Freya, хотя по своим характеристикам они как минимум не уступали английским аналогам. В целом же можно сказать, что именно успешное использование радаров во многом определило исход битвы за Британию и последующее противостояние между Люфтваффе и ВВС союзников в небе Европы.

Позже немцы на основе системы Würzburg создали рубеж ПВО, который получил название «линии Каммхубера». Используя подразделения специального назначения, союзники сумели разгадать секреты работы немецких радаров, что позволило эффективно глушить их.

Несмотря на то, что англичане вступили в «радарную» гонку позже американцев и немцев, на финише они сумели обогнать их и подойти к началу Второй мировой войны с самой продвинутой системой радиолокационного обнаружения самолетов.

Уже в сентябре 1935 года англичане приступили к постройке сети радиолокационных станций, в состав которой перед войной уже входили двадцать РЛС. Она полностью перекрывала подлет к Британским островам со стороны европейского побережья. Летом 1940 года британскими инженерами был создан резонансный магнетрон, позже ставший основой бортовых радиолокационных станций, устанавливаемых на американских и британских самолетах.

Работы в области военной радиолокации велись и в Советском Союзе. Первые успешные эксперименты по обнаружению самолетов с помощью радиолокационных станций в СССР были проведены еще в середине 30-х годов. В 1939 году на вооружение РККА была принята первая РЛС РУС-1, а в 1940 году – РУС-2. Обе эти станции были запущены в серийное производство.

Вторая мировая война наглядно показала высокую эффективность использования радиолокационных станций. Поэтому после ее окончания разработка новых РЛС стала одним из приоритетных направлений развития военной техники. Бортовые радиолокаторы со временем получили все без исключения военные самолеты и корабли, РЛС стали основой для систем противовоздушной обороны.

В период Холодной войны у США и СССР появилось новое разрушительное оружие – межконтинентальные баллистические ракеты. Обнаружение запуска этих ракет стало вопросом жизни и смерти. Советский ученый Николай Кабанов предложил идею использования коротких радиоволн для обнаружения самолетов противника на больших расстояниях (до 3 тыс. км). Она была довольно проста: Кабанов выяснил, что радиоволны длиной 10-100 метров способны отражаться от ионосферы, и облучая цели на поверхности земли, возвращаться тем же путем к РЛС.

Позже на основе этой идеи были разработаны радиолокаторы загоризонтного обнаружения запуска баллистических ракет. Примером таких РЛС может служить «Дарьял» - радиолокационная станция, которая несколько десятилетий была основой советской системы предупреждения о ракетных пусках.

В настоящее время одним из самых перспективных направлений развития радиолокационной техники считается создание РЛС с фазированной антенной решеткой (ФАР). Подобные радары имеют не один, а сотни излучателей радиоволн, работой которых руководит мощный компьютер. Радиоволны, испускаемые разными источниками в ФАР, могут усиливать друг друга, если они совпадают по фазе, или же, наоборот, ослаблять.

Сигналу РЛС с фазированной решеткой можно придавать любую необходимую форму, его можно перемещать в пространстве без изменения положения самой антенны, работать с разными частотами излучения. РЛС с фазированной решеткой гораздо надежней и чувствительней, чем радиолокатор с обычной антенной. Однако у подобных радаров есть и недостатки: большой проблемой является охлаждение РЛС с ФАР, кроме того, они сложны в производстве и дорого стоят.

Новые радиолокационные станции с фазированной решеткой устанавливаются на истребители пятого поколения. Эта технология используется в американской системе раннего предупреждения о ракетном нападении. Радиолокационный комплекс с ФАР будет установлен на новейший российский танк «Армата». Следует отметить, что Россия является одним из мировых лидеров в разработке радиолокаторов с ФАР.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Юрий Борисович Кобзарев , академик, заведующий отделом Института радиотехники и электроники АН СССР . Специалист в области статистической радиотехники и теории колебаний, основатель советской школы радиолокации. Награжден золотой медалью им. А. С. Попова , присуждаемой Академией наук СССР за выдающиеся научные работы и изобретения в области радио. Герой Социалистического Труда . Лауреат Государственной премии СССР .

3 января 1934 г. в Ленинграде на небольшой специально построенной установке были зарегистрированы отраженные от самолета радиоволны. С этого дня, который можно считать днем рождения советской радиолокации, начались интенсивные исследования, направленные на решениe задачи обнаружения самолета и точного определения его местоположения.

Идея радиолокации немногим моложе идеи радиосвязи. Еще в 1905 г. был ыдан германский патент X. Хюльсмейеру о заявке от 30 апреля 1904 г. Идея развивалась и в других заявках, многие из которых очень интересны. Так, в 1919 г. был выдан патент Л. Махтсу , в котором описывалось устройство со спиральной разверткой и визуальной индикацией положения обнаруживаемого с помощью радиоволн объекта. Однако из-за несовершенства излучающих и принимающих устройств того времени возможностей практического осуществления предложенных идей не было.

Первой публикацией, в которой описывались опыты по определению положения отражающего радиоволны объекта, можно считать статью Е. Эппльтона и М. Барнета . В этих опытах производилось измерение высоты ионосферы (слоя Кеннели — Хевисайда ) путем наблюдения интерференции радиоволн, распространяющихся вдоль поверхности Земли, и волн, отраженных от ионосферы. Результирующая напряженность поля периодически менялась при изменении длины волны (вследствие изменения разности фаз этих волн), что и позволяло определить высоту ионосферы.

Периодическое изменение величины сигнала, являющееся результатом наложения сигнала, отраженного летящим самолетом, наблюдалось в опытах Б. Тревора и П. Картера , исследовавших распространение ультракоротких радиоволн. По-видимому, в их статье 1933 г. содержится первое упоминание об отражении самолетом радиоволн. В ней говорится: «...самолет, пролетающий над полем, обусловливал хорошо выраженные вариации приема. Отраженный от самолета сигнал попеременно усиливал и ослаблял прямой луч передатчика. Это явление было особенно заметно, когда расстояние между передатчиком и приемником составляло 800 м. Интерференционные явления, обусловленные самолетом, были сильнее, когда самолет пролетал ближе к приемнику, но были заметны и в том случае, когда самолет находился на лин,ии передатчик — приемник» .

Примененный Эппльтоном и Барнетом метод варьирования частоты излучаемых колебаний и до настоящего времени является одним из основных методов измерения расстояний, применяемых в радиолокационных устройствах. Альтернативный метод основан на измерении времени запаздывания Dt отраженного импульса по отношению к излученному. Расстояние r до отражающего объекта определяется в этом случае с помощью простого соотношения

где с — скорость света. Этот чрезвычайно наглядный (когда для измерения Dt используется электронно-лучевая трубка) метод был впервые применен также при определении высоты ионосферы. В дальнейшем он получил широкое развитие при ионосферных исследованиях, имеющих большое значение для техники связи на коротких волнах. В радиолокации он играет главенствующую роль.

Начало работ. Непрерывное или импульсное излучение?

До 30-х годов в противовоздушной обороне для определения местоположения самолетов использовались звуковые пеленгаторы, позволявшие с хорошей точностью определять направление прихода звука, излучаемого мотором самолета, и оптические дальномеры. Такая система — ее называли "прожзвук«- могла использоваться только при безоблачном небе, но и тогда ее эффективность была ничтожна, так как пилот, попав в луч прожектора, мог резко изменить курс и сделать результат расчета прибора, управляющего зенитным огнем, непригодным. При увеличившихся скоростях самолетов и высоте их полета направление прихода звука и направление на самолет стали так сильно различаться, что система «прожзвук» оказалась вообще недееспособной. Необходимость создания, принципиально новых средств для обнаружения самолетов стала очевидной. За организацию соответствующих работ взялись Главное артиллерийское управление (ГАУ ) и Управление противовоздушной обороны (УПВО ).

Представитель ГАУ М. М. Лобанов обратился непосредственно в Центральную лабораторию бывшего Треста заводов слабого тока, располагавшую сильной производственной базой. Был заключен договор (октябрь 1933 г.), и под руководством Ю. К. Коровина начались работы по созданию установки для наблюдения отраженных самолетом радиоволн дециметрового (50—60 см) диапазона. В январе 1934 г. состоялся первый испытательный полет. Самолет обнаруживался на расстояниях до 700 м при ничтожной (0,2 Вт) мощности излучения. Установка состояла из двух параболических зеркал диаметром 2 м: одно служило для излучения радиоволн, другое — для приема. Прием велся с помощью суперрегенеративного приемника на слух. Эффект Доплера приводил к возникновению биений между прямым и отраженным от самолета излучениями, которые и прослушивались в телефоне.

Опыты Ю. К. Коровина убедили, что пеленгование самолетов с помощью радиоволн возможно и что работы в этом направлении надо развивать. С этой целью М. М. Лобанов обратился в Ленинградский электрофизический институт (ЛЭФИ ), которым руководил А. А. Чернышев . Это был один из институтов «куста» физико-технических институтов, идейно возглавлявшегося А. Ф. Иоффе. 11 января 1934 г. был подписан соответствующий договор между ГАУ и ЛЭФИ. Под руководством Б. К. Шембеля весьма энергично стали вестись исследования по совершенствованию техники дециметрового диапазона, и уже к концу 1934 г. в ГАУ был отправлен эскизный проект радиопеленгатора, в котором для повышения дальности действия предлагалось использовать магнетронный генератор. Работы в этом направлении получили дальнейшее развитие в ЛЭФИ и ЦВИРЛ (Центральной военно-индустриальной лаборатории ) и велись вплоть до начала Великой Отечественной войны .

В это же время представитель УПВО П. К. Ощепков обратился к президенту Академии наук СССР А. П. Карпинскому с просьбой о содействии в постановке работ по радиообнаружению самолетов. Президент направил его к А. Ф. Иоффе , живо откликавшемуся на всякую свежую мысль. 16 января 1934 г. Абрам Федорович созвал весьма компетентное совещание, которое высказалось в пользу целесообразности подобных исследований. А. А. Чернышев взялся организовать работы по применению радиоволн для обнаружения самолетов на дальних подходах в своем институте — ЛЭФИ. Руководство ими было также поручено Б. К. Шембелю .

Работы для УПВО были развернуты в ЛЭФИ очень быстро. Уже в начале июля 1934 г. были проведены первые успешные опыты с простейшей аппаратурой, работавшей на волне около 5 м. Регистрация сигналов от самолетов, находящихся на расстоянии до 7 км, велась на самописце.

Несмотря на то, что дальнейшие опыты, проведенные в марте 1935 г. с уже усовершенствованной аппаратурой, показали, что возможно значительное увеличение дальности обнаружения, работы в ЛЭФИ в этом направлении были заказчиком прекращены. К этому времени в УПВО был создан Опытный сектор с лабораториями в Москве и Ленинграде, а радиопромышленности были даны заказы на разработку мощного УКВ-генератора непрерывного действия и соответствующих приемных устройств для задуманной Ощепковым системы дальнего обнаружения («Электровизор »),

В 1935 г. ЛЭФИ был расформирован. Его помещение, кадры и оборудование были переданы в распоряжение вновь организованного института (НИИ-9), которому поручили разработку новой важной оборонной тематики, включавшей и радиолокацию. Научным руководителем нового института был назначен создатель и руководитель знаменитой Нижегородской радиолаборатории (к тому времени уже прекратившей свое существование) М. А. Бонч-Бруевич .

М. А. Бонч-Бруевич, хорошо знавший работу радистов-"слухачей" времен первой мировой войны, считал, что наиболее перспективной является акустическая индикация принимаемых сигналов. Действительно, способность радистов «выуживать» нужные сигналы из невероятной какофонии звуков — смеси сигналов многих станций, образовывавшейся из-за недостаточной селективности приемников того времени,- поражала воображение. Поэтому в НИИ-9 было отдано решительное предпочтение технике непрерывного излучения. Работа была направлена на создание радиопеленгаторов взамен акустических пеленгаторов системы «прожзвук». Особенно прельщало внешнее сходство этих систем, так что операторам даже не пришлось бы переучиваться.

При разработке систем непрерывного излучения возникло много трудностей, обусловленных близостью генератора зондирующих сигналов к приемнику, но руководство продолжало отдавать предпочтение этому методу, тем более что были достигнуты значительные успехи в создании передающих и приемных устройств дециметрового диапазона. И лишь когда в 1938 г. в Ленинградском физико-техническом институте (ЛФТИ) были проведены опыты, продемонстрировавшие высокую эффективность импульсной техники, последняя получила права гражданства и,в НИИ-9. Но «прожзвуковая идеология» полностью не была преодолена — на импульсный метод смотрели лишь как на средство, позволяющее заменить оптический дальномер радиодальномером (это обеспечивало возможность работы установки и в условиях облачности). Разработка дециметрового пеленгатора с непрерывным излучением так и продолжала играть главенствующую роль в работах института.

Образца станции с использованием непрерывного излучения, который мог бы быть принят на вооружение, создать так и не удалось. А вот в применении импульсного метода были достигнуты значительные успехи. Группа сотрудников Украинского физико-технического института), возглавляемая А. А. Слуцкиным , создала в 1938 г. импульсную установку для зенитной артиллерии (она была названа «Зенит »), работавшую в диапазоне волн 60—65 см. Правда, эта работа не была завершена, предпочтение было отдано разработке импульсных станций лучше освоенного 4-метрового диапазона.

Первые работы в ЛФТИ

Летом 1935 г. А. Ф. Иоффе по настоянию УПВО организовал в своем институте специальную лабораторию для работ по проблеме обнаружения самолетов. Руководство лабораторией было возложено на Д. А. Рожанского — одного из наших крупнейших физиков-радиотехников. С самого начала лаборатория взяла курс на применение импульсной техники в системах обнаружения. Когда я получил приглашение работать в лаборатории и пришел к Абраму Федоровичу, то он так прямо и сказал, что главной задачей считает создание импульсной техники.

В то время в лаборатории уже работали два дипломника — Н. Я. Чернецов и П. А. Погорелко . Д. А. Рожанский был в отпуске, и руководство работой в лаборатории мне пришлось взять на себя. Н. Я. Чернецов занимался созданием широкополосного усилителя промежуточной частоты для приемника супергетеродинного типа, а П. А. Погорелко — созданием эталонного генератора для калибровки приемника. На меня легли вопросы разработки антенно-фидерных устройств, задача создания входного преобразователя, от которого зависела чувствительность приемника, и выходного устройства (впоследствии — электронно-осциллографического устройства). Надо было в короткий срок — к осени 1935 г.- изготовить аппаратуру, которая позволила бы в реальных условиях получить количественные характеристики отражения самолетом радиоволн.

Испытания планировалось провести под Москвой. Организовать их должен был П. К. Ощепков. В его лаборатории в Москве уже разрабатывался передатчик, работавший в режиме непрерывных, модулированных частотой 1 кГц колебаний, который предназначался для этих испытаний. Рабочая длина волны была уже установлена: 3—4 м. Зимой 1935 г. изготовленную аппаратуру привезли в Москву, где и состоялись первые крупные испытания, в ходе которых удалось получить много ценных исходных данных для дальнейшей работы.

Передатчик, созданный в лаборатории П. К. Ощепкова, находился в здании на Красноказарменной улице (сейчас оно принадлежит Московскому энергетическому институту ), антенна была установлена на крыше. Мы привезли приемное устройство супергетеродинного типа, которое имело широкую полосу пропускания (так как это же приемное устройство предполагалось в дальнейшем использовать и для приема импульсов длительностью порядка 10 мс). Детектированные сигналы с выхода усилителя промежуточной частоты (УПЧ) приемника возбуждали настроенный на частоту модуляции передатчика контур высокой добротности, напряжение на котором выпрямлялось и направлялось в цепь чувствительного стрелочного прибора. В комплекте аппаратуры был также разработанный П. А. Погорелко излучатель стандартных сигналов, применявшийся для проверки и калибровки приемного устройства. Оба устройства питались от аккумуляторов и могли легко перевозиться с места на место.

Приемное устройство устанавливалось в различных пунктах в районе аэродрома близ Москвы. Самолет летал вокруг него по круговым траекториям разного радиуса и на различной высоте. Сигналы, отраженные от самолета, считывались со стрелочного прибора и записывались вручную. В процессе этой работы удалось получить обширные материалы, позволившие оценить перспективы техники обнаружения самолетов. В частности, на основе полученных Д. С. Стоговым результатов была обоснована так называемая линейная система обнаружения самолетов с помощью непрерывного излучения. Излучающие и принимающие устройства в этой системе располагались вдоль линии, параллельной обороняемой границе. Ее пересечение самолетом могло надежно регистрироваться. Такая система была разработана и в сентябре 1939 г. принята на вооружение под названием «РУС-1 ». Она эксплуатировалась в 1940 г. на Карельском перешейке во время советско-финляндской войны. При ее эксплуатации, однако, возникли трудности с определением принадлежности самолетов, и во время Великой Отечественной войны система «РУС-1» была перебазирована на менее ответственные участки границы, в Закавказье и на Дальний Восток . Ей на смену пришли импульсные станции «РУС-2 » и «Редут», обладавшие несравненно лучшими технико-тактическими характеристиками.

На полигоне Опытного сектора Управления противовоздушной обороны (апрель 1937 г.)
Слева направо : А. А. Малеев, Ю. Б. Кобзарев, П. А. Погорелко, Н. Я. Чернецов.

Первые испытания импульсного метода

Следующим этапом работ было проведение испытаний импульсного метода. В ленинградской лаборатории Опытного сектора УПВО, которую возглавлял бывший сотрудник ЛЭФИ В. В. Цимбалин , к 1937 г. были уже разработаны совершенно необычные генераторные лампы большой мощности (порядка 100 кВт в импульсе), работавшие в диапазоне волн от 3,5 до 4 м. Оставалось решить задачу управления генерацией, чтобы обеспечить стабильность частоты повторения импульсов и воспроизводимость их формы.

ЛФТИ надлежало изготовить электронно-осциллографическое устройство, которое позволяло бы регистрировать как излучаемые, так и отраженные импульсы и определять запаздывание вторых относительно первых.

К концу 1936 г. все подготовительные работы в ЛФТИ были закончены. Незадолго до этого мы понесли тяжелую утрату — безвременно скончался Д. А. Рожанский, отдававший много внимания и сил лаборатории. Тем не менее мы не снизили темпов работ, руководство которыми были возложены на меня, и договорные обязательства удалось выполнить своевременно. Однако начало опытов задерживалось в связи с трудностями, встретившимися при разработке передатчика в лабораториях Опытного сектора УПВО. Наконец, в марте 1937 г. лаборатория ЛФТИ в полном составе (Н. Я. Чернецов и П. А. Погорелко, к тому времени уже защитившие свои дипломные работы, автор этой статьи и лаборант А. А. Малеев ) выехала в Москву на полигон Опытного сектора.

Проверив свою аппаратуру, мы довольно долго ожидали, когда же заработает мощный передатчик, установленный в Москве. Дождаться его сигналов так и не удалось — задача управления мощным генератором импульсов В. В. Цимбалиным не была решена. Но стремление провести эксперимент было столь велико, что наш небольшой коллектив своими силами создал на полигоне экспериментальную установку радиообнаружения. Правда, передатчик, которым пришлось пользоваться, был маломощным (около 1 кВт в импульсе), и потому дальность действия установки оказалась небольшой. Тем не менее проведенные на ней первые в СССР наблюдения радиоимпульсов, отраженных от самолетов, оказали решающее влияние на весь ход дальнейших работ. Передающее устройство было построено на базе имевшегося на полигоне УКВ-генератора на типовых лампах Г-165 , вовсе не предназначенных для генерирования импульсов, с антенной типа «волновой канал». Был на полигоне и высоковольтный выпрямитель для питания анода ламп. Не хватало главного — управляющего импульсного модулятора.

При подготовке к испытаниям импульсного метода нами был перестроен излучатель стандартных сигналов. К нему добавили специальный контрольный осциллограф и модулятор, превращавший непрерывное излучение в импульсное. Вот этот импульсный модулятор и был взят в качестве задающего генератора модулирующего устройства передатчика. Наспех была сооружена «летучая» схема усилителя его импульсов. Усиленные импульсы подавались на сетки ламп УКВ-генератора, который управлялся этими импульсами вполне устойчиво.

Генерация импульсов производилась с частотой повторения около 1 кГц — на эту частоту и было рассчитано приемно-осциллографическое устройство. Оно отличалось от применявшихся в опытах 1936 г. тем, что имело на выходе электронно-лучевую трубку, на отклоняющие пластины которой непосредственно подавалось напряжение с последнего колебательного контура УПЧ приемника.

Линия развертки осциллографа представляла собой свертывающуюся спираль. В горизонтальном направлении луч отклонялся напряжением, подаваемым на пластины со специального низкочастотного контура, а в вертикальном — магнитным полем катушек того же контура. Затухающие колебания этого контура возбуждались специальным устройством, которое срабатывало синхронно с излучением импульсов передатчика, но с некоторым опережением, чтобы на развертке были четко отмечены и начало зондирующего импульса, и начало импульса, отраженного самолетом. Зная частоту колебаний «развертывающего» контура, по угловому расстоянию между началом импульсов можно было с хорошей точностью определить время запаздывания отраженного импульса и, соответственно, расстояние до самолета.

Приемное устройство размещалось в небольшой железной кабине, на крыше которой была установлена антенна. Кабина могла вращаться вокруг вертикальной оси. Антенная система установки состояла, как и в опытах 1936 г., из двух полуволновых вибраторов, связанных коаксиальными фидерами с входным контуром приемника. Специальное устройство позволяло регулировать величину связи приемника с каждым вибратором. Взаимное расположение полуволновых вибраторов, направление на передатчик и направление маршрута самолета обеспечивало возможность взаимной компенсации во входном контуре приемника сигналов, приходящих к вибраторам от передатчика, и сложение сигналов, отраженных от самолета.

Первый запуск установки при совместной работе приемника и передатчика нас обескуражил. Из-за больших напряжений, возникавших на выходе приемника, линия развертки с момента излучения зондирующего сигнала на некоторое время исчезла. Иными словами, приемник, как мы и опасались, оказывался в течение долгого времени неработоспособным. Нам показалось, что мы зашли в тупик. Если отраженный сигнал будет приходить в течение «мертвого времени», мы его увидеть не сможем. Да и где уверенность, что, когда линия развертки будет видна, приемник уже успеет полностью восстановить свою чувствительность? Механизм всего процесса оставался неясным.

В чем тут дело, удалось понять лишь день спустя. Я возвращался из Москвы на полигон и со станции шел вдоль полотна железной дороги. Меня обогнал поезд. Он уже скрылся из виду, а мне все еще был слышен его гул. Звук от поезда отражался от деревьев, стоящих шпалерами вдоль полотна железной дороги. А не могло ли быть подобной реверберации, вызванной отражением радиоволн от окружающих установку деревьев, и в нашем опыте? Если это действительно так, то после окончания сигналов от местных предметов приемник будет полностью восстанавливать свою чувствительность. Не было, однако, уверенности, что отраженный сигнал при таком удалении самолета от установки еще будет иметь величину, достаточную для его обнаружения. Поэтому когда наступил день первого полета — 15 апреля 1937 г.- наше волнение было очень велико. Но нам сопутствовала удача. Отраженные сигналы уверенно наблюдались на свободных от «местных предметов» участках развертки. Она были зафиксированы на фотографиях в виде коротких разрывов линии развертки.

Расположение аппаратуры в опытах 1937 г.
Антенна излучателя на рисунке состоит из 6 полуволновых вибраторов (цветные линии),
антенна приемника — из двух, разнесенных на расстояние, равное длине волны излучения.

Затем последовали опыты с самолетами, летавшими на различных высотах. Предельная зафиксированная на фотоснимках дальность составила 12 км, а визуально удалось наблюдать сигналы от самолета на расстоянии 17 км. Таким образом, днем рождения импульсной радиолокации в СССР можно считать 15 апреля 1937 г. Проведенные опыты имели решающее значение для дальнейшей работы. Поскольку все характеристики приемника и передатчика были известны, можно было оценить и отражательную способность самолета (эффективное сечение рассеяния, в соответствии с терминологией, принятой в физике), и дальность действия установки при переходе к генераторным лампам большой мощности и высоконаправленной антенне у приемника. Можно было уже не сомневаться, что дальность действия составит не менее 50 км.

Фото с экрана осциллографа в опытах 1937 г. По угловому расстоянию между началом зондирующего импульса и началом отраженного сигнала определялось расстояние до самолета в данном случае оно составляет 12,5 км). Высота полета задавалась и была равна 500 м.

Живя на полигоне Опытного сектора, сотрудники имели достаточно времени для бесед на различные темы. Одной из тем вечерних бесед был вопрос о возможности создания единой установки, у которой и приемная и передающая антенна были бы совмещены. Путь к этому, в сущности, уже был намечен примененным в опытах расположением антенн, при котором прямое излучение передатчика в приемник не попадало. Как достичь такого же эффекта при непосредственной близости антенн и при переходе к высоконаправленной приемной антенне — это пока было не вполне ясно. Тем не менее в возможности найти приемлемое решение мы не сомневались. Впоследствии единая установка лабораторией действительно была создана; правда, это было сделано несколько иначе, чем представлялось в 1937 г. По окончании работы на полигоне было принято решение — оказать Опытному сектору помощь в разработке модулятора мощного передатчика на лампах В. В. Цимбалина и к концу 1937 г. завершить разработку однопунктового радиолокационного устройства с дальностью обнаружения не менее 50 км. ЛФТИ заключил с УПВО соответствующий договор, однако вскоре обстоятельства изменились.

Р ешающие опыты

Летом 1937 г. Опытный сектор был ликвидирован. Все его оборудование и все дела были переданы Научно-испытательному исследовательскому институту связи РККА (НИИИС РККА ), подведомственному Управлению связи Наркомата обороны . ЛФТИ было предложено доводить работу до конца своими силами. Свалившаяся на лабораторию необходимость разработки мощного передатчика вызвала перегрузку коллектива и привела к задержке всей работы.

Хотя к концу 1937 г. разработка метода модуляции излучения мощного генератора в основном и была завершена, оставались еще некоторые неясности — в работе генератора наблюдались перебои. Кроме того, предстояло еще изготовить аппаратуру, которую можно было бы перевозить без повреждений. Наконец, нужно было решить задачу передачи высокочастотных импульсов большой мощности из закрытого помещения к наружной антенне при любой погоде. Окончательное решение все эти вопросы получили лишь к лету 1938 г. Аппаратура была изготовлена, перевезена в Москву и установлена в двух зданиях НИИИСа, разнесенных приблизительно на 1 км. Одно из зданий было расположено на холме и имело маленькую надстройку над верхним этажом — комнату 4X4 м с выходом на небольшую площадку на крыше. Другое здание находилось в низине, поросшей лесом. В надстройке первого здания было расположено приемное индикаторное устройство, связанное с антенной, находившейся на крыше. Во втором здании находилось передающее устройство с такой же антенной.

При разработке передатчика предстояло решить, сохранить ли большую частоту повторений (порядка 1 кГц), на которой проводилась работа в 1937 г., или удовольствоваться гораздо меньшей частотой — частотой силовой сети (50 Гц). Высокая частота повторений могла бы обеспечить более легкое обнаружение слабых сигналов: за время восприятия картины на осциллографе (порядка 0,05 с) шумы суммировались бы, и сигнал выглядел бы более четким. Но зато возникли бы большие трудности с устранением 50-герцовых наводок на приемно-осциллографи-ческое устройство. Из-за ограниченности отведенного нам времени было решено синхронизировать работу устройства с силовой сетью. Это позволило существенно упростить схему осциллографического устройства и достаточно легко решить проблему синхронизации приемника и передатчика. Напряжение, синхронизирующее развертку осциллографа, можно было получать от питаемого от сети фазовращателя, регулировка которого давала возможность вынести зондирующий импульс в начало развертки.

Фазовращатель был построен по оригинальной схеме, предложенной Е. Я. Евстафьевым . Угол поворота регулятора на шкале этого фазовращателя в точности равнялся углу смещения фазы выходного напряжения. Теперь развертка была не спиральной, а линейной. Для определения расстояния в процессе наблюдений на экран осциллографа накладывалась лента из прозрачного материала с нанесенной на ней шкалой расстояний в километрах. Другой способ состоял в том, что на отклоняющие пластины осциллографа подавалось небольшое напряжение известной частоты, дававшее масштаб расстояний на развертке. Для документирования результатов в корпусе устройства закреплялся фотоаппарат типа ФЭД, с помощью которого можно было делать снимки экрана осциллографа.

Фото с экрана осциллографа в опытах 1938 г. Линии развертки придана волнистая форма для упрощения измерения расстояния до самолета (в данном случае оно оставляет 30 км).

Как и в 1937 г., первый запуск установки вызвал у нас чувство тревоги. Большой участок развертки после зондирующего импульса был заполнен отражениями от местных предметов. Возник вопрос, а можно ли будет увидеть на этом фоне сигнал от самолета? Вскоре, однако, стало ясно, что мешающие сигналы можно ослабить, направив оси антенн несколько вверх, «оторвав» тем самым их диаграммы направленности от земли. После этого мы стали наблюдать сигналы, отраженные от случайно летавших вблизи самолетов. Установка была признана годной для проведения испытаний, в ходе которых подтвердились все наши расчеты: были фотографически зарегистрированы отражения радиоимпульсов от самолетов, удаленных на 55 км от установки. Проблема дальнего обнаружения самолетов в принципе была решена. Полученные результаты доказали, что можно переходить к опытно-конструкторским работам по созданию станций.

Получив сообщение об исходе испытаний, А. Ф. Иоффе всемерно форсировал решение нелегкого вопроса о привлечении к работе радиопромышленности. Путь от нашей стационарной установки лабораторного типа к промышленному образцу (да еще передвижному, как того требовал НИИИС) был нелегок. Радиозавод взять на себя эту задачу не отказался, но установленные ими стоимость образца и срок его изготовления были неприемлемы. Поэтому НИИИС решил изготовить сначала передвижной макет своими силами, использовав имеющуюся аппаратуру ЛФТИ, но поиски исполнителя работы по созданию образца тем не менее продолжить. Наконец, усилиями сотрудника НИИИСа А. И. Шестакова исполнитель (НИИ радиопромышленности) был найден, и в апреле 1939 г. было принято постановление Комитета Обороны при СНК о разработке, при участии сотрудников ЛФТИ, двух образцов станций радиообнаружения самолетов. Работу возглавил один из ведущих сотрудников НИИ А. Б. Слепушкин . Передатчиком занялся Л. В. Леонов , осциллографическим индикатором — С. П. Рабинович , приемником — В. В. Тихомиров .

В начале 1940 г. были изготовлены два образца станции, состоявшей из двух разнесенных на 300 м синхронно вращавшихся кабин, в одной из которых было установлено передающее устройство, в другой — приемное. 26 июля 1940 г. станция была принята на вооружение под названием «РУС-2». Теперь можно было считать, что импульсная радиолокация твердо стоит на ногах. Еще раньше, до того как были изготовлены эти два образца, в НИИИСе под руководством А. И. Шестакова был создан аналогичный двухантенный макет (его назвали «Редут »), в котором использовались блоки установки ЛФТИ. Это был передвижной макет: два автофургона с аппаратурой внутри и антеннами на крыше, что давало возможность провести всесторонние испытания установки, в частности определить зависимость дальности ее действия от высоты полета самолета. Такие испытания были проведены осенью 1939 г. в Крыму , в районе Севастополя , при моем участии. В ходе испытаний была продемонстрирована возможность обнаружения самолетов на расстоянии до 150 км, и выяснилось, что именно можно требовать от промышленных образцов.

Вскоре после окончания севастопольских испытаний началась война с Финляндией . Макет «Редута» по инициативе А. Ф. Иоффе был установлен на Карельском перешейке, и всю войну на нем (под руководством А. И. Шестакова) шла боевая работа. Так импульсная радиолокация получила первое боевое крещение и заслужила авторитет в Ленинградском корпусе ПВО.

После первых двух образцов были изготовлены еще 10 таких же станций. Работать на них было крайне тяжело из-за непрерывного вращения кабин, и потому работы по совершенствованию станции продолжались в быстром темпе. В частности, в НИИ был разработан высокочастотный токосъемник — устройство, позволяющее вращать антенну при том, что аппаратура, находящаяся в кабине, оставалась неподвижной. Была также усовершенствована схема модуляции.

Во время советско-финляндской войны по инициативе А. Ф. Иоффе было принято решение построить под Ленинградом большую стационарную установку повышенной дальности действия для нужд противовоздушной обороны. Строительство этой установки осуществлялось исключительно быстрыми темпами при всестороннем содействии Ленинградского обкома ВКП(б) . Руководил работой Н. Я. Чернецов . Установка, построенная на высоком берегу озера близ п. Токсово, состояла из двух 20-метровых вышек, разнесенных на 100 м. На вышках находились кабины с антеннами на крышах. В одной кабине размещался генератор, в другой — приемно-осциллографическое устройство. Антенны были связаны стальным тросом и могли синфазно вращаться в пределах сектора 270°. Около вышки с генератором находился домик с помещением для модулятора с контрольным осциллографом и комнатами для отдыха персонала.

Как ни быстро шло строительство, война с Финляндией закончилась раньше. Построенная станция была использована ЛФТИ для дальнейших исследований. На ней, в частности, велись опыты по созданию системы опознавания своих самолетов. На основании полученных оценок эффективного сечения рассеяния радиоволн самолетом казалось, что, разместив на самолете полуволновый вибратор, можно, разрывая и соединяя его посередине в заранее условленном порядке, вызвать изменение величины отраженного сигнала в том же порядке. Опыты, проведенные для осуществления идеи такого «пассивного устройства опознавания», оказались неудачными, и в дальнейшем в ЛФТИ был разработан «активный ответчик» — устройство, генерирующее и излучающее импульс в ответ на пришедший к самолету зондирующий сигнал. Это устройство прошло успешные испытания в последние предвоенные дни в реальных условиях под Москвой. Они положили начало работам в этом направлении, проводившимся затем в нескольких лабораториях во время войны. Проблема опознавания своих самолетов и сегодня остается одной из важнейших проблем радиолокации.

Другой работой, проведенной на станции, было испытание в реальных условиях предложенного П. А. Погорелко способа объединения передающей и принимающей антенн. Прием велся одновременно и на антенну передатчика (для этого приемник был установлен на крыше кабины с передатчиком, непосредственно под антенной) и на «штатную» приемную антенну на другой вышке. Испытания, проведенные в июле 1940 г., показали, что сигнал от самолета появлялся и исчезал на экранах обоих приемных устройств одновременно, что доказывало возможность создания радиолокационных станций с одной антенной, имеющих ту же дальность действия, что и двухантенные станции.

Одной из проблем, над которой работали в ЛФТИ перед войной, было существенное увеличение дальности обнаружения самолетов путем применения более длительных и долго накапливаемых импульсов. Работы в этом направлении предполагалось проводить на установке в п. Токсово. Война привела к их прекращению: установка была включена по сигналу тревоги. Непрерывное круглосуточное дежурство на ней вначале велось силами лаборатории (ее состав к этому времени в связи с расширением тематики пополнился), но вскоре на установку направили воинское подразделение, которому после обучения и была передана дальнейшая ее эксплуатация, а лабораторию эвакуировали в Казань. Токсовская установка проработала всю войну. Благодаря ее высоким антеннам, на ней можно было обнаруживать самолеты на дальних подходах (до 200 км) и низколетящие цели. Это было использовано для обнаружения и уничтожения вражеских аэродромов на Карельском перешейке.

Незадолго до начала Великой Отечественной войны вышло правительственное постановление о присуждении Государственных премий СССР за выдающиеся научные работы и изобретения. Среди награжденных был и коллектив лаборатории ЛФТИ в составе П. А. Погорелко, Н. Я. Чернецова и автора этих строк. Достойно сожаления, что в коллектив не был включен инициатор работ П. К. Ощепков, организовавший и лаборатории в системе УПВО, и специальный полигон под Москвой. Его усилиями было обеспечено и проведение испытаний первой импульсной радиолокационной установки на этом полигоне.

Во время войны фронт работ в области радиолокации сильно расширился. В НИИ началось усовершенствование станций «РУС-2» и создание новых радиолокационных установок. Крупным достижением института стала разработка станции, которую можно было транспортировать в упаковках. Эта портативная станция, названная «Пегматит», легко упаковывалась в ящики и перевозилась на одной машине в указанное место. Ее можно было разместить в деревенской хате, а мачту антенны прикрепить к дереву. Станция «Пегматит» получила широкое распространение как станция предупреждения и наведения истребительной авиации. За работы в области радиолокации коллективу сотрудников НИИ радиопромышленности во главе с А. Б. Слепушкиным была присуждена Государственная премия СССР 1943 г.

В годы войны производство станций типа «РУС-2» и «РУС-2с» велось в больших масштабах — в войска было передано свыше 600 таких установок. В дальнейшем проводились работы по их совершенствованию и расширению производства.

Заслуживает быть отмеченной и другая работа НИИ военных лет — создание самолетной установки, обеспечивающей возможность наведения истребителей в ночное время — «Гнейс-2 ». Были созданы также станции обнаружения самолетов для кораблей Военно-Морского флота , нашедшие широкое применение.

Работы, о которых рассказано выше,- лишь искра, которая зажгла огромный костер. Для расширения фронта работ по радиолокации при Государственном комитете обороны был создан Совет по радиолокации, организованы научно-исследовательские институты и заводы, созданы специальные кафедры в высших учебных заведениях.

Радиолокация сегодня — это обширная область техники, которая впитывает в себя все достижения современной электроники. С помощью радиолокации мы имеем возможность заглянуть в глубь Земли и космоса. Облучая длительное время далекую планету сигналами, посылаемыми со стометровых зеркал-антенн, и анализируя отраженные сигналы, можно получить ценнейшую информацию об особенностях строения поверхности планеты. Разместив радиолокатор на космическом аппарате, можно изучать структуру поверхности планет, в том числе и Земли. Без радиолокаторов немыслима работа современных аэродромов, с их помощью осуществляется навигация морских судов и космических кораблей.

Современная техника радиолокации поражает воображение. Диапазон длин волн, в котором работают радиолокационные установки, чрезвычайно широк — от десятков метров до миллиметров. Антенны аэродромных радиолокаторов и радиолокаторов ПВО представляют собой огромные сложные сооружения, насчитывающие до нескольких тысяч элементарных излучателей. Они управляются по специальной программе, позволяющей производить обзор пространства без вращения всей антенны, определять точное положение и характеристики обнаруживаемых объектов. Иногда в шутку говорят, что с помощью современной техники радиолокации об обнаруженном самолете можно узнать все, кроме фамилии летчика.

Зондирование производится радиосигналами со сложной внутренней структурой. Изменилась и техника приема отраженных сигналов. После предварительного усиления они записываются в цифровой форме, и вся сложная процедура их анализа производится средствами ЭВМ.

Если на наземных радиолокационных станциях можно использовать антенны больших размеров, то для самолетов и космических кораблей нужны установки с небольшими антеннами. С помощью разработанного в последние годы так называемого метода синтезированной аппертуры удалось создать устройства, которые, анализируя совместно сигналы, полученные на значительном участке пути, обеспечивают такую же высокую разрешающую способность установки, как если бы антенна была больших размеров.

Не вызывает сомнения, что бурное развитие радиоэлектроники, которое происходит в наши дни, приведет к дальнейшему прогрессу в области радиолокации.

Вторая мировая война стала испытательным полигоном двух ключевых технологий XX века: ракетной и атомной. Говоря об этом, историки часто забывают упомянуть третью важнейшую военную разработку, в дальнейшем поставленную на службу мирным целям. Речь идет о радиолокации. Такая «забывчивость» связана с тем, что долгое время история появления радара из соображений секретности оставалась неясной. Однако сегодня ничто не мешает нам окончательно прояснить этот вопрос.

Александр Попов и радиоволны
В одной из статей «ИДИ» мы рассказывали, что изобретатель радио Александр Попов проводил практические испытания своего радиоприемника, используя суда и береговую инфраструктуру российского ВМФ. В 1897 году, настраивая радиосвязь между кораблями
Балтфлота, он обнаружил и описал явление отражения радиоволн от корабля. Разумеется, тогда об изобретении радара говорить было еще рано. Самые далеко идущие выводы из наблюдений Попова сделали немецкие ученые: в 1904 году Кристиан Хюльсмайер запатентовал телемобильскоп - двухантенное устройство для обнаружения кораблей на большом расстоянии. Детище сумрачной германской мысли выглядело чудовищно, работало ненадежно и военных совершенно не заинтересовало (наверное, к счастью, учитывая, что десять лет спустя Германия будет воевать против нас в Первой мировой войне). В 20-е годы физики сразу нескольких стран, отталкиваясь от исследований Попова и Хюльсмайера, проводили эксперименты с отражением радиоволн, большинство которых носило абсолютно мирный характер. В 1925 году советские ученые и инженеры Введенский, Симанов, Халезов и Аренберг доказали возможность использования ультракоротких радиоволн для точного обнаружения движущихся объектов. Но доказать мало, нужно еще и сделать.

Термин «радар» - аббревиатура от radiodetectionandranging - появился в 1941 году.

Как радар был электровизором
В начале 30-х молодой командир-зенитчик Павел Ощепков, поняв бесперспективность имевшейся тогда в ПВО акустической аппаратуры, приступает к разработке радиолокационных систем - РЛС. 3 января 1934 года в СССР радиолокационным методом был обнаружен самолет, летящий на высоте 150 метров на дальности 600 метров от радарной установки. В том же году на Ленинградском радиозаводе начали выпускать опытные образцы РЛС для системы радиообнаружения «Электровизор». Как и в начале века, вскоре нас нагнала Германия, но РЛС, появившиеся на кораблях германского флота, имели весьма ограниченный радиус действия. Достижения инженерной мысли совпали по времени с теоретическими исследованиями советского ученого-радиотехника Владимира Котельникова, позволившими усовершенствовать методы радиоприема в том числе и в целях радиолокации. С 1938 года в СССР начали серийно выпускаться РЛС «РУС-1» и «РУС-2», которые доказали свою эффективность в первые же часы войны. Благодаря тому что в Севастополе базировался крейсер «Молотов», единственный на тот момент советский корабль, оснащенный РЛС, первая атака немецких бомбардировщиков на базу Черноморского флота 22 июня была отражена. А 22 июля 1941 года расположенный в Подмосковье комплекс РЛС «РУС-2» с расстояния около 100 км обнаружил приближение 200 бомбардировщиков - первый налет немецкой авиации на Москву. Благодаря раннему оповещению наши силы ПВО смогли дезорганизовать воздушную атаку противника. Советскими истребителями и зенитными орудиями было сбито 22 вражеских бомбардировщика, большинство других немецких машин в панике поспешили избавиться от бомб, сбросив их в леса и на поля на подступах к Москве.

Украденный триумф
Если еще в 1940 году английские РЛС никуда не годились даже по сравнению с немецкими аналогами, то уже три года спустя британцы, изучив любезно предоставленные им советские схемы, создали превосходные РЛС, которым дали звучное имя «радар». Помимо дальности их коньком была точность - как им это удалось?
Вспомним, что наши физики еще до Ощепкова придумали использовать волны УКВ диапазона, что значительно повышало «прецизионность» радиолокации. Сантиметровая радиолокационная станция «Буря» испытывалась в СССР еще в 1936 году, в то время как и Германия и Великобритания вошли в войну с неэффективными радарами, работавшими в метровом диапазоне. Но к 1943 году у англичан все было «олрайт»: они задействовали радиолокаторы не только как средство противовоздушной обороны, но и для нападения - бортовые радары начали ставить на бомбардировщики, что позволило значительно повысить точность авиаударов. Именно с помощью сканирующих местность РЛС их авиация всего за четыре ночных налета уничтожила большую часть Гамбурга. В то время как советские РЛС тихо прикрывали наши города от фашистских самолетов, британцы пиарили якобы разработанные ими радары, сбрасывая бомбы на немецкие мегаполисы.
До абсурда ситуация дошла в 1946 году, когда британский премьер-министр Уинстон Черчиль заявил: «Самое выдающееся достижение в военной технике за последние 50 лет и за годы Второй мировой - изобретение радара, и это достижение целиком и полностью завоевание Великобритании». В СССР никак не отреагировали на такую «благодарность» союзника, поскольку разработки РЛС у нас все еще оставались засекреченными и афишировать их из-за чьей-то неуемной кичливости было нецелесообразно. Немцы, у которых заслуг в области разработки РЛС было побольше, чем у англичан, промолчали на правах проигравших. Как ни странно, вместо нас возмутились ближайшие союзники англичан - американцы. В журнале Look была опубликована статья, в которой открыто заявлялось: «Советские ученые успешно разработали теорию радара за несколько лет до того, как радар был изобретен в Англии».

Как и многие другие изобретения, радиолокатор был предсказан научной фантастикой. Первым его описал уроженец Люксембурга Хьюго Гернсбек . Он открыл в США радиобизнес и на заработанные деньги стал издавать научно-фантастический журнал, в котором был одним из авторов. Однако литература была слабым звеном этого одаренного человека, его книги не встали в один ряд с томами Жюля Верна и Герберта Уэллса. Принцип работы радиолокатора Гернсбек описал в 1911 году в романе «Ральф 124C 41+». Он был настолько детальным, что Роберт Уотсон-Уотт, которого в Великобритании считают изобретателем радара, узнав о романе, был сильно впечатлен и публично признал приоритет фантаста.

Уотсон-Уотт свое устройство представил лишь в 1935 году. Но еще за год до этого в СССР был успешно проведен эксперимент по обнаружению самолета радиолокатором, созданным товарищем Ощепковым. Разработки РЛС в 30-х годах прошлого века велись военными ведомствами наиболее технически продвинутых стран - СССР, Великобритании, США, Франции, Германии. И были строго засекречены, поскольку все готовились к войне. Этим и объясняется то, что у изобретения не один «отец».

Ощепков Павел Кондратьевич
Будущий изобретатель впервые сел за парту в 12 лет. Но учение ему давалось легко, он поступил сначала в техникум связи, а затем в Московский энергетический институт, который окончил досрочно и был призван в армию. Там за три месяца он провел расчеты и разработал рекомендации по технике артиллерийской стрельбы, которые под названием «Теория зенитной артиллерийской стрельбы» были размножены и стали учебным пособием для расчетов зенитных орудий. В самом начале идеи «отца» советского радара Павла Ощепкова нашли поддержку у заместителя наркома обороны Тухачевского - большого поклонника технических нововведений в армии. Но после того как в 1937 году Тухачевского репрессировали, арестовали и Ощепкова, а разработки радиолокационных систем притормозили. Только с началом войны Павел Кондратьевич был переведен в полутюремное КБ - шарашку. За его освобождение ходатайствовали такие люди, как академик Иоффе и будущий маршал Жуков. Однако время было упущено и хотя советские РЛС являлись лучшими в мире, но значительный прогресс в их разработке был достигнут только к концу Великой Отечественной.
После войны Ощепков продолжал исследования радиолокации, а также стал основоположником таких научных дисциплин, как энергоинверсия и интроскопия.


РЛС "Воронеж"

В России создано огромное множество радиолокационных средств различного назначения, работающих в разных диапазонах, которые способны отслеживать все, что движется в небе и в космосе. Например, РЛС «Дон-2Н», которой нет аналогов в мире (читайте о ней на страницах 20 и 21). Но поскольку технологии постоянно идут вперед, пришла пора заменить некоторые старые радары на более совершенные. В настоящее время на смену громоздким РЛС «Дарьял» приходят станции нового поколения «Воронеж», предназначенные для обнаружения баллистических и крылатых ракет, а также космических объектов. Преимущество новых РЛС - модульность, их можно в короткий срок собрать в любом месте. Скоро встанут на боевое дежурство загоризонтные РЛС «Контейнер». Их название говорит о том, что их также легко установить, а при необходимости разобрать и перевезти. Принцип работы загоризонтных радаров основан на том, что радиосигнал как от зеркала отражается от ионосферы и уходит далеко за горизонт, что позволяет контролировать огромное пространство. Помимо этого к 2020 году Вооруженные силы России получат порядка 800 новейших радиолокационных средств, таких как «Подлет-К1», «Гамма-М» и «Небо».


РЛС "Контейнер"