Валки холодной прокатки из чехии. Изготовление валков. Условия работы и требования к опорам прокатных валков

25.07.2019 Снилс

Значительный процент повреждений рабочих валков (в среднем около 40-50%) и в очень многих случаях преждевременный выход их из строя объясняются недо­брокачественностью изготовления валков.

а) Литье валков . В области составления шихты ряд американских и ан­глийских фирм имеет тенденцию к применению наименьшего количества компонен­тов, максимально однородных и по химическому составу (в особенности по содер­жанию кремния) и по физическим свойствам.

Английские фирмы составляют шихту для валков из 25-30% «переплава», соот­ветствующего по химическому составу изготовляемым валкам с поправкой на угар, 40-50% валковой ломи и 20-35% подшихтовочных материалов (шведский древесноугольный чугун, или чугун «холодного дутья»).

Ряд американских и английских фирм и широко применяет раскис­ление и дегазификацию расплавленного металла (в ковше), используя в качестве раскислителя ферро-карботитан и ферро-кремнетитан. Первый из них, содержащий около 15-18% Тi имеет высокую точку плавления (1400°) и трудно растворяется в основной массе, второй имеет точку плавления значительно более низкую (1200°) и поэтому дает лучшие результаты. На основе ряда исследований, произведенных в СССР, считают , что значительно целесообразнее вводить титан и алюминий в состав чушковых доменных чугунов.

Формовочные материалы должны обладать высокими физическими свойствами в отношении огнестойкости, газонепроницаемости и связывающей способности.

Отливка валков прокатных станов производится в опоках, кокилях, а также в сборных кокилях. В последнем случае шейки и трефы валков предварительно формуются в опоках, формы просушиваются, затем для бочки валка устанавливается кокиль.

Мягкие валки из серого чугуна отливаются в глиняных опоках, стальные-в специальных опоках, имеющих для бочки песчаную форму с холодильниками (фиг. 187, а).

Чугунные валки большой твердости с отбеленной поверхностью бочки отлива­ются в металлических кокилях без футеровки, тогда как кокили для полутвердых валков обмазываются внутри глиной, что противодействует резкой отбелке чугуна. Шейки и трефы валков отливаются в глиняных формах.

При производстве двухслойных чугунных валков (шведский способ) формовка производится как обычно, но только диаметр литника делается больше на 25-30%, причем для спуска промытого металла на верхней прибыли устанавливается спуск­ной жолоб (фиг. 187, б). Отливка ведется в кокилях обычной формы и размеров. Количество серого чугуна, потребного для промывки, зависит от химического состава белого и серого чугунов, веса и назначения валков. На европейских заводах оно достигает 25% от общего веса валка, на Надеждинском заводе - 40% и даже больше.


Сборные кокили устраиваются с прорезями для свободного выхода газов и для ослабления деформаций, возникающих под влиянием термических ударов, или с го­фрированной, волнообразной поверхностью, обеспечивающей меньшую овальность закаленного слоя после обработки поверхности валка на токарных станках.

На фиг. 188, а, б, в изображено кольцо сборного кокиля Никольса.

Гладкие и калиброванные закаленные и даже полутвердые валки отливаются теперь с готовыми трефами, формовка которых осуществляется по моделям в пес­чаных формах в одной опоке с шейками.

Калиброванные валки отливаются с уплотненными ручьями, для чего в отдельные участки формы чугунных кокилей помещаются холодильники.

Литниковые лейки применяются с вертикальной стенкой и квадратным сечением воронки, что способ­ствует спокойной заливке металла (патент Даниэльса) (фиг. 189, а, б).

Некоторые английские фирмы (Акрилл и др.) опоки для полутвердых валков и кокили для закаленных по­догревают перед заливкой до температуры 250 - 400° в зависимости от диаметра, химического состава и тре­буемых механических свойств валков.

Широко распространилась отливка калиброванных (фиг. 190, а) и комбинированных (фиг. 190, б) валков для сортовых и рельсобалочных станов ввиду зна­чительного экономического преимущества их перед глад­кими отливками, которые при вырезке калибров зна­чительно ослабляются.

б) Термическая обработка имеет целью уничтожение литейной неоднородности, перевод всей ме­таллической массы в твердый раствор, получение по­требной структуры и необходимой твердости, уменьше­ние внутренних напряжений.

Известная английская фирма «Брайтсайд Чиллед Грейн и Элоу Ролле» для валков со стальной основой применяет двойную или при высококачественных вал­ках даже тройную термическую обработку.

1. Первый нагрев до температуры выше верхней критической точки Асз - 50° со скоростью 15-20°/час и выдержкой при этой температуре (час на каждые 25 мм диаметра) с последующим охлаждением на воз­духе (без сквозняков) до температуры 300°.

2. Второй нагрев с 300° до температуры, близкой к нижней критической точке, с выдержкой в течение не­скольку часов для облегчения перлитного превращения.

Фиг. 187. Способы отливки валков: а - отливка сталь­ных валков по способу «Юнай­тед»; б - отливка чугунных (двухслойных) валков «швед­ским» способом

Фиг. 188. Устройство кольца сборного кокиля Никольса: а - вид сверху; б- разрез по АВ; в - разрез, показывающий углубление формы для местной закалки

3. Третий нагрев производится до температур кри­тического интервала (в зависимости от желаемой струк­туры и твердости), но не выше верхней критической точки. За нагревом следует выдержка при этой температуре (час на каждые 25 мм диаметра) с последующим насколько возможно быстрым охлаждением в печи (до 450°). Затем новая вы­держка при этой температуре (минимум час на каждые 25 мм диаметра) с по­следующим медленным охлаждением вместе с печью.

На этом же заводе режим термической обработки валков с чугунной основой заключается в следующем: нагрев (15-20°/час) ниже нижней критической точки Ас выдержка при температуре 500-450° (час на каждые 25 мм диаметра) и медленное охлаждение вместе с печью.

Чтобы облегчить уничтожение литейной неоднородности и дендритности струк­тур при термообработке, за границей широко практикуют производство валков с об­щим содержанием углерода в пределах растворимости его в основной металлической массе. Широко применяют также заливку валков при возможно более высокой температуре, причем для защиты кокилей и форм шеек и трефов, последние покры­вают при помощи пульверизатора специальной огнестойкой краской, способствующей активному удалению газов.

Внутренние напряжения, возникающие от усадки и при переходе критического интервала в углеродистых валках ослабляют охлаждением в кокилях до 180-200°; в легированных - при помощи замедленного охлаждения до температуры окружаю­щего воздуха. Высоколегированные и специальные валки нуждаются в неоднократ­ном нагреве, охлаждении, нормализации и выдержке. Охлаждение применяется как быстрое, так и замедленное, в частности охлаждение вместе с печью.

Фиг. 189. Сборный кокиль Даниэль­са: а -вид свер­ху; б - продоль­ный разрез

Фиг. 190. Отливка в кокилях калиброванных (а) и комбинированных (б) валков

Американская фирма «Люис фаундри Ко» применяет для охлаждения цилиндри­ческие кожухи, изготовленные из котельного железа с внутренним диаметром, боль­шим внешнего диаметра кокилей на 150-200 мм. Пространство между кожухом и кокилем засыпается сухим песком или другим каким-либо нетеплопроводным материалом.

Некоторые американские и английские фирмы придают большое значение вопро­су естественного и искусственного старения. Прежде чем пустить валки в работу, фирма «Пери и Сын» выдерживает их на стеллажах в течение 3-6 месяцев.

Искусственное старение прокатных валков заключается в нагреве их до темпе­ратуры ниже нижней критической точки Ас и выдержке при этой температуре с последующим медленным охлаждением.

в) Ковка валков , как и литье, тесно связана с термической их обра­боткой, отдельные операции которой чередуются со стадиями ковки, оказывая влияние на режим всего процесса в целом при изготовлении стальных кованых валков.

г) Сведения о механической обработке валков подробно излагаются ниже, здесь же приводим только общие указания о шлифовке и поли­ровке, завершающих процесс изготовления валков.

Валки твердостью до 90 единиц по Шору требуют зеркальной отделки, осу­ществляемой полировкой несколькими (2-6) шлифовальными кругами с постепенно возрастающим номером зерна (24-500). Шлифовку на предшествующих стадиях необходимо вести очень тщательно, так как дефекты шлифовки не могут быть испра­влены последующей полировкой на более тонких шлифовальных кругах.

Недостаточное охлаждение и смазка, внезапные остановки при шлифовке валка, большая подача и т. д. могут вызвать местное горение валка, приводящее к тре­щинам. Трещины могут появиться также от шлифовки валка слишком твердым кругом.

д) Хромирование валков , впервые освоенное в СССР в 1936г. на заводах «Красный гвоздильщик» , и НКМЗ , в последнее время получает все более широкое применение в технике.

Осуществленные электрическим способом хромовые покрытия придают валкам большую твердость, повышенную стойкость на истирание, пониженный коэффициент трения и высокие антикоррозийные свойства. Стойкость хромированных валков в 2-6 раз выше стойкости нехромированных . Твердость первых выше твердости вторых на 2-4 единицы по Шору.

Процесс хромирования валков можно разбить на три основных этапа: механи­ческая очистка поверхности валка, химическая подготовка, хромирование.

Механическая очистка заключается в шлифовке и полировке бочек валков. Шлифовка производится корундо-шеллаковыми кругами с зернистостью 90-120, полировка - при помощи войлочного круга, покрытого полировочной пастой (венская известь, техническое сало, стеарин и жир) или пастой ГОИ акад. Гребенщикова (прокаленная окись хрома и стеариновая кислота).

Химическая подготовка поверхности валка заключается в обезжиривании в бензине, протирке венской известью, промывке и подогреве в горячей воде (до 50°).

Нормальное проведение процесса хромирования обеспечивается установлением правильного режима, подбора состава электроли­та, его температуры и плотности тока.

На заводе «Красный гвоздильщик» состав электролита (нормальная ванна) таков: хромового ангидрида-250 г/л, серной кислоты - 2-2,5 г/л; плотность тока 15 А/дм (в начальный момент 10 А/дм ); температура электролита 45-47°.

На этом заводе хромированию подвергались валки диаметром 100-220 мм, с твердостью по Шору не ниже 90 единиц. Каждый валок помещался в отдельную ванну и, будучи подвешен крючком (фиг. 191, а) на токоподводящую ванну, служил катодом; анод имел форму цилиндра, разделенного на две части и подвешенного на крючках к токоподводящей шине.

Для лучшего сцепления хрома с основным металлом через 30-40 сек. пребывания валка в ванне подавался обратный ток. Хромирование 1лилось 2 часа, после чего валок вынимали из ванны, промывали в горячей воде и выдерживали в течение суток, прежде чем отправить на стан.

Впоследствии благодаря изменению форм анода схемы подвода тока получили возможность вместо одного хромировать одновременно несколько валков (фиг. 191, б), с расстоянием между ними а =270 мм.

Фиг. 191. Хромирование валков: а - рабочий валок (сверху) и приспособления для хромирования (снизу); б - одновременное хромирование в одной ванне трех валков

Фиг. 192. Способы хроми­рования валков и крупных деталей на НКМЗ: 1- ролик; 2 - вентиляцион­ные клапаны; 3 - анодная шина; 4 - деревянное кольцо; 5 - аноды; 6 - электролитная ванна; 7 - целлулоидный экран; 8 - водяная рубашка; 9 - за­жимной хомут, 10 - шту­цер для спуска электролита; 11 - резина; 12 -подвод тока

Большого внимания заслуживает способ хромирования крупных деталей, примененный на НКМЗ при изготовлении роликов моечной машины тонколистового стана завода «Запорожсталь».

Вследствие больших размеров роликов (диаметр 220 мм, длина 1700 и 2200 мм, соответственно хромируемые поверхности 1,36 и 1,76 м ) и ограниченной мощности источников тока (максимум 1000 А) была применена ванна (фиг. 192), в которой можно было вести хромирование по частям. Ванна представляет собой бак с водяной рубашкой, подогреваемой паровым змеевиком. В дне ванны имеется отверстие, выложенное резиной. Диаметр отверстия соответствует диаметру ролика, подвергающегося хромированию. Дно ванны выложено трехслойным целлулоидом с толщиной каждого слоя в 0,5мм.

Фиг. 193, в. Схема действия сил между полосой и валками, вызываемых трением при истечении материала

Концы роликов на длине в 360 мм сначала хромировались в обычной хромовой ванне. Для хромирования середины ролики переносили в ванну, изображенную на фиг. 192, где процесс хромирования осуществлялся поясами высотой в 350 мм каж­дый. При переходе от одного пояса к другому ролик не вынимался из ванны, а продвигался на необходимую высоту сквозь отверстие, обложенное резиной.

Исследования показали , что хромированные валки имеют твердость по от­ношению к нехромированным больше на 2-4 единицы по Шору.


Фиг. 193, а и о. Схемы буксования полосы при ее задаче в валки (а), буксования валков при выходе полосы (б)

Валки прокатных станов по сравнению с другими деталями работают в неблагоприятных условиях, так как они воспринимают большие знакопеременные изгибающие усилия и тепловые нагрузки. Поверхность валка, работающая при прокатке металла на истирание, должна обладать высокой твердостью и износостойкостью, т. е. материал валков должен быть одновременно вязким в сердцевине и достаточно твердым на рабочей поверхности бочки (не менее 90 ед. по Шору), а глубина закаленного слоя должна составлять не менее 3% от величины радиуса валка. Поковки валков холодной прокатки изготовляются способом свободной ковки на гидравлических прессах; в качестве заготовок используют крупные слитки массой 40...90 т. Перед окончательным получением заготовки валка слиток или часть его предварительно проковывается. Основная цель ковки заключается в обеспечении проработки литой структуры металла слитка, полном разрушении карбидной сетки и измельчении зерна, достижении наиболее выгодного расположения волокон в поковке и получении необходимых механических свойств металла в поперечном, продольном направлениях и по сечению поковки. Из двух существующих схем ковки: «круг -- круг» и «круг -- квадрат -- круг» более предпочтительной является последняя, так как с ее помощью обеспечивается получение более качественной структуры металла поковки, достигается лучшая прорабатываем ость слоев сердцевины и завариваемость макро- и микронесплошностей металла, что определяется его металлургическими свойствами. Поковки крупных валков массой более 3 т следует изготовлять с двумя осадками слитков. Правильный выбор степени деформации при осадке слитков обеспечивает улучшение качества поковок и повышение прочности и износостойкости валков. Технологическая схема ковки валков предусматривает биллетировку слитка, осадку, предварительную протяжку, а также ковку на окончательные размеры.

Особое место в технологии изготовления валков холодной прокатки занимает термическая обработка, с помощью которой обеспечивается получение необходимых свойств материала валка.

В качестве предварительной термообработки при изготовлении валков используют изотермический отжиг, сущность которого заключается в перекристаллизации стали при температуре 950...960 .° С, последующем охлаждении в печи до 300...350.° С, изотермической выдержке при температуре 700...710СС и медленном охлаждении. Предварительная термообработка производится после обдирки поковки валка с припуском 8...12 мм и глубокого сверления центрального отверстия. Для подготовки структуры под поверхностную закалку применяется нормализация с отпуском: нормализация производится при температурах 850...870.°С с последующим охлаждением валков на воздухе и нагревом под отпуск до 600,..620.° С; отпуск обеспечивает получение требуемой твердости на шейках валков в пределах 35...55 ед. по Шору. Закалка валков осуществляется путем нагрева током промышленной 50 Гц или высокой частоты 1000 Гц, а также с помощью газопламенного нагрева. Износостойкость и долговечность работы валков в значительной степени зависят от величины и распределения остаточных напряжений, возникающих при термообработке. Рабочие валки тяжелонагруженных станов холодной прокатки нуждаются в закалке с предварительным подогревом по всему сечению валка до температуры 600...650.°С или с предварительным подогревом поверхности валка до 800...820.° С с помощью тока промышленной частоты. Дополнительное охлаждение должно осуществляться через поверхность осевого отверстия валка, в результате чего получается наиболее рациональное распределение остаточных напряжений по сечению валка.

Малонагруженные валки холодной прокатки закаливают с подогревом внутренних слоев до 500...550 . С; это снижает уровень растягивающих напряжений на поверхности валка и не вызывает образования больших напряжений растяжения во внутренних слоях.

Крупные валки, работающие в легких условиях эксплуатации, можно закаливать с подогревом центральной зоны бочки до 300...400 .° С без дополнительного внутреннего охлаждения. После закалки током промышленной частоты при температуре 900...910.°С и последующего отпуска при 400...520. С достигается твердость рабочей поверхности валка в пределах 45...90 ед. по Шору (в зависимости от технических требований на изготовление валка). Термическая обработка, результатом которой является сочетание высокой вязкости металла в сердцевине с высокой твердостью поверхности валка, повышает долговечность работы валков прокатных станов. Последовательность обработки валка состоит из следующих этапов: черновая обработка поверхности валка под изотермический отжиг и нормализация с припуском 8...12 мм; глубокое сверление центрального канала и растачивание камеры; изотермический отжиг и нормализация; обработка под закалку поверхности бочки с припуском 0,5...1,5 мм и шеек с припуском 5...6 мм; обработка всех мелких поверхностей; закалка токами промышленной частоты с отпуском; обработка закаленных валков под второй отпуск; второй отпуск для снятия напряжений; окончательная механическая обработка. Обработка крупных валков начинается с разметки осевых линий и центров. После центрования отверстий валок устанавливается на токарном станке, где обрабатываются шейки под люнеты и базовые поверхности установки на станке для глубокого сверления; торцы валка намечаются с припуском 5...6 мм; концы заготовки отрезаются по намеченным надрезам. Центральное отверстие обрабатывается сверлом для глубокого сверления с последующим растачиванием камеры. В процессе глубокого сверления возникают значительные технологические трудности, связанные со сверлением консольным инструментом, имеющим значительный вылет, трудностью получения прямолинейной оси и цилиндрической формы отверстия, ухудшением теплоотвода и охлаждения инструмента. Для глубокого сверления применяются перовые, пушечные, двух - и четырех-кромочные и кольцевые сверла; последние используют при сверлении отверстий диаметром свыше 70 мм.

Четырех кромочные сверла с напайными твердосплавными пластинками для сверления глубоких отверстий диаметром до 70 мм. Двухперое четырехкромочное сверло при сверлении валков длиной до 7500 мм дает увод отверстия 10...15 мм; четырехкромочное сверло с центральной выточкой позволяет уменьшить увод до 1...1.5 мм на той же длине сверления. При сверлении глубоких отверстий диаметром более 70 мм применяют кольцевые сверла. С помощью режущих пластинок сверла, закрепленных в корпусе, выбирают кольцевую канавку в обрабатываемой заготовке. Прочность шеек вала зависит от диаметра осевого отверстия, поэтому в полости бочки растачивается камера с плавными переходами от осевого отверстия. Растачивание ведется при работе борштанги на сжатие или на растяжение. Производительность расточки повышается при работе борштанги на сжатие. После изотермического отжига и нормализации валок обрабатывают под закалку; устанавливают в отверстие временные пробки и на токарном станке протачивают на шейках две выточки под люнеты, пробки удаляют. Поверхность валка не должна иметь острых кромок и рисок, переход от одной поверхности к другой должен выполняться плавно, через галтели. Перед закалкой следует обрабатывать различные мелкие поверхности. Трефы обрабатываются на специальных трефофрезерных станках в размер. На продольно-фрезерных станках фрезеруются шпоночные пазы или квадраты с припуском на сторону 2 мм; радиальные отверстия сверлятся в размер. После закалки валок устанавливают в патроне и люнете с точностью до 0,25 мм, используя бочку как базовую поверхность, после чего растачивают отверстия под центровые пробки. Пробки после охлаждения в жидком азоте запрессовывают в отверстие. Деталь устанавливают в центрах и протачивают бочку до устранения биения. Для повышения производительности при обработке закаленных валков используют точение резцами с широкими лезвиями, оснащенными минералокерамическими пластинками из сплава ВЗ.

Задний угол резца с широким лезвием--6е, передний угол -- (--6а), угол наклона режущей кромки -- 13°, ширина фаски режущей кромки --0,5 мм. Валки площадью до 26 м обрабатывают резцами с такими геометрическими параметрами. Шероховатость поверхности при этом не превышает Ra = 1,25 мкм. При шлифовании валок устанавливается в центрах, поверхность бочки шлифуется до снятия следов токарной обработки. При этом необходимо поддерживать правильный режим охлаждения и правки круга во избежание появления прижогов, которые снижают поверхностную твердость валков и способствуют появлению микротрещин. Затем проводится окончательная обработка мелких поверхностей -- пазов, трефов, шлицев н. т. п. После второго отпуска выполняют чистовое шлифование поверхности бочки и окончательную обработку шеек валков. Заправку галтелей после шлифования производят твердосплавными радиусными резцами на токарном станке. В качестве материала для изготовления валков горячей прокатки используют легированные стали, а также чугун с отбеленной поверхностью. Валок для горячей прокатки. Валок изготовляется из стали 55Х, масса детали 20 890 кг, масса заготовки 26 000 кг. Технологический процесс обработки валка для горячей прокатки аналогичен процессу обработки валков для холодной прокатки, но несколько проще, Обработка валка делится на три стадии: черновую обработку заготовки, термическую и чистовую обработки. На заготовку наносят осевые линии и центры, а затем проверяются величина и расположение припусков на обработку. Целью токарной черновой операции является снятие основной массы металла припуска с поверхности валка и с торцов, а также подготовка валка к термической обработке.

При этом надрезается прибыль, которая удаляется на слесарной операции; здесь же проверяется твердость бочки и шеек валка, а также размечается лопатка под черновую обработку. Деталь передается на термическую обработку, которая производится с целью улучшения структуры, устранения внутренних напряжений и получения твердости.

После термообработки исправляются центровые гнезда детали, и производится чистовая токарная обработка, которая должна обеспечить точность и концентричность всех цилиндрических поверхностей, перпендикулярность к ним торцов детали и требуемую шероховатость поверхности. Перед шлифованием или упрочняющим обкатыванием роликом предварительно протачивают шейки валка. Обкатка шеек валков производится на тяжелых токарных станках специальными рычажными или гидравлическими устройствами. На токарном станке за счет натяжения суппорта винтом поперечной подач» нельзя получить силу обкатки выше 3000 ДаН.

Гидравлическое обкатное устройство для обработки валов большого диаметра. Усилие обкатки (до 6000 ДаН) создается автономным гидравлическим цилиндром установленным в корпусе; оно передается на поверхность детали через тарельчатые пружины, снижающие жесткость системы. Недопустимые перекосы цилиндрических роликов во время обкатки устраняются за счет их самоустановки; для этого головка, несущая рабочий ролик диаметром 32 мм, свободно поворачивается на цапфах вокруг оси, перпендикулярной к линии контакта ролика с деталью. Под действием момента, возникающего при перекосах, ролик поворачивается до восстановления равномерного контакта с деталью по всей длине образующей. После разметки трефы обрабатывают начерно, а затем начисто на расточном станке. При изготовлении валков из отбеленного чугуна твердость на поверхности бочки составляет НВ 500...650, что способствует увеличению их стойкости. При механической обработке отбеленных чугунных валков трудно обеспечить требуемую производительность процесса. Значительного увеличения производительности при изготовлении валков из отбеленного чугуна можно добиться, применяя шлифование только для снятия литейной корки, а лезвийную обработку использовать в качестве основной обдирочной операции. Для увеличения стойкости резцов из сплавов ВК применяют резание при вводе в зону обработки низкого напряжения, а также резание с предварительным подогревом поверхности заготовки. Прокатные валки. Валки для прокатных станов

ковка заготовка сортовый листовой

Валки прокатные

рабочий орган (инструмент) прокатного стана (В. п. выполняется основная операция прокатки - деформация (обжатие) металла для придания ему требуемых размеров и формы. В. п. состоят из трёх элементов (рис.): бочки, двух шеек (цапф), приводного конца валка («трефа»). В. п. делятся на листовые и сортовые. Листовые применяют для прокатки листов, полос и ленты; бочка у этих валков цилиндрическая либо слегка выпуклая или вогнутая; такие валки называют также гладкими. Сортовые служат для прокатки фасонного (сортового) металла (круглого и квадратного сечения, рельсов, двутавровых балок и др.); на поверхности бочки этих В. п. делают углубления, соответствующие профилю прокатываемого металла. Эти углубления называют ручьями (ручьи двух В. п. образуют калибры), а В. п. - ручьевыми (калиброванными).

Основные размеры В. п. (диаметр и длина бочки) зависят от сортамента прокатываемой продукции. Диаметр В. п. для горячей прокатки составляет от 250-300 мм (прокатка проволоки) до 1000-1400 мм (прокатка блюмов и слябов). Для холодной прокатки применяют В. п. диаметром от 5 мм (на 20-валковых станах при прокатке фольги) до 600 мм (на 4-валковых станах при прокатке тонких полос).

6. Классификация валков по твёрдости. Материал, типы, размеры

Развитие прокатного производства в сторону расширения сортамента связано с увеличением выпуска различных прокатных валков, проводок, роликов, направляющих прокатных станов. Такие детали изготавливают из чугуна, литой или деформированной стали, твердых сплавов. Прокатные валки являются основной рабочей частью прокатного стана, которая создает определенные размеры, форму и качество поверхности проката. К материалу валков предъявляют разнообразные и, часто, противоречивые требования, поэтому универсальной стали или сплава для их изготовления нет.

В общем случае материал валков должен обладать высокой поверхностной твердостью и прочностью, износостойкостью. Если валок работает в условиях теплосмен (горячая прокатка), материал должен иметь достаточную теплостойкость. При выборе чугуна в качестве материала для изготовления валка необходимо учесть тип стана, способ прокатки, производительность стана и другие технологические характеристики. Кроме прокатных, чугунные валки применяют в резинотехнической, бумагоделательной, мукомольной и других отраслях промышленности. Преимущества чугуна, как материала для их изготовления, возрастают с увеличением размеров валка. Существующие технологии производства чугунных отливок позволяют получать заготовки валков массой от 0,5 до 40 т и более. Такими составляющими являются карбиды. В чугуне с обычным содержанием элементов наиболее распространенным является карбид железа – цементит Fe3C. Можно считать, что износостойкость определяется твердостью чугуна с однотипным фазовым составом и чем выше твердость, тем выше износостойкость. Следует иметь в виду, что повышение твердости, как правило, сопровождается очень резким ухудшением литейных свойств, склонности к образованию трещин, обрабатываемости резанием. Поэтому при выборе марки чугуна в каждом конкретном случае следует учитывать, наряду с механическими свойствами, конфигурацию и размер отливки. Придание конструкции заготовки технологичных литейных форм, сокращение объемов механической обработки, являются обязательным условием получения качественной отливки.

Основные структурные составляющие чугуна располагаются по возрастанию твердости и износостойкости в такой ряд: графит, феррит, перлит, аустенит, мартенсит, цементит, легированный цементит, специальные карбиды хрома, вольфрама, ванадия и др., бориды. Износостойкость находится в сложной зависимости от количественного соотношения и распределения твердой, хрупкой фазы и сравнительно мягкой, пластичной основы.

Требованиям, предъявляемым к материалу валков, отвечает чугун, имеющий в поверхностном слое отливки большое количество структурно свободной карбидной фазы. Регулирование состояния металлической основы за счет легирования позволяет в достаточно широком интервале изменять износостойкость, термостойкость и обрабатываемость такого чугуна. Более глубокие внутренние слои могут не содержать карбиды, поэтому в отливке формируется несколько слоев, отличающихся структурой и свойствами. Таким образом, в поверхностном слое чугун содержит карбидную эвтектику, в более глубоких слоях углерод может выделяться в виде графита. Матрица может быть различной и зависит от состава чугуна, скорости охлаждения отливки и проведения термической обработки. В результате появления фаз с различными коэффициентами термического расширения в отливках возникают значительные внутренние напряжения. Для снятия напряжений и получения требуемых механических свойств литье подвергают термической обработке. При этом основное требование – отбеленная часть не должна претерпевать существенных изменений ни при термической обработке, ни в процессе эксплуатации.

Металлургия - одна из основных отраслей современного производства. Именно благодаря ей в бюджет государства идут колоссальные финансовые поступления, ведь стальная и чугунная продукция, как правило, идет на экспорт и формирует валютную выручку как самого комбината или завода, так и страны. Существуют различные металлургические предприятия, рабочий цикл которых может быть как полным, так и неполным. Но в любом случае финальным этапом металлургического цикла будет являться прокатка металла с целью получения требуемого для потребителя профиля. Именно в прокатных цехах производят балки, швеллеры, рельсы и прочее. Основными элементами любого прокатного стана являются прокатные валки. Заводы металлургического комплекса без них просто немыслимы, поэтому о валках поговорим подробно в этой статье.

Общее описание

Прокат металла - операция достаточно сложная, энергозатратная и требующая наличия специальных навыков и знаний от персонала. Обжатие материала, которое производит прокатный валок, позволяет достичь определённых размеров обрабатываемого профиля. Важно знать, что валки в процессе своей работы берут на себя внушительное усилие, которое возникает непосредственно в процессе работы всей прокатной линии. Именно поэтому прокатный валок - наиболее изнашивающаяся часть любого прокатного стана.

Составные части и характеристики

Все прокатные валки имеют три основных компонента, в числе которых:

  • Бочка валка. Именно она находится в непосредственном контакте с раскалённым и подвергаемым обработке металлом. У бочки есть два главных линейных параметра - длина (L) и диаметр (ØD).
  • Шейки (опорные части) - расположены по бокам от бочки и опираются на подшипники валка. Также характеризуются длиной и диаметром.
  • Приводной конец.

Для валко-сортового стана главными показателями считаются: номинальный диаметр, диаметр буртов и рабочий диаметр. В тех случаях, когда прокатный валок служит для вращения с помощью шпинделя универсального типа, его приводной конец будет иметь форму лопасти или цилиндра. Вид крестовины приводной конец будет иметь, если предусмотрено вращение валка с помощью трефа (обязательно наличие промежуточной муфты).

Валки для листового проката

Листовые прокатные валки, изготовление которых - достаточно трудоемкий процесс, выполняют прокатку ленты, полос. Бочка у таких валков гладкая, выполнена в цилиндрической форме.

Валки сортопрокатные используются для изготовления фасонного материала, который может иметь как круглое, так и квадратное сечение уголки).

Бочки прокатных валков делают немного выпуклыми, если они предназначены для холодной прокатки тонколистового проката. В остальных случаях для горячей прокатки бочке валка придают вогнутую форму. Это делается потому, что в момент движения металла по валку бочка его будет нагреваться и выпрямляться.

Валки для сортового проката

Бочка таких валков имеет специальные углубления (ручьи), которые повторяют профиль прокатываемого впоследствии металла. Ручьи пары валков при соединении между собой образовывают калибр. Длина бочки сортовых валков находится в зависимости от ширины прокатываемой заготовки и условий калибровки.

Сортовые валки характеризуются номинальным диаметром и длиной бочки. Если же стан имеет много клетей и различные по диаметру валки, то доминирующим будет диаметр валков чистовой клети.

По назначению сортовые валки разделяются следующим образом:

  • Для тяжёлых обжимных станов.
  • Для крупносортовых и рельсобалочных станов.
  • Для среднесортового проката.
  • Для мелкосортового проката.
  • Для проволочных станов.
  • Для штрипосвых станов.

Центробежное литье

Прокатных валков в качестве одного из основных методов предусматривает способ Этот метод является весьма дорогостоящим, однако он в полной мере позволяет по максимуму уплотнить структуру металла наружной поверхности, которая и является рабочей у валка. Такой подход позволяет в значительной степени увеличить срок службы изделия.

Для данного способа применяют специальную машину, имеющую горизонтальную ось вращения формы центробежного литья. Сама форма установлена на опорные ролики. Приводные ролики смонтированы таким образом, что в полной мере обеспечивают синхронизацию процесса вращения. Расположенный вверху страховочный ролик имеет зазор относительно обода катания самой формы. Для поглощения вибрации между роликами и ступицей имеются демпфирующие прокладки. Снижение уровня вибрации и колебания формы сводит к нулю вероятность получения брака.

Литье валков центробежным методом осуществляют из высоколегированного чугуна. Во вращающийся вокруг своей вертикальной оси кокиль заливают металл, объем которого находится в пределах 95 % от всего объема рабочего слоя прокатного валка.

Неоспоримыми преимуществами центробежного литья являются:


Метод ковки

Это самый дорогостоящий метод производства прокатных валков, который тем не менее дает возможность максимально упрочнить полностью все тело валка. Благодаря этому существенно повышаются надёжность и долговечность.

Сама же ковка выполняется на специальных автоматизированных комплексах, разработанных и изготовленных с использованием передовых технологий. Мощность этих агрегатов может составлять до 150 МН.

Полученные таким способом валки чаще всего применяют на блюмингах и слябингах, а также сортовых станах. Эти стальные валки обладают повышенным в момент соприкосновения с прокатываемой заготовкой. Такой нюанс крайне важен для клетей с высокой степенью обжатия.

Сама по себе ковка предусматривает следующие операции:

  • Биллетировку слитка.
  • Осадку.
  • Протяжку.
  • Ковку на размер поковки.

Обработка прокатных валков после ковки предусматривает сложную термическую обработку, заключительным этапом которой непременно являются и отпуск.

Титан производства

Сегодня Россия входит в число тех стран, которые регулируют мировой рынок стали и сплавов. Поэтому созданию комплектующих и деталей для металлургии в стране уделено самое пристальное внимание. В частности, Магнитогорский завод прокатных валков - один из лидеров по выпуску данной продукции.

В июле 2016 года на этом предприятии были запущены новые высокопроизводительные тигельные Эти высокотехнологичные агрегаты позволят выпускать сложнолегированные сплавы, снизить количество потребляемых ферросплавов и шихты. При этом снижение потребления электроэнергии составит порядка 10 %. Режим плавления можно будет осуществлять с частотой 250 Гц, а доводку и перемешивание - с частотой 125 Гц. Немаловажно и соблюдение экологических требований: снижение вредных выбросов на этих печах произойдет в 2,6 раза.

В целом уральское предприятие регулярно снабжает рынок прокатных валков своей продукцией и является активно развивающимся предприятием.

Свердловский гигант

Нельзя также обойти вниманием и Кушвинский завод прокатных валков. Его продукцией являются все виды валков, бандажи для них. На предприятии валки прокатных станов производятся с применением таких материалов для рабочего слоя, как:

  • Индефинит.
  • Индефинит, улучшенный специальными карбидами.
  • Высокохромистый чугун.
  • Высокохромистая сталь.
  • Быстрорежущая сталь.

Шейки и сердцевина листопрокатных валков выпускаются из особо прочного чугуна.

Валки для сортопрокатных станов производятся на основе бейнитных и перлитных с шаровидной или пластинчатой формой графита.

Украинские производители

В Украине существуют три основных предприятия по производству прокатных валков: Днепропетровский, Лутугинский и Новокраматорский заводы прокатных валков.

Днепровский комбинат имеет широчайшую номенклатуру производства валков, причем не только для металлургии, но и для других отраслей. Очень часто предприятие работает для конкретного заказчика, подключая своих высококвалифицированных специалистов из технического отдела для создания разнообразных чертежей и новых моделей валков.

До начала боевых действий на Донбассе в 2014 году в когорту лучших стабильно входил и Лутугинский завод прокатных валков. Его продукция поставлялась не только на все металлургические предприятия Украины, но и во многие страны ближнего зарубежья и Европы. Однако военный конфликт привёл к тому, что завод был остановлен. Пострадали и основные фонды предприятия. Но все же в 2015 году удалось вновь запустить предприятие, а в наши дни оно начало получать заказы из Российской Федерации.

Контроль над качеством валков

В процессе производства абсолютно каждый прокатный валок в обязательном порядке проходит процедуру технического контроля качества его изготовления. Особое внимание уделяется:


Упаковка

Все прокатные валки (заводы, производящие их, имеют соответствующие сертификаты качества) поставляются к потребителю в специальной упаковке. Эта тара зачастую представляет собой деревянные ящики с перегородками, внутри которых укладываются валки и надежно закрепляются стяжными элементами. Упаковочному контейнеру производители уделяют также пристальное внимание, ведь плохое крепление валков и отсутствие надлежащей защиты рабочей и посадочной поверхностей промышленного изделия вполне могут привести к негативным последствиям в вопросе качества валков.

Заключение

Прокатные валки, технология производства которых была детально рассмотрена выше, оказывают существенное влияние на получаемую в итоге с их помощью продукцию. Поэтому ведущие мировые производители проката уделяют особо пристальное внимание этому элементу. Каждый руководитель металлургического предприятия прекрасно понимает, что от технического состояния прокатного стана в целом и прокатных валков в частности будет во многом зависеть итоговая рентабельность всего производства.

Классифицируются валки:

1. По назначению:

а) сортовые;

б) листовые.

2. По материалу:

а) стальные;

б) чугунные.

3. По твердости:

а) мягкие НВ<270;

б) полутвердые НВ=270-420;

в) твердые НВ=420-600;

г) сверхтвердые, твердость по Шору > 100 единиц.

Валки прокатных станов могут изготавливаться как цельными (литыми или кованными), так и составными. При горячей прокатке на обжимных станах используют литые или кованные валки из углеродистой стали большой вязкостью. Для листовых и сортовых станов валки должны быть прочными и иметь высокую поверхностную твердость. У этих валков мягкая сердцевина, которая сопротивляется изгибу, и твердая поверхность, хорошо сопротивляющаяся износу. Для станов холодной прокатки требуются валки с высокой поверхностной твердостью (для рабочих - до 100HSD, для опорных – до 80HSD) и большой прочностью (800 – 900 МПА) для восприятия больших деформаций. При диаметре валков до 300мм. в качестве материалов для их изготовления используются стали 9Х; 9Х2. При диаметре валков более 300мм. используются стали 9Х2; 9Х2В; 9Х2МФ.

У составных (бандажированных) валков втулка изготавливается из выше перечисленных сталей, а для оси - стали 55Х; 60ХН; 80ХН3В.

Рабочие валки для прокатки ленты до 0,05мм. изготавливают из керамических твердых сплавов.

4.1.1.Определение геометрических размеров прокатных валков

Средняя часть валка, соприкасающаяся с металлом, называется бочкой (Рисунок 7). По обе стороны бочки расположены шейки, которыми он опирается на подшипники. В зависимости от типа подшипников шейки могут быть цилиндрическими или коническими. Для соединения валка со шпинделем концы валков выполняют в виде вилки или трефа. Сортовые валки отличаются от листовых наличием ручьев, нарезаемых на бочке на токарных станках.

Размеры прокатных валков регламентированы ГОСТом и выбираются с учетом стана, на котором они устанавливаются. Исходным размером при проектировании валков является диаметр бочки, а остальные размеры определяются по определенным соотношениям.

Рисунок 7 - Листовой валок

Длина бочки листового стана принимается равной (2,2 2,8) , но не менее, чем В + 100 мм,

где В - ширина листа.

При выполнении шеек валков, устанавливаемых в подшипниках сколь­жения, для большинства листовых станов:

где диаметр шейки валка;

- длина шейки валка.

При установке валков на подшипниках качения из-за их большого габарита диаметр шейки приходится назначать несколько меньше:

Плоские концы валков для соединения при передаче вращения универсальным шпинделям выполнены со следующими размерами:

мм,

где - минимальный диаметр валка после переточки принимается равным

Рабочий диаметр валков выбирают с учетом допустимого угла захвата, сопротивляемости валков изгибу и условия получения минимальной стрелы прогиба.

Для обжимных, сортовых, а также толстолистовых станов, определяющим при выборе диаметра бочки, является условие захвата металла валками:

Для обжимных станов о; для сортовых, толстолистовых станов

aзах =16-18 о.

Для станов холодной прокатки диаметр рабочих валков определяется соотношением:

D = (2500 – 3000)hmin ,

где hmin – минимальная толщина прокатываемого металла.

4.1.2. Расчет на прочность листового валка

Опасные сечения валка находятся посередине бочки (1-1) и в мес­те соединения цапфы с бочкой (11-11). В сечении 1-1 валок рассчитывается на изгиб, в сечении 11-11 - на изгиб и кручение. Изгибающий момент в сечении 1-1:

напряжение изгиба в этом сечении

Изгибающий момент в сечении 11-11:

напряжения изгиба и кручения в сечении 11-11

где - крутящий момент, передаваемый шейкой (момент прокатки), Приведенное напряжение в сечении 11-11

Полученные напряжения , и должны быть равны или меньше допустимого, выбираемого исходя из пятикратного запаса прочности по пределу прочности материала валка.

Валки из кованой углеродистой стали обычно имеют пределы проч­ности н/мм 2 , из литой стали - н/мм 2 , чугунные - н/мм 2 .

У приводного конца валка, выполненного в форме плоской лопасти, наиболее опасным является сечение 111-111. Давление на боковую поверхность одной ветви лопасти со стороны головки универсального шпинделя определяется по формуле

Изгибающий момент в сечении ІІІ-ІІІ

где - максимальный угол отклонения - универсального шпинделя от оси валка ();

момент кручения ;

напряжение изгиба

напряжение кручения

где - коэффициент, зависящий от отношения , определяемый по таблице 2:

Значения коэффициента Таблица 2

0,208 I,5 0,346 0,495
0,801 1,15 1,788

Приведенное напряжение


4.1.3. Расчет валков на жесткость

Под воздействием больших усилий прокатки валки прогибаются, что приводит к разнотолщинности металла по ширине. Для компенсации прогиба листовых валков бочку их делают выпуклой на величину разностей прогибов в центре валка () и у края листа (). Наибольший прогиб валков происходит под действием изгибающих моментов. Но так как диаметр валков по сравнению с длиной бочки относительно велик, то необходимо учитывать прогиб, вызванный действием перерезывающих сил.