3d принтер с технологией лазерной стереолитографии. Преимущества и недостатки SLA-технологии. Печать функциональных прототипов

Она же 3D печать SLA, является не только одной из первых в мире, но и одной из самых точных методик аддитивного производства. В некотором роде она уникальна, ведь в ней в качестве расходного материала применяется жидкая . Суть технологии заключается в засветке фотополимера по определенному алгоритму (заданному программой-слайсером на основе 3D модели). Под воздействием лазерного излучения смола застывает, формируя готовый объект.

Как и в , 3D печать SLA параллельно с построением объекта требует построения поддерживающих структур при наличии в модели нависающих элементов. По сути, эта методика напоминает SLS 3D печать, но вместо порошка выступает жидкий фотополимер. В остальном это то же самое послойное воспроизведение изделий по заданным . Более подробно о том, как функционирует 3D печать SLA, мы расскажем ниже.

Особенности работы

Для того, чтобы понять, как происходит процесс 3Д печати, необходимо разобраться с тем, как устроен SLA . В этом вам поможет изображение, прикрепленное ниже, на котором изображена схема классического стереолитографического принтера. Мы говорим классического, потому что именно таковой является запатентованная технология SLA печати. Такая конструкция также применяется в для 3Д печати SLA. Что касается уже вошедших в употребление настольных SLA 3D принтеров, в них используется так называемая «3D печать SLA вверх-ногами». Что это значит?

Сперва опишем процесс печати на изображении выше. В нем лазер расположен сверху, а рабочая платформа постепенно опускается вниз. Итак, в емкость с фотополимером погружается сетчатая платформа, на глубину не более 0,05-0,13 мм (именно таковой является толщина слоя). После чего активируется лазер, оказывающий воздействие на определенные участки материала (заданные программой). Воздействие лазерного излучения вызывает затвердение первого слоя фотополимера. Далее платформа опускается еще на слой ниже, лазер снова активируется, продолжая формировать объект, и так до окончательного построения изделия.

Что касается процесса , применяемого в настольных , принцип абсолютно тот же. С той лишь разницей, что лазер расположен под емкостью с фотополимером, а при построении изделия платформа не опускается, а постепенно поднимается вверх. Общим для обоих вариантов является промывание изделия в специальных растворах по завершению 3Д печати, а также облучение готовой модели ультрафиолетовым светом. Первое нужно для окончательной очистки изделия от остатков фотополимера, а второе для полного отверждения изделия.

Отличия от DLP 3D печати

На основе SLA 3D печати разработано несколько других методик, одной из которых является DLP 3D печать. Ввиду обретения последней достаточной популярности, мы сочли целесообразным сказать несколько слов и о ней. Принципиальной разницы между этими методиками нет, но о некоторых отличиях следует упомянуть. Итак, чем же 3D печать SLA отличается от DLP 3D печати? Все очень просто: вместо лазера в DLP 3Д принтерах используется проектор, который засвечивает целый слой одновременно, а не постепенно, как лазер в стереолитографии.

Считается, что за счет этого DLP печать позволяет воспроизводить объекты немного быстрее. Однако эта разница не настолько велика, чтобы вытеснить стереолитографические принтеры с рынка 3D печати. Кроме того, в 3D-принтерах DLP применяются фотополимерные смолы с другой длиной волны засветки, а качество 3Д-печати на некоторых моделях уступает качеству печати SLA-принтеров. Но, повторимся, существенных различий между технологиями нет.

Применяемые материалы

Как мы писали выше, в 3D принтерах, работающих по технологии лазерной стереолитографии, применяются жидкие фотополимерные смолы, называемые еще фотополимерами. Это особые вещества, которые меняют свои свойства под воздействием света. Чаще всего активным излучением является ультрафиолетовое. Дантистам хорошо знаком термин «фотополимер», ведь аналогичные вещества широко применяются в стоматологической практике. По сути, это тот случай, когда одной вещи нашлось несколько различных применений.

Какие же фотополимеры использует 3D печать SLA? Разнообразнейшие. Даже на рынке настольных 3D принтеров сегодня можно найти и , и , и фотополимерные смолы всех цветов и оттенков. Конечно, ассортимент еще не настолько широк, как, к примеру, в FDM 3D печати, но именно 3D печать SLA и расходные материалы к ней находятся на втором месте по популярности среди пользователей.

Аддитивные технологии, 3D печать - это инновационный способ послойного получения (выращивания) единичных изделий различного уровня сложности и функционального предназначения из широкого спектра материалов. Данная технология позволяет получить сверхсложные модели из различных материалов на одном устройстве и практически лишена отходов производства в отличие от классических методов субтрактивной обработки заготовок (методом отсечения или вычитания лишнего материала). 3D принтеры имеют различные функциональные возможности в зависимости от позиционирования для различного применения (домашнее использование, начальное и среднее образование, реклама и дизайн, медицина, наука, опытное и промышленное производство), что определяет их цену, сроки производства и требования к уровню обслуживающего персонала. Самый простой 3D принтер можно даже создать в домашних условиях (из конструктора) или напечать на другом 3D принтере для него необходимые части. Однако, возможности такого устройства 3D печати будет сильно отставать по функциональности от профессиональных систем 3D прототипирования.

FDM- Fused Deposition Modeling (пластик)

Данная технология аддитивного производства, широко используемая при создании трехмерных моделей, при прототипировании и в промышленном производстве. Технология FDM подразумевает создание трехмерных объектов за счет нанесения последовательных слоев расплавленного полимерного материала, повторяющих контуры цифровой модели. Как правило, в качестве материалов для печати выступают термопластики, поставляемые в виде катушек нитей или прутков.

Изделие, или «модель», производится выдавливанием («экструзией») и нанесением микрокапель расплавленного термопластика с формированием последовательных слоев, застывающих сразу после экструдирования. Пластиковая нить разматывается с катушки и подается в экструдер - устройство, оснащенное механическим приводом для подачи нити, нагревательным элементом для ее плавления и соплом, через которое осуществляется экструзия. Экструдер перемещается в горизонтальной и вертикальной плоскостях под контролем алгоритмов, аналогичных используемым в станках с числовым программным управлением. Сопло перемещается по траектории, заданной системой автоматизированного проектирования (САПР / CAD). Модель строится слой за слоем, снизу вверх. Как правило, экструдер (также называемый «печатной головкой») приводится в движение пошаговыми моторами или сервоприводами. Наиболее популярной системой координат, применяемой в FDM, является Декартова система, построенная на прямоугольном трехмерном пространстве с осями X, Y и Z.

Технология FDM отличается высокой гибкостью, но имеет определенные ограничения. Хотя создание нависающих структур возможно при небольших углах наклона, в случае с большими углами необходимо использование поддерживающих структур, как правило, создающихся в процессе печати и отделяемых от модели по завершении процесса.

В качестве расходных материалов доступны всевозможные термопластики и композиты, включая ABS, PLA, поликарбонаты, полиамиды, полистирол, лигнин и многие другие. Как правило, различные материалы предоставляют выбор баланса между определенными прочностными и температурными характеристиками.

Моделирование методом послойного наплавления (FDM) применяется для быстрого прототипирования и быстрого производства. Быстрое прототипирование облегчает повторное тестирование с последовательной, пошаговой модернизацией объекта. Быстрое производство служит в качестве недорогой альтернативы стандартным методам при создании мелкосерийных партий. Среди используемых материалов числятся ABS, полифенилсульфон, поликарбонат и полиэфиримид. Эти материалы ценятся за термостойкость. Некоторые варианты полиэфиримида, в частности, обладают высокой огнеупорностью, что делает их пригодными для использования в аэрокосмической отрасли.

FDM является одним из наименее дорогих методов печати, что обеспечивает растущую популярность бытовых принтеров, основанных на этой технологии. В быту 3D-принтеры, работающие по технологии FDM, могут применяться для создания самых разных объектов целевого назначения, игрушек, украшений и сувениров.

Предлагаемое оборудование: ,

PolyJet - стереолитография (фотополимер)

Технология печати PolyJet — это мощный метод аддитивного производства, с помощью которого можно создавать точные, гладкие прототипы, детали и инструменты. Благодаря толщине слоев в 16 микронов и точности до 0,1 мм можно создавать тонкие стенки и сложные геометрические формы с использованием широчайшего спектра материалов.

Трехмерная печать PolyJet похожа на струйную печать, но вместо струйной подачи чернил на бумагу 3D-принтеры PolyJet выпускают струи жидкого фотополимера, который образует слои на модельном лотке.

3D-принтер наносит и, с помощью УФ-излучения, закрепляет небольшие порции жидкого фотополимера. Тонкие слои ложатся последовательно в модельном лотке и образуют одну или несколько трехмерных моделей или деталей. Если для определенных деталей требуется опора, 3D-принтер наносит удаляемый вспомогательный материал. Вспомогательный материал легко удаляется руками, водой или в специальном растворителе. Модели и детали готовы к использованию сразу по извлечении из 3D-принтера, не требуется никакая дополнительная фотополимеризация

Предлагаемое оборудование:

SLA (керамика)

Технология 3d печати изделий из керамики по способу отверждения слоев при печати относится к стереолитографии. В основе технологии 3d печати керамических изделий лежит метод послойного отверждения УФ лазером специальной керамической пасты - смеси фотополимера с керамическим порошком. После того как деталь построена, она очищается от остатков неполимеризованной пасты и промывается в специальном сольвенте. После 3d печати деталь должна пройти этап выжигания фотополимера, который фактический выступает в роли временного связующего.

Выжигание происходит в печи при температуре ~600 С. Когда фотополимер удален деталь снова погружается в печь для осуществления процесса спекание керамики, который происходит при температуре до 1.750 C в зависимости от материала. Несмотря на то, что технология позволяет получать достаточно хорошее качество поверхности (шероховатость Ra 1…2 мкм), на всех промежуточных этапах деталь может быть подвергнута механической обработке.

Плюсы:

  • оперативное изготовление деталей из керамики
  • соответствие свойств изделий характеристикам керамических материалов (чистота 99.2% - 99.4%)
  • отсутствие необходимости изготовления оснастки

Минусы:

  • технология предусматривает усадку, которую необходимо компенсировать при подготовке файла
  • толщина стенок изделий не может превышать 4 мм
  • достижимая геометрическая точность до +/-1%

Предлагаемое оборудование:

LaserCUSING ® - Direct Metal Laser Melting (DMLM) (металл)

Технология послойного селективного лазерного плавления металлических порошков LaserCUSING ® используется для аддитивного производства деталей сложной конструкции и занимает особое место в металлообработке, благодаря возможности безотходного изготовления без металлорежущих инструментов опытно-конструкторских образцов или серийных изделий из широкого спектра реактивных и нереактивных металлических порошков, в том числе российского производства.

Принцип работы систем аддитивного производства Concept Laser ® заключается в выборочном плавлении тонкого слоя металлического порошка лучом лазера в соответствии с геометрией сечения детали, соответствующей каждому слою порошка. Запатентованная уникальная технология «стохастического» перемещения лазерного луча в процессе плавления позволяет уменьшить внутренние напряжения металла в готовом изделии и изготавливать детали больших размеров.

Благодаря высокому качеству поверхности и прочности изготавливаемых деталей, а также открытости систем аддитивного производства Concept Laser ® к применению металлических порошков любых производителей, они активно используются в ракетно-космической, авиационной и автомобильной промышленности, энергетике, электротехнике, транспортном машиностроении и медицине, где к качеству изделий предъявляются особые требования.

Основные преимущества аддитивной технологии LaserCUSING ® :

  • Изготовление сложных металлических деталей с требуемыми характеристиками из сертифицированных промышленных материалов
  • Безотходное производство
  • Сокращение времени и финансовых затрат на выполнение НИОКР и серийное производство
  • Повышение эффективности и автоматизации производства

Минусы:

  • Использование металлических порошков сферической формы с ограничениями по размеру частиц, фракции от 20 до 80 мкм.

Предлагаемое оборудование: ®

Газовая атомизация металлических порошков для аддитивного производства

Распыление расплава является относительно простым и дешевым технологическим процессом производства порошков металлов с температурой плавления примерно до 1600 ºС. Наиболее распространено распыление газовым потоком. При такой схеме распыления на свободно истекающую струю металлического расплава направлен под углом к ее оси кольцевой газовый поток, создаваемый соплами, как бы охватывающими струю металла. В месте схождения всех струй газового потока, называемом «фокусом распыления», происходит разрушение струи расплава в результате отрыва от нее отдельных капель. На средний размер и форму образующихся частиц влияют мощность и температура газового потока, диаметр струи, температура, поверхностное натяжение и вязкость расплава. Кроме того, очень важно, в какой среде производят распыление, а также конструктивное оформление
форсуночного устройства. В качестве газа используют инертный газ (азот, аргон, гелий) или воздух.

При распылении инертным газом, форма частиц получаемого порошка всегда сферическая, иногда с прилипшими частицами - «спутниками». Сферическая форма обеспечивает более высокую плотность паковки и хорошие свойства текучести. Если используется воздух, то форма частиц зависит от оксидных характеристик. Например: порошки из латуни и алюминия - неправильной формы, а медные порошки почти сферические. При использовании инертных газов можно свести к минимуму окисление. Однако, существуют ограничения для таких металлов и их сплавов как Al и Mg, у которых оксидные пленки трудно, а иногда и опасно удалять. В результате же распыления воздухом получают значительное окисление. Но и при распылении инертным газом в камере распыления всегда присутствуют пары воды, создающие окислительную атмосферу. В связи с этим частицы порошка загрязнены кислородом, азотом и водородом. Для улучшения свойств и удаления указанных примесей порошки, как правило, подвергают отжигу в восстановительной атмосфере.

Прелагаемое оборудование:

3D-сканер — это инновационное устройство, предназначенное для быстрого анализа геометрических параметров физического объекта и создания его точной компьютерной 3D-модели. Современные трехмерные сканеры способны всего за несколько минут произвести оцифровку любого предмета с точностью до 20-50 микрон.

Они могут быть использованы для решения широкого круга задач во многих областях промышленности, науки, медицины и искусства. В частности, с помощью 3D-сканеров успешно решают задачи реверс-инжиниринга, контроля качества, сохранения культурного наследия, используются в музейном деле, в медицине, дизайне, проектировании, архитектуре, ювелирном производстве. Трехмерные сканеры позволяют упростить и улучшить ручной труд, а порой даже выполнить задачи, которые ранее казались невозможными.

Как правило, 3D-сканер представляет собой небольшое электронное устройство, ручное (весом до 2 кг) или стационарное, которое использует в качестве подсветки лазер, лампу или светодиоды. Существуют модели 3D-сканеров, предназначенные для сканирования объектов различных типов и размеров, будь то ювелирные изделия, детали машин, лица людей или здания. Точность получаемых моделей варьируется от десятков до сотен микрон. Возможно сканирование с передачей цвета и текстуры объекта или только формы.

Предлагаемое оборудование:

Автоматизированные линии неразрушающего контроля Falcon-Vision

Что такое быстрое прототипирование?

Быстрое прототипирование (RP - Rapid Prototyping) позволяет за короткое время производить физические модели с помощью 3D данных систем автоматизированного проектирования (CAD). Используемое в широком спектре отраслей, быстрое прототипирование позволяет эффективно и оперативно превращать инновационные идеи в успешную конечную продукцию.

Быстрое прототипирование: немного истории

Системы быстрого прототипирования появились в 1987 году с внедрением технологии стереолитографии — процесса, в ходе которого слои жидкого полимера, чувствительного к ультрафиолету, затвердевают под воздействием лазера. В последующие годы появились другие технологии быстрого прототипирования, такие как моделирование методом послойного наложения расплавленной полимерной нити (FDM - Fused Deposition Modeling), селективное лазерное плавление (Технология SLM - Selective laser melting или LaserCUSING) и послойное отверждение фотополимеров (PolyJet). Самая первая в отрасли 3D-система быстрого прототипирования, основанная на технологии FDM, была представлена в апреле 1992 года компанией Stratasys. Первые 3D системы быстрого прототипирования на основе технологии быстрого отверждения фотополимера были запатентованы в 1999 году компанией EnvisionTEC. В 2000 году после успешного применения установок селективного лазерного плавления для своих задач внутри структуры Hofmann Innovation Group, была выделена в отдельное направление компания и начаты коммерческие поставки установок лазерного плавления металла.

Быстрое прототипирование: основные этапы

Процесс начинается с получения данных виртуального проектирования (CAD). Машина для 3D печати считывает данные с трехмерной модели CAD и накладывает последовательные слои жидкого, порошкового или листового материала — создавая физическую модель. Эти слои, которые соответствуют виртуальным профилям геометрии модели CAD, автоматически соединяются для создания окончательной формы. Быстрое прототипирование использует стандартный интерфейс данных, внедренный в виде формата файлов STL, для перевода с формата программного обеспечения CAD в формат машины 3D прототипирования. Форма детали или сборки примерно оценивается в файле STL с помощью треугольных граней, описывающих поверхностную геометрию объекта. Обычно системы быстрого прототипирования способны создавать 3D модели в течение нескольких часов. Однако время создания может сильно различаться в зависимости от типа используемой машины, материала и размера и количества производимых моделей.

Быстрое прототипирование: преимущества:

  • Быстрое и эффективное распространение дизайнерских идей
  • Эффективную проверку соответствия, формы и функциональности конструкции
  • Большую гибкость дизайна с возможностью быстрого перехода между его многочисленными этапами
  • Сокращение сроков выполнения НИОКР и расходов на ввод новых изделий в промышленное производство
  • Возможность проведения оперативных испытаний свойств изделий для разработки новых материалов и получения новых свойств продукции
  • Уменьшение числа ошибок в дизайне продукции и более высокое качество конечных изделий

Материалы для 3d печати

Сейчас устройства 3D печати способны изготавливать объекты практически из любых материалов - воск, гипсовый порошок, фотополимер, термопластики и даже получать детали из настоящих металлов. Системы аддитивного производства позволяют печатать детали из титана, алюминия, вольфрама, стали, золота и других, в том числе, разработанных в России и сертифицированных для применения в отечественной промышленности. Принтеры Stratasys работают как с материалами, обладающими свойствами настоящих термопластиков различных сортов, выдерживающих высокие нагрузки и температуры, так и с фотополимерами, способными передавать мельчайшие элементы дизайна и фактуры.
Огромное разнообразие материалов позволяет использовать трехмерные принтеры уже не только для изготовления прототипов, но и для производства мелких серий или единичных изделий.

Выбрать модель 3D принтера или 3D сканера Вы можете в нашем .

Получить подробную информацию о конфигурациях 3D оборудования, ценах и выполнить тестовую печать можно, по телефону или путем заполнения формы обратной связи.

Мы ценим Ваше внимание и стремися соответствовать Вашим ожиданиям!

Одной из наиболее востребованных технологий при создании трехмерных объектов считается технология лазерной стереолитографии - SLA.

Это технология аддитивного производства моделей, прототипов, готовых изделий из жидких фотополимерных смол. Процессу ее отверждения способствует облучение УФ-лазером или другим схожим источником энергии. При этом гарантирована предельно высокая точность в воспроизведении геометрии и отличное качество поверхности изготовленной продукции.

Этапы работы по технологии SLA

    Прототип выращивается на стекле или сетчатой платформе, которая помещается в емкость с фотополимером. Она устанавливается на глубине, которая покроет тончайший слой материала (50-100 мкм) по всей плоскости.

    Лазер воздействует на участки полимера, соответствующие стенкам заданного объекта, это вызывает их локальное затвердевание.

    Платформа помещается в емкость с жидкой смолой на один заданный слой.

    Объект погружается в ванну со специальным составом для удаления лишних элементов и полной очистки.

    Заключительное облучение для отвердевания.

Достоинства технологии

    Возможность качественного изготовления моделей сложных с точки зрения геометрии фигур.

    Предельная точность построения слоев без каких-либо видимых следов «ступенчатости» и отличное качество поверхности готового изделия

    Легкость обработки прототипа

    Экономичность расходного материала для разработки и поддержки прототипа

    Низкий уровень шума производства деталей

Установки и материалы для печати

В Центре объемной печати 3D Vision используется от компании с камерой построения, размерами 266 х 175 х 193 мм. Он идеально подходит производства небольших прототипов, а также, благодаря минимальному количеству отходов при печати, используется в серийном производстве. Принтер работает с деталями разной геометрической сложности, а поверхность отпечатанной продукции лишена эффекта «лестницы».

Материалы для SLA-печати обладают широким спектром механических свойств. Среди них есть как полимеры, имитирующие возможности ABS-пластика (ABS 3SP Flex с пластичными свойствами, ABS 3SP Tough и ABS TRU 3SP жесткие и стабильные модели), так и высокотемпературные материалы (E-Denstone 3SP Peach) для концептуального моделирования. Кроме того, существует прозрачный материал с пластичными свойствами (E-Glass 3SP).


Практическое применение

Медицина . Модель EnvisionTEC Ortho предлагает большие возможности для продуктивной работы в области ортодонтии и челюстно-лицевой хирургии. Данная модификация 3D-принтера незаменима для быстрого построения высокоточных и качественных стоматологических моделей. Принтер может изготавливать ортодонтические скобы и другую подобную продукцию в больших количествах.

Литье по выжигаемым моделям. Если нужно получить металлическую деталь, можно сделать следующее: SLA-модель заливается формовочной смесью, прокаливается при высоких температурах (до 1000 °С). При этом происходит полное выгорание пластика, на его место в образовавшуюся форму под вакуумом заливается металл. После его застывания форма разрушается, деталь извлекается.

Аэрокосмическая и автомобильная промышленность, электронные товары широкого потребления.

Научные исследования. SLA-технология – неизменный помощник в научно-исследовательской деятельности. Модели обладают достаточной прочностью и прозрачностью, поэтому имеется возможность визуализации газо- и гидродинамических потоков внутри моделей.

Искусство. Благодаря технологии лазерной стереолитографии сравнительно на новый уровень возможностей выходят скульпторы, модельеры и ювелиры. Процесс 3D-печати прототипов значительно уменьшает время на тестирование экспериментальных образцов, а это в свою очередь благоприятно влияет на скорость и качество создания ювелирного изделия или скульптуры.

Отсутствие ограничений в геометрии изготавливаемого объекта, низкая стоимость и экономичность процесса, а также высокое качество поверхности готового изделия делают SLA-печать универсальным решением любой задачи из мира аддитивного производства. Специалисты 3D Vision готовы помочь вам в этом. Наша компания ценит время и клиентов, поэтому любой проект будет разобран до мелочей, а затем – выполнен максимально быстро и качественно.

На сегодняшний день широко распространены две основных технологии настольной 3D печати:

  • моделирование методом послойного наплавления (FDM);
  • стереолитография (SLA).

В технологии FDM для создания модели пластмассовая нить проходит через сопло принтера, в котором она плавится и выливается послойно на стол для печати. Технология SLA, создает слои из фотополимерной смолы, которая затвердевает под лучами лазера определенной частоты. Эти два типа печати используют различные материалы. FDM принтеры используют нити из пластика, а SLA принтеры – фотополимерные смолы.

Для FDM принтеров пластмассовая нить может быть диаметром – 1,75 мм и 2,85 мм. Очень важно учитывать этот параметр расходных материалов, так как использование неправильных расходников может повредить Ваш 3d принтер.

Каждый FDM принтер отличается такими характеристиками как: температура плавления, скорость печати, функциональные возможности.

Фотополимерная смола – это расходный материал для трехмерной печати по технологии SLA. Она вязкая, жидкая и поставляется в бутылках, в то время, как пластик для FDM печати продается мотками пластмассовой нити. Большинство фотополимерных смол совместимы с любыми SLA принтерами. Для выбора типа смолы нужно определиться с назначением объекта, который вы хотите создать.

Мы расскажем Вам о 4 вариантах 3д печати в зависимости от назначения итоговой модели, чтобы Вам было легче подобрать нужные расходные материалы.

Создание нефункциональных прототипов и изделий: Если Вы - 3D проектировщик, который хочет напечатать точные модели или человек, увлеченного своим хобби, который решил заняться 3д моделированием.

Создание функциональных прототипов: Если Вы собираетесь производить функциональные прототипы, которые моделируют структуру материала, подходит для создания конечного продукта.

Создание предметов искусства и дизайна: Если Вы - 3D дизайнер или человек, увлеченный своим хобби, который любит экспериментировать с различными материалами, их свойствами и структурой.

Создание специализированных прототипов: Если Вы - дантист, ювелир, инженер или художник, который использует специализированные материалы для таких отраслей, как стоматология, ювелирное дело, электроника.

Не имеет значения – новичок вы в 3д печати или являетесь опытным пользователем, экспериментирующим со свойствами печати и формами моделей – эта статья поможет Вам узнать больше о возможностях вашего гаджета.

Печать нефункциональных прототипов и изделий

PLA пластик (полилактид)

Полилактид сделан из биоматериалов, таких как кукурузный крахмал, сахарный тростник и корень тапиоки, которые делают его биоразлагаемым и безопасным. Когда он нагревается, вы почувствуете сладкий запах, подобный сахарному сиропу. В отличие от ABS PLA не токсичен, поэтому для принтера не требуется отдельное помещение или закрытая камера. Температура плавления у PLA ниже, чем у ABS пластика, поэтому для печати не требуется подогреваемый стол. Слои склеиваются очень прочно при печати, но получившаяся модель будет хрупкой и может разбиться при падении на пол. Если вам нужно напечатать деталь механизма, то лучше выбрать материал попрочнее.

HIPS пластик (Полистирол)

Полистирол, прежде всего, используется в качестве материала поддержки для печати ABS пластиком и в принтерах с двумя экструдерами. HIPS это отличный материал поддержки, потому, что он легко растворяется в лимонене. Это свойство позволит быстро и не трудозатратно удалить материал поддержки с вашей модели. Это идеальный материал для печати проектов, у которых есть нависающие края или сложные элементы.

PET (полиэтилентерефталат)

Полиэтилентерефталат - гибкий и крепкий материал для технических и прочных моделей. Он химически стойкий и не поглощает воду, как большинство других расходных материалов. Ценовой диапазон у него такой же, как у PLA и ABS пластика, по физическим свойствам похож на ABS, но может быть распечатан без подогреваемого стола и печатается при температуре 220-250 градусов С. Слои связываются прочно, что позволяет использовать его в механических деталях, беспилотной авиации и носимой технике.

SLA (Фотополимерная смола)

Смола отлично подходит для создания прототипов, которые не будут подвергаться интенсивному физическому контакту при частом использовании. Смола поставляется в широком цветовом диапазоне и прототипы из нее печатаются гладкими. SLA принтеры способны создавать детализированные прототипы. Часто их используют инженеры или дизайнеры, которым больше важен внешний вид, а не прочность модели.

Печать функциональных прототипов

ABS пластик (акрилонитрилбутадиенстирол)

ABS пластик имеет более высокую точку плавления, чем другие расходники, поэтому для печати необходим подогреваемый стол, чтобы избежать деформирования модели. Он немного прочнее, чем PLA, поэтому, если вы ищете материал для изготовления крепких моделей, вам подойдет ABS. Его прочность и гибкость сделают Ваш прототип долговечным, но этот материал разрушается под ультрафиолетовыми лучами, поэтому плохо подходит для изделий наружного использования. Во время печати ABS пластиком выделяются токсичные пары, поэтому он требует хорошей вентиляции и закрытого корпуса принтера.


Carbon Fiber PLA (полилактид с добавлением углеродного волокна)

Этот материал популярен благодаря своей прочности и гибкости. Нить состоит на 15 % из углеволокна, остальная часть – PLA пластик. Нить может быть очень хрупкой, поэтому нужно быть осторожным при загрузке ее в принтер. Прочность материала отлично подходит для печати дронов, радио управляемых машин, пропеллеров и корпусов к различным устройствам. Из-за добавления углеродного волокна для печати таким материалом подходят экструдеры с увеличенным соплом от 0,04 мм и больше.


Nylon (полиамид)

Нейлон – это износостойкий материал с высокой прочностью и гибкостью. Нейлон очень эластичный, благодаря этому подходит для создания тонких моделей. Слои соединяются максимально прочно если сравнивать со всеми материалами, используемыми для FDM-печати. Некоторые типы нейлона используются в медицинских устройствах, игрушках, и в изделиях которые соприкасаются с пищей. Для хранения полиамида нельзя использовать влажные помещения.


Flexible Filament (TPE and TPU)

Гибкая нить Filaflex , как правило, делается из полиуретана или полиэтилена. Это сложный материал для печати, т.к. нить имеет привычку застревать в экструдере, что приводит к поломке модели. Для лучшего результата рекомендуется печатать на экструдерах с прямой загрузкой и при высоких температурах. Уменьшение скорости печати также снижает риск повреждения модели принтером.


SLA (Жесткая смола)

Эта смола подойдет для создания гибких и прочных моделей. Как и ABS пластик, смола – хороший материал для бытовых изделий и запчастей к ним. Она выдерживает сильные нагрузки.


Flexible Resin (гибкая смола)

В технологии печати SLA используется также гибкая смола, которая позволяет печатать гнущиеся функциональные объекты. Можно напечатать различные эргономичные приспособления, такие как ручки или захваты. Несмотря на то, что принтеры FDM иногда требуют специальных сопел для печати гибкой нитью, принтеры SLA не требуют никаких специальных дополнений для печати с гибкой смолой.


High Temperature Resin (Высокотемпературная смола)

Компания Formlabs выпустила материал, который плавится при температуре 289 С при давлении 45 Мпа, что делает его самым высокотемпературным материалом на рынке при таком давлении. Этот материал прекрасно подходит для форм прототипов, для хозяйственных нужд и форм для горя чих жидкостей.


Durable Resin (прочная смола)

Высокопрочная и износостойкая смола, которая выдерживает серьезные нагрузки и по свойствам похожа на полипропилен. Этот материал отлично подходит для прототипов, которые можно использовать в хозяйстве, и деталей, которые подвергаются износу - например, шарниры и подшипники.

Создание предметов искусства и дизайна

Wood Filament (деревянная нить)

Нити Woodfill и Laywood состоят из пластмасс, волокон дерева и полимеров, которые позволяют работать с нитью на принтере с настройками, как для PLA пластика. Это позволяет эмитировать деревянную структуру по ощущениям. Поскольку деревянная нить основана на PLA пластике - для печати не требуется подогреваемый стол. Вы можете изменять цвет материала, меняя температуру печати. Это можно использовать, создавая эффект колец, как у настоящей древесины.


Thermo Temperature Changing PLA (термохромная нить, меняющая цвет)

Этот материал меняет цвет, когда температура повышается или падает. Есть различные варианты изменения цвета, например, от синего до зеленого, от серого до белого и другие. Материал сделан на основе PLA и не требует подогреваемого стола. Есть также материал, который изменяет цвет при воздействии света. Термохромный пластик может найти интересное применение при изготовлении чехлов для смартфонов и потребительских товаров.


Metal Filled PLA (Pla c металлическим порошком)

Пластик с добавлением металлического порошка. Четыре самых популярных металлических добавки: бронза , медь , сталь и железо. Металлический порошок делает пластик в 4 раза тяжелее по сравнению с обычным PLA. После печати модель выглядит как железная и на ощупь тоже напоминает металл, но все же требует дополнительной пост обработки, чтобы достичь нужного эффекта. До обработки модель из PLA с металлическим порошком тусклая и цель постобработки – поднять частицы металла на поверхность изделия.


Создание специализированных прототипов для медицинских, ювелирных и инженерных целей

Conductive PLA (токопроводимый пластик)

Такой материал годится для приспособлений с низким напряжением электрического тока. Примерами использования могут быть конструкторы Ардуино и светодиоды. Несмотря на то, что материал достаточно крепкий он не должен использоваться под тяжелыми нагрузками. Проводящий PLA может быть добавлен в обычный, например, если вы хотите создать контактную схему внутри пластикового изделия.


Castable Resin (детализированная смола)

Этот материал для используется в SLA печати для высоко детализированных моделей. Смоделируйте деталь в CAD, напечатайте ее, и используйте, как парафиновую форму для литья. Такой материал сжигается с минимальным количеством пепла или остатка, что делает его идеальным для ювелирной промышленности и стоматологии.


Ceramic Resin (керамическая смола)

Керамическая смола – хороший выбор для художников или людей, которым нужны термоустойчивые модели. Процесс печати подобен другим смолам, но после того, как модель будет готова, Вы сможете обжечь ее и глазировать.


Biocompatible Resin (Биологически совместимая смола)

Есть много различных биологически совместимых смол на рынке с различными сертификатами. Эти материалы могут использоваться для создания точных индивидуальных копий частей тела или органов пациентов для увеличения точности во время операции и скорейшего выздоровления больного.


Источник https://pinshape.com

Основной принцип работы практически всех видов 3D-принтеров основан на послойном нанесении расходного материала при изготовлении изделий.

Отличие имеется только в самой технологии, применяемой для создания слоев. Здесь может применяться расходный материал любого вида от порошкообразного до использования нарезки бумаги.

Качество соответствия изготавливаемой детали прототипу зависит от толщины слоя. Чем он тоньше - тем выше качество. Одним из способов достижения минимальной толщины слоя является применение технологии стереолитографии – SLA.

Стереолитография и виды принтеров использующие эту технологию

Принцип стереолитографии заключается в применении лазера, который направляется на емкость с расходным материалом. Чаще всего для этой цели используется жидкая смола.

Лазер своим воздействием обеспечивает отвердевание каждого слоя, совершая эволюции по поверхности материала согласно заданным программой параметрам. Им соблюдается с высокой точностью следование параметрам цифровой модели. С помощью данной технологии обеспечивается возможность создания моделей сложных форм, имеющих большое количество мелких деталей. Толщина слоя может достигать 0,05 мм, а детализация – 300 микрон.

Среди наиболее распространенных в применении 3D-принтеров, работающих по технологии SLA на рынке представлены:

  • Модели mUVe 1 DLP HD, mUVe 1 DLP FullHD.
  • Американский B9Creator v 1.1
  • Отечественный 3D-принтер iPro™ 8000 и его обновленный вариант ProX 950.
  • 3D SLA StarLight .
  • Настольная модель EDP-4 с открытой архитектурой.
  • The Form 1

Преимущества и недостатки SLA-технологии

Основными преимуществами данной технологии являются:

  • возможность изготовления деталей с высокой точностью соответствия, тонкостенных и имеющих большое количество мелких деталей;
  • практическое отсутствие доработок моделей созданных с помощью технологии SLA;
  • идеальное качество поверхностей;
  • разнообразие расходных материалов;
  • прототипы, получаемые с помощью данной технологии могут быть использованы в качестве рабочих изделий;
  • возможность использования больших камер;
  • практическая бесшумность.

Однако не все так просто и хорошо в SLA-технологии. Имеются и значительные недостатки, которые влияют на распространенность данной технологии.

Прежде всего это требование применять некоторую основу в виде стержня, который должен обеспечивать поддержку изготавливаемого изделия. Затем этот стержень требуется удалять. Это доступно лишь механическим путем, что сопряжено с особой сложностью, так как требуется не нанести повреждение детали.

Также необходимо провести ультрафиолетовую засветку готовой детали после ее промывки. Это важно, чтобы изделие смогло достичь необходимой степени твердости.

Стоимость 3D-принтеров использующих технологию SLA

Учитывая разнообразие моделей принтеров объемной печати использующих стереолитографию цены на них зависят от их производителя, причем различаются значительно даже в одной категории характеристик.

Однако существует возможность установить некоторые ценовые диапазоны в зависимости от назначения этого оборудования.

  • 3D-принтеры SLA промышленного типа обойдутся их владельцу от 1 600 000 рублей.
  • Менее производительные модели будут стоить от 600 000 рублей.
  • Настольные офисные, бытовые варианты – 120 000 – 350 000 рублей.

Многое зависит еще от того где приобретать данные принтеры. Если непосредственно у производителя, как, например, обстоит дело с оборудованием отечественным, то здесь можно несколько выиграть не только в цене.

Однако наибольшую проблему вызовет поиск качественного расходного материала, который также имеет тенденцию значительно отличаться в цене в зависимости от его изготовителя.