Когда самолет проходит звуковой барьер. Первый в мире человек, преодолевший скорость звука. Преобразование ударной волны

Что мы представляем себе, когда слышим выражение «звуковой барьер»? Некий предел и которой может серьёзно повлиять на слух и самочувствие. Обычно звуковой барьер соотносят с покорением воздушного пространства и

Преодоление этой преграды способно спровоцировать развитие застарелых болезней, болевых синдромов и аллергических реакций. Правильны ли эти представления или они представляют собой установившиеся стереотипы? Имеют ли они под собой фактическую основу? Что такое звуковой барьер? Как и почему он возникает? Всё это и некоторые дополнительные нюансы, а также исторические факты, связанные с этим понятием, мы попробуем выяснить в данной статье.

Эта таинственная наука - аэродинамика

В науке аэродинамике, призванной разъяснить явления, сопровождающие движение
летательного аппарата, существует понятие «звуковой барьер». Это ряд явлений, возникающих при движении сверхзвуковых самолётов или ракет, которые передвигаются на скоростях, приближенных к скорости звука или больших.

Что такое ударная волна?

В процессе обтекания аппарата сверхзвуковым потоком в аэродинамической трубе возникает ударная волна. Её следы могут быть заметны даже невооружённым глазом. На земле они выражены жёлтой линией. Вне конуса ударной волны, перед жёлтой линией, на земле самолёт даже не слышно. При скорости, превышающей звуковую, тела подвергаются обтеканию звуковым потоком, что влечёт за собой ударную волну. Она может быть не одна, что зависит от формы тела.

Преобразование ударной волны

Фронт ударной волны, который иногда называют скачком уплотнения, имеет довольно малую толщину, позволяющую тем не менее отследить скачкообразные изменения свойств потока, снижение его скорости относительно тела и соответствующее возрастание давления и температуры газа в потоке. При этом кинетическая энергия частично преобразуется во внутреннюю энергию газа. Количество этих изменений напрямую зависит от скорости сверхзвукового потока. По мере того как ударная волна удаляется от аппарата, уменьшаются перепады давления, и ударная волна преобразуется в звуковую. Она может достичь стороннего наблюдателя, который услышит характерный звук, напоминающий взрыв. Существует мнение, что это свидетельствует о достижении аппаратом скорости звука, когда звуковой барьер самолёт оставляет позади.

Что происходит на самом деле?

Так называемый момент преодоления звукового барьера на практике представляет собой прохождение ударной волны с нарастающим гулом двигателей самолёта. Теперь аппарат опережает сопровождающий его звук, поэтому гул двигателя будет слышен после него. Приближение скорости к скорости звука стало возможным ещё в ходе Второй мировой войны, но при этом пилоты отмечали тревожные сигналы в работе самолётов.

После окончания войны немало авиаконструкторов и лётчиков стремились достичь скорости звука и преодолеть звуковой барьер, но многие из этих попыток заканчивались трагически. Пессимистически настроенные учёные утверждали, что этот предел превзойти невозможно. Отнюдь не экспериментальным, но научным путём получилось объяснить природу понятия «звуковой барьер» и найти способы его преодоления.

Безопасные полёты на околозвуковых и сверхзвуковых скоростях возможны при избегании волнового кризиса, возникновение которого зависит от аэродинамических параметров самолёта и высоты производимого полёта. Переходы с одного уровня скорости на другой должны выполняться максимально оперативно с применением форсажа, что поможет избежать долгого полёта в зоне волнового кризиса. Волновой кризис как понятие пришёл из водного транспорта. Возникал он в момент движения судов со скоростью, близкой к скорости волн на поверхности воды. Попадание в волновой кризис влечёт за собой затруднение роста скорости, и если максимально просто преодолеть волновой кризис, то можно выйти на режим глиссирования или скольжения по водной глади.

История в управлении самолётами

Первый человек, который достиг сверхзвуковой скорости полёта на экспериментальном самолёте, - это американский лётчик Чак Йегер. Его достижение отмечено в истории 14 октября 1947 года. На территории СССР звуковой барьер был преодолён 26 декабря 1948 года Соколовским и Фёдоровым, которые управляли опытным истребителем.

Из гражданских преодолел звуковой барьер пассажирский лайнер Douglas DC-8, который 21 августа 1961 года достиг скорости 1.012 М, или 1262 км/ч. Полёт имел целью сбор данных для проектирования крыла. Среди летательных аппаратов мировой рекорд поставила гиперзвуковая аэробаллистическая ракета «воздух-земля», которая находится на вооружении российской армии. На высоте в 31,2 километра ракета развила скорость 6389 км/час.

Через 50 лет после преодоления звукового барьера в воздухе англичанин Энди Грин совершил аналогичное достижение на автомобиле. В свободном падении пробовал побить рекорд американец Джо Киттингер, который покорил высоту в 31,5 километра. В наши дни, 14 октября 2012 года, Феликс Баумгартнер поставил мировой рекорд, без помощи транспорта, в свободном падении с высоты 39 километров, преодолев звуковой барьер. Скорость его при этом достигла 1342,8 километра в час.

Самое необычное преодоление звукового барьера

Странно подумать, но первым в мире изобретением, преодолевшим этот предел, стал обычный хлыст, который придумали древние китайцы почти 7 тысяч лет назад. Практически до изобретения моментальной фотографии в 1927 году никто и не подозревал, что щелчок хлыста - это миниатюрный звуковой удар. Резкий взмах формирует петлю, а скорость резко возрастает, что и подтверждает щелчок. Звуковой барьер преодолевается на скорости порядка 1200 км/час.

Загадка самого шумного города

Не зря жители маленьких городов испытывают шок, увидев столицу в первый раз. Обилие транспорта, сотни ресторанов и развлекательных центров сбивают с толку и выбивают из привычной колеи. Начало весны в столице обычно датируется апрелем, а не мятежным вьюжным мартом. В апреле здесь чистое небо, бегут ручьи и распускаются почки. Люди, уставшие от долгой зимы, широко распахивают окна навстречу солнцу, и в дома врывается уличный шум. На улице оглушительно щебечут птицы, поют артисты, декламируют стихи весёлые студенты, не говоря уже о шуме в пробках и метро. Сотрудники отделов гигиены отмечают, что долго находиться в шумном городе вредно для здоровья. Звуковой фон столицы состоит из транспортных,
авиационных, промышленных и бытовых шумов. Наиболее вредным является как раз автомобильный шум, так как самолёты летают достаточно высоко, а шум от предприятий растворяется в их зданиях. Постоянный же гул автомобилей на особо оживлённых магистралях превышает все допустимые нормы в два раза. Как в столице преодолевается звуковой барьер? Москва опасна обилием звуков, поэтому жители столицы устанавливают стеклопакеты, чтобы приглушить шум.

Как осуществляется штурм звукового барьера?

До 1947 года не было фактических данных о самочувствии человека в кабине самолёта, который летит быстрее звука. Как оказалось, преодоление звукового барьера требует определённых сил и отваги. В процессе полёта становится ясно, что нет никаких гарантий выжить. Даже профессиональный пилот не может точно сказать, выдержит ли конструкция самолёта атаку стихии. В считанные минуты самолёт может просто развалиться на части. Чем же это объясняется? Следует отметить, что движение с дозвуковой скоростью создаёт акустические волны, разбегающиеся как круги от упавшего камня. Сверхзвуковая скорость возбуждает ударные волны, а стоящий на земле человек слышит звук, похожий на взрыв. Без мощных вычислительных машин сложно было решить сложные и приходилось опираться на продувание моделей в аэродинамических трубах. Иногда при недостаточном ускорении самолёта ударная волна достигает такой силы, что вылетают окна из домов, над которыми пролетает самолёт. Преодолеть звуковой барьер сможет далеко не каждый, ведь в этот момент трясёт всю конструкцию, значительные повреждения могут получить крепления аппарата. Поэтому для пилотов так важно крепкое здоровье и эмоциональная стабильность. Если полёт идёт мягко, а звуковой барьер преодолён максимально быстро, то ни пилот, ни возможные пассажиры не почувствуют особо неприятных ощущений. Специально для покорения звукового барьера был сооружён исследовательский летательный аппарат в январе 1946 года. Создание машины было инициировано заказом министерства обороны, но взамен оружия её напичкали научной аппаратурой, которая отслеживала режим работы механизмов и приборов. Этот самолёт походил на современную крылатую ракету со встроенным ракетным двигателем. Преодоление самолётом звукового барьера происходило при максимальной скорости 2736 км/ч.

Вербальные и материальные памятники покорению скорости звука

Достижения в преодолении звукового барьера высоко ценятся и сегодня. Так, самолёт, на котором Чак Йегер впервые его преодолел, сейчас выставлен в Национальном музее воздухоплавания и космонавтики, который находится в Вашингтоне. Но технические параметры этого человеческого изобретения мало бы стоили без достоинств самого пилота. Чак Йегер прошёл лётное училище и воевал в Европе, после чего вернулся в Англию. Несправедливое отстранение от полётов не сломило дух Йегера, и он добился приёма у главнокомандующего войсками Европы. За годы, оставшиеся до конца войны, Йегер участвовал в 64 боевых вылетах, во время которых сбил 13 самолётов. На родину Чак Йегер вернулся со званием капитана. В его характеристике указана феноменальная интуиция, невероятное хладнокровие и выдержка в критических ситуациях. Не один раз Йегер устанавливал рекорды на своём самолёте. Его дальнейшая карьера шла в подразделениях ВВС, где он осуществлял тренинг пилотов. В последний раз Чак Йегер преодолел звуковой барьер в 74 года, что пришлось на пятидесятую годовщину его истории полётов и на 1997 год.

Комплексные задачи создателей летательных аппаратов

Известные на весь мир самолеты МиГ-15 стали создавать в тот момент, когда разработчики поняли, что невозможно базироваться только на преодолении звукового барьера, а следует решать комплексные технические задачи. В результате была создана машина настолько удачная, что её модификации встали на вооружение разных стран. Несколько различных конструкторских бюро включились в своеобразную конкурентную борьбу, призом в которой был патент на самый успешный и функциональный летательный аппарат. Разрабатывались самолёты со стреловидными крыльями, что было революцией в их конструкции. Идеальный аппарат должен был быть мощным, быстрым и невероятно устойчивым к любым повреждениям извне. Стреловидные крылья у самолётов стали элементом, который помогал им втрое повышать скорость звука. Далее продолжала нарастать, что объяснялось увеличением мощности двигателей, применением инновационных материалов и оптимизацией аэродинамических параметров. Преодоление звукового барьера стало возможным и реальным даже для непрофессионала, но менее опасным оно от этого не становится, поэтому любой экстремал должен здраво оценивать свои силы, прежде чем решиться на такой эксперимент.

Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?

С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом». Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, - он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны.

Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако, происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта с последующей конденсацией капелек воды из влажного воздуха. Собственно, конденсат вы и видите на фотках внизу...

Нажмите на рисунок, чтобы увеличить его.

Републикую свой старый текст на тему “звукового барьера”:

Оказывается, одним из широко распространённых околоавиационных заблуждений является так называемый “звуковой барьер”, который “преодолевают” самолёты.

Даже больше: со сверхзвуковым полётом связан целый букет заблуждений. Как же обстоит дело в реальности? (Рассказ с фотографиями.)

Заблуждение первое: “хлопок”, якобы сопровождающий “преодоление звукового барьера” (ранее, ответ на этот вопрос опубликован на сайте “Элементы”).

С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой, скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А “звуковым барьером” в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, – он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует “преодоление” своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается “аэродинамический удар” и характерные “скачки” в управляемости. Вот только с “хлопками” на земле эти процессы напрямую не связаны.

Заблуждение второе: “срыв тумана” .

Если о “хлопке” почти все знают, то с “туманом” ситуация несколько более “специальная”. Есть множество снимков, где летящий самолёт (обычно это истребитель) как бы “выскакивает” из туманного конуса. Смотрится очень эффектно:

Туман и относят к “звуковому барьеру”. Мол, это на фотографии как раз запечатлён момент “преодоления”, а туман и есть “тот самый барьер”.

На самом же деле, возникновение тумана связано лишь с резким перепадом давления, сопровождающим полёт самолёта. В результате аэродинамических эффектов за элементами конструкции самолёта образуются не только области повышенного давления, но и области разрежения воздуха (возникают колебания давления). Именно в этих областях разрежения (протекающего, фактически, без теплообмена с окружающей средой, так как процесс “очень быстрый”) и конденсируется водяной пар. Причиной этому служит резкое падение “локальной температуры”, приводящее к резкому смещению так называемой “точки росы”.

Так что, если влажность воздуха и температура подходят, то такой туман – вызванный интенсивной конденсацией атмосферной влаги – сопровождает весь полёт самолёта. И не обязательно на сверхзвуковой скорости. Например, на фотографии ниже, бомбардировщик B-2, а это дозвуковой самолёт, сопровождается характерной дымкой:

Конечно, так как фотография фиксирует один миг полёта, то, в случае со сверхзвуковыми самолётами, создаётся ощущение “выскакивающего” из тумана истребителя. Особенно выраженного эффекта можно достичь при полёте на небольших высотах над морем, так как в этом случае атмосфера обычно очень влажная.

Именно поэтому большинство “художественных” снимков сверхзвукового полёта сделано с борта того или иного корабля, а запечатлены на снимках самолёты палубной авиации.

(Использованы фотографии U.S. Navy News Service и U.S. Air Force Press Service)

(Отдельное спасибо Игорю Иванову за ценное замечание по физике образования тумана.)

Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

Правообладатель иллюстрации SPL

О впечатляющих фотографиях реактивных истребителей в плотном конусе водяного пара часто говорят, что это, мол, самолет преодолевает звуковой барьер. Но это ошибка. Обозреватель рассказывает об истинной причине феномена.

Это эффектное явление неоднократно запечатлевали фотографы и видеооператоры. Военный реактивный самолет проходит над землей на большой скорости, несколько сотен километров в час.

По мере того как истребитель ускоряется, вокруг него начинает формироваться плотный конус конденсата; создается впечатление, что самолет - внутри компактного облака.

Будоражащие фантазию подписи под такими фотографиями зачастую утверждают, что перед нами - визуальное свидетельство звукового удара при выходе самолета на сверхзвуковую скорость.

На самом деле, это не совсем так. Мы наблюдаем так называемый эффект Прандтля-Глоерта - физическое явление, возникающее при приближении самолета к скорости звука. С преодолением звукового барьера оно не связано.

  • Другие статьи сайта BBC Future на русском языке

По мере развития авиастроения аэродинамические формы становились все более обтекаемыми, а скорость летательных аппаратов неуклонно росла – самолеты начали делать с окружающим их воздухом такие вещи, на которые не были способны их более тихоходные и громоздкие предшественники.

Загадочные ударные волны, формирующиеся вокруг низколетящих самолетов по мере приближения к скорости звука, а затем и преодоления звукового барьера, свидетельствуют о том, что воздух на таких скоростях ведет себя весьма странным образом.

Так что же это за таинственные облака конденсата?

Правообладатель иллюстрации Getty Image caption Эффект Прандтля-Глоерта наиболее ярко выражен при полетах в теплой, влажной атмосфере

По словам Рода Ирвина, председателя аэродинамической группы Королевского общества воздухоплавания, условия, при которых возникает конус пара, непосредственно предшествуют преодолению самолетом звукового барьера. Однако фотографируют это явление обычно на скоростях чуть меньше скорости звука.

Приземные слои воздуха плотнее, чем атмосфера на больших высотах. При полетах на малых высотах возникает повышенные трение и лобовое сопротивление.

Кстати, летчикам запрещено преодолевать звуковой барьер над сушей. "Выходить на сверхзвук можно над океаном, но не над твердой поверхностью, - объясняет Ирвин. - Между прочим, это обстоятельство было проблемой для сверхзвукового пассажирского лайнера Concorde - запрет ввели уже после ввода его в эксплуатацию, и экипажу разрешалось развивать сверхзвуковую скорость только над водной поверхностью".

Более того, визуально зарегистрировать звуковой удар при выходе самолета на сверхзвук чрезвычайно трудно. Невооруженным глазом его не увидеть - только при помощи специального оборудования.

Для фотографирования моделей, продуваемых на сверхзвуковых скоростях в аэродинамических трубах, обычно используют специальные зеркала, чтобы засечь разницу в отражении света, вызванную формированием ударной волны.

Правообладатель иллюстрации Getty Image caption При перепаде воздушного давления температура воздуха понижается, и содержащаяся в нем влага превращается в конденсат

Фотографии, полученные так называемым шлирен-методом (или методом Теплера), используют для визуализации ударных волн (или, как их еще называют, скачков уплотнения), образующихся вокруг модели.

В ходе продувок вокруг моделей не создаются конусы конденсата, поскольку используемый в аэродинамических трубах воздух предварительно осушается.

Конусы водяного пара связаны со скачками уплотнения (а их несколько), формирующимися вокруг самолета по мере набора им скорости.

Когда скорость летательного аппарата приближается к скорости звука (около 1234 км/ч на уровне моря), в обтекающем его воздухе возникает перепад местного давления и температуры.

Как следствие, воздух теряет способность удерживать влагу, и формируется конденсат в форме конуса, как на этом видео .

"Видимый конус пара вызван скачком уплотнения, при котором возникает перепад давления и температуры окружающего самолет воздуха", - говорит Ирвин.

На многих из самых удачных фотографий этого явления запечатлены самолеты ВМС США - и это неудивительно, учитывая, что теплый, влажный воздух у поверхности моря, как правило, способствует более яркому проявлению эффекта Прандтля-Глоерта.

Такие трюки часто проделывают истребители-бомбардировщики F/A-18 Hornet – это основной тип самолетов палубного базирования американской морской авиации.

Правообладатель иллюстрации SPL Image caption Скачок уплотнения при выходе самолета на сверхзвук трудно обнаружить невооруженным глазом

На таких же боевых машинах летают члены пилотажной группы ВМС США Blue Angels, мастерски выполняющие маневры, при которых вокруг самолета образуется конденсационное облако.

Из-за зрелищности явления его нередко используют в целях популяризации морской авиации. Летчики намеренно маневрируют над морем, где условия для возникновения эффекта Прандтля-Глоерта наиболее оптимальны, а поблизости наготове дежурят профессиональные флотские фотографы - ведь сделать четкий снимок реактивного самолета, летящего со скоростью 960 км/ч, на обычный смартфон невозможно.

Наиболее эффектно конденсационные облака выглядят на так называемом трансзвуковом-режиме полета, когда воздух частично обтекает самолет на сверхзвуковой скорости, а частично - на дозвуковой.

"Самолет при этом необязательно летит на сверхзвуковой скорости, но воздух обтекает верхнюю поверхность его крыла с большей скоростью, чем нижнюю, что приводит к местному скачку уплотнения", - говорит Ирвин.

По его словам, для возникновения эффекта Прандтля-Глоерта необходимы определенные климатические условия (а именно - теплый и влажный воздух), с которыми истребители палубной авиации сталкиваются чаще других самолетов.

Все, что вам остается сделать, - попросить об услуге профессионального фотографа, и - вуаля! - ваш самолет запечатлели в окружении эффектного облака водяного пара, которое многие из нас ошибочно принимают за признак выхода на сверхзвук.

  • Прочитать можно на сайте

Или превышающих её.

Энциклопедичный YouTube

    1 / 3

    Как САМОЛЕТ преодолевает ЗВУКОВОЙ БАРЬЕР

    Полет в "космос" на самолете U-2 / Вид из кабины пилота

    Звуковой барьер. Полеты на сверхзвуковой скорости.

    Субтитры

Ударная волна, вызванная летательным аппаратом

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с ещё большими скоростями, мы не сможем летать на них. На прошлой неделе я на своём «Мустанге» спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трёхстах метрах от земли я с трудом выровнял машину…

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).

Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй мировой войны с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время, реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

В полётах со снижением на опытном истребителе