Определение удельного веса нефти. Нефть удельный вес. От чего зависит плотность нефти

Дата публикации 09.01.2013 13:37

Современные требования, которые предъявляют к качеству нефти , достаточно высоки. Поэтому ее производство постоянно требует совершенства, чтобы нефтепродукты соответствовали всем стандартам и нормам. Соответствующие организации осуществляют контроль над производством и конечным продуктом.

Система стандартизации, которая разработана государством, является эталоном, на который равняются все производители. Соблюдение ее условий является обязательным для всех.

Нефть и прочие нефтепродукты - это жидкая смесь, имеющая сложный состав углеводородных соединений и близко кипящих углеводородов, а также гетероатомов кислорода, азота, серы, некоторых металлов и кислот.

Одним из качественных показателей является плотность нефти . Это количество покоящейся массы, находящейся в единице объема. Плотность нефтепродуктов и ее определение является необходимым условием для более легкого расчета их массового количества. Это связано с тем, что учет нефти в единицах объема не очень удобен, потому что этот показатель может меняться в зависимости от изменения температуры.

Плотность нефти измеряется в килограммах на один кубический метр. Можно легко определить массу, зная показатели объема и плотности. Масса в отличие от объема не имеет зависимости от температуры продукта.

Обычно применяют такой показатель, как относительная плотность нефти . Она определяется как отношение массы нефти к массе чистой воды, которая берется в том же объеме, имея температуру +4°. Такой температурный уровень выбран не случайно. Вода в этом случае имеет наибольшую плотность, которая равна 1000 килограмм на один кубический метр. Для того чтобы определить относительную плотность нефти, ее температура должна составлять +20°. В этом случае она может равняться от 0,7 до 1,07 килограмм на кубический метр.

Существуют и другие физические свойства нефти.

Удельный вес – это вес, который имеет одна единица объема. По-другому, это сила, с которой притягивается к земле одна единица объема этого вещества. То есть, это плотность, умноженная на ускорение силы тяжести.

Еще одним понятием является относительный удельный вес. Величина этого показателя равна численной величине, которую имеет относительная плотность. Ее и используем для расчета этого показателя.

Удельный вес и плотность нефти могут изменять свои значения при изменении температуры. Поэтому, чтобы рассчитать плотность, найденную при одной температуре на такой же показатель при других температурных данных, надо учитывать поправки на изменения плотности в зависимости от изменения температуры.

Плотность нефти, вычисленная на практике, считается аддитивной величиной. Это связано с тем, что этот показатель может быть получен в виде средней величины для нескольких нефтепродуктов.

Для каждого района добычи нефти характерны свои физические свойства этого продукта. Так, например плотность нефти в Тюменской области в среднем колеблется от 825 до 900 килограмм на кубический метр.

Изучение физических свойств этого продукта необходимо не только для ее рационального применения в хозяйственных целях и для продажи на мировом рынке. Иногда это бывает очень важным при устранении экологических катастроф, возникающих в результате выброса нефтепродуктов в окружающую среду, и позволяет избежать многих ошибок.

Так, при ликвидации аварии предпринимают попытки устранить нефтяное пятно при помощи поджога, не учитывая, что физические характеристики этого продукта могли измениться в результате взаимодействия с окружающей средой. Поэтому эти обстоятельства следует учитывать в случаях очистки водных поверхностей. Это очень важный фактор, который не следует игнорировать.

Современные требования, которые предъявляют к качеству нефти, достаточно высоки. Поэтому ее производство постоянно требует совершенства, чтобы нефтепродукты соответствовали всем стандартам и нормам. Соответствующие организации осуществляют контроль над производством и конечным продуктом.

Система стандартизации, которая разработана государством, является эталоном, на который равняются все производители. Соблюдение ее условий является обязательным для всех.

Нефть и прочие нефтепродукты - это жидкая смесь, имеющая сложный состав углеводородных соединений и близко кипящих углеводородов, а также гетероатомов кислорода, азота, серы, некоторых металлов и кислот.

Удельный вес - это вес, который имеет одна единица объема. По-другому, это сила, с которой притягивается к земле одна единица объема этого вещества. То есть, это плотность, умноженная на ускорение силы тяжести.

Еще одним понятием является относительный удельный вес. Величина этого показателя равна численной величине, которую имеет относительная плотность. Ее и используем для расчета этого показателя.

И плотность нефти могут изменять свои значения при изменении температуры. Поэтому, чтобы рассчитать плотность, найденную при одной температуре на такой же показатель при других температурных данных, надо учитывать поправки на изменения плотности в зависимости от изменения температуры.

Плотность нефти, вычисленная на практике, считается аддитивной величиной. Это связано с тем, что этот показатель может быть получен в виде средней величины для нескольких нефтепродуктов.

Для каждого района характерны свои физические свойства этого продукта. Так, например плотность нефти в Тюменской области в среднем колеблется от 825 до 900 килограмм на кубический метр.

Изучение физических свойств этого продукта необходимо не только для ее рационального применения в хозяйственных целях и для продажи на мировом рынке. Иногда это бывает очень важным при устранении возникающих в результате выброса нефтепродуктов в окружающую среду, и позволяет избежать многих ошибок.

Так, при ликвидации аварии предпринимают попытки устранить нефтяное пятно при помощи поджога, не учитывая, что физические характеристики этого продукта могли измениться в результате взаимодействия с окружающей средой. Поэтому эти обстоятельства следует учитывать в случаях очистки водных поверхностей. Это очень важный фактор, который не следует игнорировать.

Основные физические свойства и характеристики нефти и нефтепродуктов

Нефть (от персидского нефт – вспыхивать, воспламеняться) – горючая, маслянистая жидкость со специфическим запахом от светло-коричневого (почти бесцветного) до темно-бурого (почти черного) цвета.

В настоящее время в России действует государственный стандарт Р , в котором прописаны основные характеристики нефтей, добываемых на территории Российской Федерации.

В соответствии с этим стандартом приняты 2 определения нефти:

Сырая нефть – жидкая природная ископаемая смесь углеводородов широкого физико-химического состава, которая содержит растворенный газ, воду, минеральные соли, механические примеси и служит основным сырьем для производства жидких энергоносителей (бензина, керосина, дизельного топлива, мазута), смазочных масел, битума и кокса.

Товарная нефть нефть, подготовленная к поставке потребителю в соответствии с требованиями действующих нормативных и технических документов, принятых в установленном порядке.

С химической точки зрения нефть представляет собой сложную смесь органических соединений, основу которой составляют углеводороды различного строения. Состав и строение нефти различных месторождений нередко сильно отличаются друг от друга. В этой связи практически невозможно охарактеризовать нефть четкими

К основным характеристикам нефти и нефтепродуктов относятся:

1) плотность;

2) молекулярная масса (вес);

3) вязкость;

4) температуры вспышки, воспламенения и самовоспламенения;

5) температуры застывания, помутнения и начала кристаллизации;

6) электрические или диэлектрические свойства;

7) оптические свойства;

8) растворимость и растворяющая способность.

Плотность нефти и нефтепродуктов.

Поскольку основу нефти составляют углеводороды, то ее плотность обычно меньше единицы. Плотности нефтепродуктов существенно зависят от фракционного состава и изменяются в следующих пределах:

(плотность 0.800-0.950 г/см3)

Бензин (плотность 0.710-0.750 г/см3)

Керосин (плотность 0.750-0.780 г/см3)

Дизельное топливо (пл. 0.800-0.850 г/см3)

Масляные погоны (пл. 0.910-0.980 г/см3)

Мазут (плотность ~ 0.950 г/см3)

Гудрон (плотность 0.990-1.0 г/см3)

Смолы (плотность > 1.0 г/см3)

Под плотностью обычно понимают массу вещества, заключенную в единице объема. Соответственно размерность этой величины – кг/м3 или г/см3.

Для характеристики нефти, как правило, используют величины относительной плотности.

Относительная плотность (r ) – это безразмерная величина, численно равная отношению массы нефтепродукта (m н t ) при температуре определения к массе дистиллированной воды при 40С (m в t ) , взятой в том же объеме:

r t 4 = m н t / (m в t )

Поскольку плотность воды при 40С равна единице, то численное значение абсолютной плотности и относительной совпадают.

Наряду с плотностью в нефтехимии существует понятие относительного удельного веса (g ). О тносительным удельным весом (g ) называется отношение веса нефтепродукта при температуре определения к весу дистиллированной воды при 4°С в том же объеме.

Совершенно очевидно, что при одной и той же температуре плотность и удельный вес численно равны друг другу.

В соответствии с ГОСТом в нашей стране принято определять плотность и удельный вес при температурах 15 и 200 С.

Зависимость плотности нефтепродуктов от температуры имеет линейный характер. Зная плотность нефти при температуре t градусов, можно найти ее плотность при 200 С:

r 20 4 = r t 4 + D t · (t - 20)

где D t температурная поправка к плотности на 1 град, находится по таблицам или может быть вычислены по формуле:

D t = (18,310 – 13,233 · r 20 4 ) · 10-4

В ряде случаев эту формулу приводят в несколько измененном виде и называют формулой:

r t 4 = r 20 4 - D t · (t - 20)

Таким образом, плотность нефтей и нефтепродуктов уменьшается с ростом температуры.

Все нефтепродукты представляют собой смеси углеводородов. Среднюю плотность нефтепродукта определяют по правилу смешения и аддитивности:

r 1 V 1 + r 2 V 2 + … + r 3 V 3 m 1 + m 2 + … + m3

r ср. = --- или r ср. = ---

V 1 + V 2 + … + V 3 m 1 / r 1 + m 2 / r 2 + … + m 3 / r 3

Определение плотности проводят с помощью ареометров или нефтеденсиметров , а также гидростатических весов Мора-Вестфаля или пикнометрическим методом. Последний метод определения считается наиболее точным.

Плотность большинства нефтей меньше единицы и колеблется в диапазоне от 0.80 до 0.90. Высоковязкие смолистые нефти имеют плотность близкую к единице. На величину плотности нефти оказывает существенное влияние наличие в ней растворенных газов, количество смолистых веществ и фракционный состав. Плотность фракций нефтей плавно увеличивается по фракциям.

Для углеводородов средних фракций нефти с одинаковым числом углеродных атомов плотность возрастает в следующем ряду:

н. алканы ® н. алкены ® изоалканы ® изоалкены ® алкилциклопентаны ® алкилциклогексаны ® алкилбензолы ®алкилнафталины

Для бензиновых фракций плотность заметно увеличивается с увеличением количества бензола и его гомологов.

Для нефти и нефтепродуктов плотность является нормируемым показателем качества.

Молекулярная масса (молекулярный вес).

Молекулярный вес нефти и нефтепродуктов имеет лишь усредненное значение и зависит от состава и количественного соотношения компонентов смеси(Мср.)-усред. зн. ММ

Нетрудно определить, что первый представитель жидких углеводородов, входящих в состав нефти, - пентан, имеет молекулярную массу 72. У смолистых веществ она может достигать величины 1.5 – 2.0 тыс. у. е. Для большинства нефтей средняя молекулярная масса находится в пределах 250-300 у. е. По мере увеличения диапазона кипения нефтяных фракций молекулярная масса (Мср.) плавно увеличивается от 90 (для фракции 50-1000С) до 480 (для С).

Для упрощенных технологических расчетов существует формула Войнова:

Мср. = а + bt + ct 2 c р. (t ср. – средняя температура кипения)

В частности, для алканов эта формула имеет вид:

Мср. = 60 + 0.3 t ср. + 0.001 t 2 c р.

За рубежом для характеристики молекулярной массы нефтей и нефтепродуктов нередко используют формулу Крега, в которой фигурирует значение плотности при 150С:

Мср. = 44.29 ·r 15 /(1.03 - r 15 )

Для более точного определения среднего молекулярного веса нефтепродуктов пользуются экспериментальными данными, полученными криоскопическим и эбулеоскопическим методами.

Для технологических расчетов молекулярной массы используют специальные графики зависимости средней молекулярной массы от средней температуры кипения или плотности нефти.

Молекулярные веса отдельных нефтяных фракций обладают свойством аддитивности, поэтому, зная молекулярную массу отдельных компонентов и их содержание в смеси, можно рассчитать средний молекулярный вес нефтепродуктов:

Мср.= M 1 n 1 + M 2 n 2 + M 3 n 3 + …

Связь между молекулярной массой и относительной плотностью нефтяных фракций определяется по формуле Крега:

44.29 r 15

1.03- r 15

Вязкость (или внутреннее трение) нефти и нефтепродуктов зависит от химического и фракционного состава. Различают динамическую (ή) и кинематическую ( n ) вязкость (из физики n = ή / r ).

Динамическая вязкость (ή) или внутреннее трение – это свойство реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Это свойство проявляется при движении жидкостей. Единица измерения - н с / м2 .

Динамическую вязкость иногда характеризуют как сопротивление, которое оказывает жидкость при относительном перемещении двух слоев.

Кинематическая вязкость ( n ) – величина, равная отношению динамической вязкости (ή) к ее плотности (r ) при той же температуре, т. е.n = ή / r

Кинематическая вязкость нефтей различных месторождений изменяется в широких пределах (от 2 до 300 сст – сантистокс при 200С). Однако средняя вязкость большинства нефтей составляет величину от 40 до 60 сст.

Кинематическая вязкость является важнейшей характеристикой нефтяных смазочных масел, поскольку именно от величины вязкости зависит способность смазочного масла обеспечивать необходимый гидродинамический режим смазки. Неслучайно для смазочных масел, предназначенных для определенного вида машин и механизмов, величина вязкости (g 50 и g 100 ) является главной нормирующей составляющей.

Определение кинематической вязкости проводят в стеклянных вискозиметрах, снабженных калиброванными капиллярами.

Для ряда нефтепродуктом нормированным параметром является так называемая условная вязкость , определяемая в металлических вискозиметрах.

Условной вязкостью называется отношение времени истечения из вискозиметра 200 мл нефтепродукта при температуре испытания ко времени истечения 200 мл дистиллированной воды при 200С. Условная вязкость – величина относительная, безразмерная и выражается в условных градусах (0ВУ).

Между величинами условной и кинематической вязкостью выведена эмпирическая зависимость:

для ή от 1 до 120 сст n t = (7.24 ВУ t – 6.25/ВУ t ) илиn t = (7.31 ВУ t – 6.31/ВУ t )

для ή > 120 сст n t = 7.4 ВУ t .

Для нефтяных фракций по мере увеличения их молекулярного веса и температуры кипения вязкость значительно возрастает. Так, например, вязкость бензинов при 200С приблизительно равна 0.6 сст , а вязкость остаточных масел 300-400 сст .

Следует помнить, что вязкость масел не обладает свойством аддитивности. Поэтому вязкость смеси масел нельзя определить расчетным путем как средневзвешенную величину. Для определения вязкости смесей пользуются специальными номограммами. По этим номограммам (кривым) можно установить в каких соотношениях следует смешать компоненты для получения масел с заданной вязкостью.

Значение вязкости сильно зависит от температуры. При низких температурах вязкость нефтепродуктов значительно повышается и наоборот. Поскольку многие масла и другие нефтепродукты эксплуатируются в широком диапазоне температур, то характер температурной кривой вязкости служит для них важной качественной характеристикой. Чем эта кривая (зависимость) более пологая, тем выше качество масла.

Зависимость вязкости от температуры описывается эмпирической формулой Вальтера:

lg [ lg (n t + 0.6)] = A B lgT

где А и В - постоянные величины.

Для оценки вязкостно-температурных свойств нефтяных масел применяют следующие показатели:

1) отношение вязкости при 500С к вязкости при 1000С (g 50 / g 100 ) ;

2) температурный коэффициент вязкости (ТКВ). Его определяют в диапазоне от 0 до 1000 С и от 01.01.01 С по формулам:

ТКВ0-100=(n 0 - n 100 )/ n 50 и ТКВ20-100=1.25(n 20 - n 100 )/ n 50

3) индекс вязкости – условный показатель, представляющий собой сравнительную характеристику испытуемого и эталонного масла. Обычно рассчитывается по специальным таблицам на основании значения кинематической вязкости при 50 и 1000 С. В частности, его определяют как отношение значений кинематической вязкости нефтепродукта при 50 и 1000 С, соответственно:

I = n 50 / n 100

Температуры вспышки, воспламенения и самовоспламенения

Продукты нефтепереработки относятся к числу пожароопасных веществ. Пожароопасность керосинов, масел, мазутов и других тяжелых нефтепродуктов оценивается температурами вспышки и воспламенения.

Температурой вспышки называется температура, при которой пары нефтепродукта, нагреваемого в определенных стандартных условиях, образуют с окружающим воздухом взрывчатую смесь и вспыхивают при поднесении к ней пламени. Следует отметить, что при определении температуры вспышки бензинов и легких нефтей определяют верхний предел взрываемости, а для остальных нефтепродуктов – нижний.

Температура вспышки зависит от фракционного состава нефтепродуктов. Чем ниже пределы перегонки нефтепродукта, тем ниже и температура вспышки. В среднем температура вспышки бензинов находится в пределах от –30 до –400С, керосинов 30-600С, дизельных топлив 30-900С и нефтяных масел С. По температуре вспышке можно судить о наличии примесей более низкокипящих фракций в тех или иных товарных или промежуточных нефтепродуктах.

Температурой воспламенения называется температура, при которой нагреваемый в определенных условиях нефтепродукт загорается при поднесении к нему пламени и горит не менее 5 секунд. Температура воспламенения всегда выше температуры вспышки. Чем тяжелее нефтепродукт, тем больше эта разница. При наличии в маслах летучих примесей эти температуры сближаются.

Температурой самовоспламенения называется температура, при которой нагретый нефтепродукт в контакте с воздухом воспламеняется самопроизвольно без внешнего пламени. Температура самовоспламенения нефтепродуктов зависит и от фракционного состава и от преобладания углеводородов того или иного класса. Чем ниже пределы кипения нефтяной фракции, тем она менее опасна с точки зрения самовоспламенения. Температура самовоспламенения уменьшается с увеличением среднего молекулярного веса нефтепродукта. Тяжелые нефтяные остатки самовоспламеняются при С, а бензины только при температуре выше 5000С.

При появлении внешнего источника пламени (огня или икры) положение резко меняется, и легкие нефтепродукты становятся взрыво - и пожароопасными.

Из углеводородов самыми высокими температурами самовоспламенения характеризуются ароматические углеводороды.

Температуры застывания, помутнения и начала кристаллизации.

Нефть и нефтепродукты не являются индивидуальными веществами, а представляют собой сложную смесь органических соединений. Поэтому они не имеют определенной температуры перехода из одного агрегатного состояния в другое . Влияние температуры на агрегатное состояние нефти и нефтепродуктов имеет важное значение при их транспортировке и эксплуатации.

Низкотемпературные свойства нефти, дизельных и котельных топлив , а также нефтяных масел характеризуются температурой застывания. Карбюраторные, реактивные и дизельные топлива характеризуются температурой помутнения. Карбюраторные и реактивные топлива, содержащие ароматические углеводороды, характеризуются температурой начала кристаллизации. Указанные характеристики не являются физическими константами, однако достаточно четко определяют температурный диапазон практического применения соответствующих нефтепродуктов.

Температура застывания характеризует возможную потерю текучести нефтепродукта в зоне низких температур. Чем больше содержание парафинов (твердых углеводородов), тем выше температура застывания нефтепродукта. Следует отметить, что потеря текучести может быть связана и с увеличением вязкости продукта с понижением температуры. Например, кинематическая вязкость остаточного авиамасла при 500 С равна 2 ст , при 00 С – 130 ст , а при –250С она повышается до 3500 ст . При такой высокой степени вязкости масло теряет подвижность и его невозможно прокачивать.

Температура помутнения указывает на склонность топлива поглощать при низких температурах влагу из воздуха (это особенно опасно для авиационных топлив, поскольку образующиеся кристаллики льда могут засорять топливоподающую аппаратуру, что может привести к трагедии).

Температура начала кристаллизации карбюраторных и реактивных топлив не должна превышать –600С. По этой причине в зимних сортах бензина нежелательно наличие высокого содержания ароматических углеводородов. При повышенном содержании бензола и некоторых других ароматических углеводородов эти высокоплавкие соединения могут выпадать из топлива в виде кристаллов, что приводит к засорению топливных фильтров и остановке двигателя.

Электрические (диэлектрические) свойства нефти.

Безводная нефть и нефтепродукты являются диэлектриками (диэлектрическая проницаемость нефти ~2; для сравнения у стекла она ~7-8). У безводных чистых нефтепродуктов электропроводность совершенно ничтожна, что имеет важное практическое значение и применение. Так, твердые парафины применяются в электротехнической промышленности в качестве изоляторов, а специальные нефтяные масла (конденсаторное, трансформаторное) – для заливки трансформаторов, конденсаторов и другой аппаратуры, например, для наполнения кабелей высокого давления (изоляционное масло С-220).

Высокие диэлектрические свойства нефтепродуктов способствуют накоплению на их поверхности зарядов статического электричества. Их разряд может вызвать искру, а следовательно и загорание нефтепродукта. Надежным методом борьбы с накоплением статического электричества является заземление всех металлических частей аппаратуры, насосов, трубопроводов и т. п.

Оптические свойства нефти.

Оптическим характеристикам нефти относятся цвет, флуоресцентную и оптическую активность.

Углеводороды нефти бесцветны . Тот или иной цвет нефти придают содержащиеся в них смолы и асфальтены, а также некоторые сернистые соединения. Чем тяжелее нефть, тем больше содержится в ней смолисто-асфальтеновых веществ, и тем она темнее.

Флуоресценцией называется свечение в отраженном свете. Это явление характерно для сырой нефти и нефтепродуктов. Причины флуоресценции нефти точно не известны. Не исключено, что это связано с наличием в нефти полиядерных ароматических углеводородов или примесей. Не случайно, глубокая очистка нефти ликвидирует флуоресценцию.

Под оптической активностью нефтепродуктов, как и других органических соединений, понимают их способность вращать плоскость поляризации света. Большинство нефтей вращают плоскость поляризации вправо, т. е. содержат в своем составе правовращающие изомеры. Практического значения это свойство нефти не имеет.

Для количественной характеристики оптических свойств нефти и нефтепродуктов нередко используют показатель преломления (n 20 D ) , удельную рефракцию (r ), рефрактометрическую разность (Ri ) , удельную дисперсию (d ).

Удельная рефракция ( r ) определяется формулой Л. Лоренца и Г. Лоренца:

r = (n 2 D –1)/ (n 2 D +2) r

или формулой Гладсона-Дейля:

r = (nD –1)/ r

(в обоих формулах значения показателя преломления и плотности берутся для одной и той же температуре).

Рефрактометрическая разность (интерцепт рефракции) Ri также связан с плотностью и показателем преломления:

Ri = n 20 D - r 20 4 /2

Эта константа имеет постоянное значение для отдельных классов углеводородов, например, алканы – 1.0461; мноциклические углеводороды – 1.0400; полициклические – 1.0285; ароматические – 1.0627 и т. п.

Удельная дисперсия ( d ) характеризует отношение разности показателей преломления для двух различных частей спектра к плотности:

d = (nF - nc ) 104/ r

где nF и nc - показатели преломления для голубой и красной линий водорода соответственно (l = 4861 ммк и 6563 ммк ).

Растворимость и растворяющая способность нефти.

Нефть и жидкие углеводороды хорошо растворяют йод, серу, сернистые соединения, различные смолы, растительные и животные жиры. Это свойство нефтепродуктов широко используется в технике. Не случайно, на основе нефтепродуктов производят большое число высококачественных растворителей для лакокрасочной, резиновой и других отраслей промышленности.

Нефть также хорошо растворяет газы (воздух, оксид и диоксид углерода, сероводород, газообразные алканы и т. п.).

В воде ни нефть, ни углеводороды практически не растворимы. Из углеводородов худшая растворимость в воде у алканов, в несколько большей степени растворимы в воде ароматические углеводороды.

Следует помнить, что любая система растворитель - растворяемое вещество характеризуется критической температурой растворения (КТР) , при которой и выше которой наступает полное растворение. Причем, если в смеси находятся вещества, растворяющиеся в данном растворителе при разных температурах, то появляется возможность их количественного разделения.

ЛИТЕРАТУРА

1. Химия нефти/ под редакцией. Л.: Химия, 1984.

2. Петров нефти. М: Химия, 1984.

3. , Рудин и технология нефти и газа. Л.: Наука, 1985.

4. Пэрэушану В., Коробя М., Муска Г. Производство и использование углеводородов. M.: Мир, 1987.

5. Лебедев и технология основного органического и нефтехимического синтеза. М.: Химия, 1988.

6. Химия нефти и газа/ под ред. В.А. Проскурякова и. Л.: Химия, 1989.

7. Новые процессы органического синтеза. М.: Химия, 1989.

8. Данилов и добавки. М., Химия, 1996.

9. Данилов присадок в топливах для автомобилей. Химия, 2000.

10. Данилов в химмотологию. М., Техника, 2003.

11. Поконова Ю. Нефть и нефтепродукты. СПб, Из-во Промис, 2003.

12. Рябов нефти и газа. М., Техника, 2004.

13. Крылов катализ. М., Академкнига, 2004.

14. , Хавкин. Глубокая переработка нефти: технологический и экологический аспекты. М., Техника. 2004.

15. Журнал Всесоюзного химического общества им. Д.И. Менделеева. 1989. Т.34. №6; 2003. Т.48. №6.

16. Обзорные и оригинальные статьи в журналах “Успехи химии”, “Нефтехимия”, “Прикладная химия”, “Химическая технология” и др.

17. Электронные ресурсы: www. *****/books или elibrary. *****/index. phtml или chemtox. da. ru/ books

Удельный вес нефти зависит от нескольких причин: во-пер-вых, от содержания легкокипящих фракций, обладающих низ-кими удельными весами, во-вторых, от содержания смолистых веществ с высокими удельными весами (около 1) и, в-третьих, от типа преобладающих в нефти углеводородов. В количествен-ном отношении влияние легкокипящих компонентов значитель-нее, чем влияние смол, так как разница в удельных весах легко-кипящих компонентов и средних фракций нефти выше, чем раз-ница между плотностями смол и средних фракций. Третья при-чина — характер преобладающих в нефти углеводородов, имеет значение главным образом для сравнения более или менее широ-ких нефтяных фракций с одинаковыми границами кипения.

Удельный вес нефти в среднем колеблется от 0,82 до 0,90, хотя известно много примеров, когда величина удельного веса поднимается почти до 1 или падает до 0,76. Последние случаи относятся к так называемым фильтрованным нефтям, или нефтям газоконденсатного происхождения; в таких нефтях отсутствуют высококипящие фракции, а сами нефти не могут рассматриваться как обладающие нормальными свойствами.

Величина удельного веса нефти и ее продуктов всегда опре-деляется при 20° С и относится к воде при 4° С. Температурный коэффициент расширения нефти довольно значителен и обычно выше для нефтей низкого удельного веса. Поправка, необходимая для приведения удельного веса к стандартной температуре в 20° С, различна для разных фракций нефти. Она может достигать вели-чины в 0,000897 для фракций с удельным весом около 0,70 и до 0,00063 для фракций с удельным весом около 0,90 на 1°. Для ароматических углеводородов эта поправка очень высока: для бензола 0,001067 на один градус и для толуола 0,000916. Если для какого-либо нефтяного продукта найден удельный вес при 14° С, равный 0,8244, то для вычисления удельного веса при 20° С надо вычесть из найденной величины ту, которая соответ-ствует для этого удельного веса поправке на 1°, помноженной на разность температур в градусах. Поправка по табл. 1 соста-вляет 0,000738, поэтому окончательный итог выражается:

8244 — 0,000738 (20—14) = 0,8200 г/мл.

Таблица 1

Температурные поправки удельных весов нефтяных фракций на 1° С

Уд. вес

Поправка

Уд. вес

Поправка

0,700-0,710

0,000897

0,850—0,860

0,000699

0,710-0,720

0,000884

0,860—0,870

0,000686

0,720-0,730

0,000870

0,870-0,880

0,000673

0,730—0,740

0,000857

0,880—0,890

0,000660

0,740-0,750

0,000844

0,890-0,900

0,000647

0,750-0,760

0,000831

0.900-0,910

0,000633

0,760—0,770

0,000818

0,910—0,920

0,000620

0,770—0,780

0,000805

0,920—0 930

0,000607

0,780—0,790

0,000792

0,930— 0,940

0,000594

0,790—0,800

0,000778

0,940—0,950

0,000581

0,800—0,810

0,000765

0,950—0,960

0,000567

0,810—0,820

0,000752

0,960—0,970

0,000554

0,820—0,830

0,000738

0,970—0,980

0,000541

0,830-0,840

0,000725

0,980-0,990

0,000528

0,840—0,850

0,000712

0,990—1,000

0,000515

Для приведения удельного веса, определенного при темпера-туре выше 20° С, поправка прибавляется.

Данные приведенной таблицы имеют приблизительный харак-тер и ими пользуются в технических целях. Для узких нефтяных фракций, состав которых неизвестен, удобнее пользоваться пря-мым определением, так как табличные данные не учитывают химическую природу исследуемой фракции, хотя хорошо изве-стно, что поправка зависит от природы углеводородов.

Очень большое научное значение имеет удельный вес нефти из различных горизонтов одного и того же месторождения, т. е. отнесенный к различным глубинам. В этом отношении нефти можно разбить на три класса: 1) нефти, показывающие падение удельного веса с глубиной нефтяного горизонта; 2) нефти, пока-зывающие повышение удельного веса с глубиной, и 3) нефти, в которых удельный вес то падает, то повышается, т. е. не показывает определенной тенденции к изменению. Давно было подмечено, что во многих случаях удельный вес падает с глубиной. Статистическая обработка по материалам 250 место-рождений, проведенная А. А. Карцевым, показала, что к пер-вому классу из 250 нефтей относится 175 (70%), ко второму всего 30, или 12 %. Остальные относятся к третьему классу.

Таким образом, закономерность падения удельного веса с глу-биной проявляется весьма отчетливо. Причина этого явления усматривалась, в случае нефтей первого класса, в испарении нефтей, близких к поверхности, что должно было привести к уве-личению удельного веса. Наоборот, повышение удельного веса с глубиной рассматривалось как результат насыщения верхних нефтяных горизонтов газами и парами легких углеводородов из нижних горизонтов. Обе эти гипотезы не в состоянии объяс-нить причину перемежающихся удельных весов, хотя таких нефтей третьего класса известно достаточно много. Высказанные гипотезы, возможно, и имеют частичное значение в отдельных случаях, но их трудно распространить на все нефтяные месторо-ждения, так как ни испарение нефти, по существу дела явление вообще довольно сомнительное, ни обогащение ее легкими фрак-циями не могут иметь регионального характера, так как в луч-шем случае зависят от местных геологических условий.

Весь вопрос получил совершенно иное освещение, когда на ряде примеров было установлено, что удельный вес древних нефтей почти всегда ниже, чем у нефтей молодого геологического возраста. В связи с тем, что древние нефти имеют преимуще-ственно метановый тип, высказано было предположение, что на больших глубинах залегает нефть, в большей мере испытавшая метаморфизм под влиянием различных факторов вроде темпера-туры, каталитических влияний вмещающих пород и фактора времени, т. е. продолжительности существования нефти, которое, естественно, должно быть выше в случае древних нефтей.

Такой чисто геологический подход к решению вопроса об удельном весе нефти едва ли соответствует действительности. Известно, например, что нефти Северного Кавказа относятся к метановому типу, хотя возраст их не выше третичного. С другой стороны, известны и такие случаи, когда нефть залегает в очень древних отложениях и тем не менее обладает высоким удельным весом. Наконец, случаи, когда удельный вес по мере углубления то повышается, то понижается, трудно объяснить одними гео-логическими причинами, и в частности, фактом продолжитель-ности существования. Поэтому один геологический возраст сам по себе не может иметь решающего значения и имеет лишь стати-стический характер, так как понятно, что нефти, пролежавшие в недрах громадные промежутки времени, отделяющие наше время от древних геологических периодов, в большей мере могла испытать влияние и других факторов, кроме чисто геологических (в смысле возраста). Факторы превращения нефти могли иметь и случайный характер, но в течение громадных промежутков времени эта случайность неизбежно должна была превратиться в вероятность. В настоящее время уже известны и ближайшие причины падения удельного веса с глубиной: это, прежде всего, накопление легких фракций и появление в нефти возрастающих количеств метановых углеводородов.

Изменение удельного веса нефти в сторону его повышения в некоторых частных случаях можно объяснить осмолением нефти независимо от ее поверхностного испарения. Дело в том, что в нефтяных водах, сопровождающих нефть, могут развиваться особые виды анаэробных микроорганизмов, частично питающихся углеводородами, которые при этом частично превращаются в смо-листые вещества. Поэтому нефти, находящиеся в контакте с во-дами особого солевого состава, иногда показывают повышение удельного веса по глубине или по простиранию месторождения.

Такой механизм осмоления с некоторыми допущениями может быть приемлем для небольших залежей. Однако для крупных залежей, содержащих большие запасы нефти с ограниченной поверхностью водо-нефтяного контакта, трудно допустить бак-териальную переработку всей массы углеводородов.

Сейчас все более становится ясным, что тяжелая нефть на поверхности раздела с водой предохраняет основную массу от воздействия окислительных факторов. Обычно зона тяжелых нефтей в краевых частях залежи имеет очень ограниченное про-тяжение, за пределами которой располагается нефть с меньшим удельным весом.

В тех случаях, когда углеводородный состав не испытывает серьезных изменений от краевых к центральным частям залежи, механизм утяжеления нефти может быть хорошо объяснен грави-тационными причинами. Часть смолистых веществ, находящихся в субколлоидальном состоянии, склонна под действием сил тяго-тения опускаться вниз по падению нефтяного пласта к водо-нефтяному компоненту.

Владимир Хомутко

Время на чтение: 4 минуты

А А

Как определить абсолютную и относительную плотность нефти и нефтепродуктов?

– одна из важнейших характеристик нефти и нефтепродуктов, поэтому так важна точность её определения.

Различают два показателя этого параметра – абсолютный и относительный.

Абсолютной плотностью нефти и нефтепродуктов называют количество массы в единице объема. Она измеряется в граммах, килограммах и тоннах на кубический сантиметр или метр (г/см3, кг/м3). Определение этого показателя производят при 20-ти градусах Цельсия.

Относительная плотность представляет собой отношение плотности светлых нефтепродуктов или плотности нефти и темных нефтяных фракций, к значению этого параметра для дистиллированной воды при определенных температурах обеих жидкостей. Единицы измерения этот показатель не имеет. В нашей стране его определяют при 20-и градусах, а дистиллированной воды – при 4-х.

Этот показатель можно определить следующими методами:

  • определение ареометром и денсиметром;
  • пикнометрический метод;
  • расчетный метод.

Измерение плотности нефтепродукта с помощью ареометра и денсиметра

Ареометры меряют как плотность нефти и нефтепродуктов, так и их температуру, а денсиметры – только плотность нефтепродуктов. Этот метод регламентируется ГОСТ-ом 3900 – 85 и заключается в том, что в исследуемый продукт погружают отградуированный ареометр, а затем производят отсчет показаний по шкале прибора при текущих условиях исследований. После этого полученный результат приводят к нормальному показателю при 20-ти градусах (для этого существует специальная таблица).

Эти измерительные средства имеют следующие пределы (г/см³):

  • авиационные бензины – от 0,65 до 0,71;
  • автомобильные бензины – от 0,71 до 0,77;
  • керосин – от 0,77 до 0,83;
  • дизтопливо и масла (индустриальные) – от 0,83 до 0,89;
  • темные масла и нефтепродукты – от 0,89 до 0,95.

Процесс исследования происходит следующим образом:

Полезная информация
1 стеклянный цилиндр устанавливается на ровную поверхность
2 затем в него наливают заранее взятую пробу исследуемого продукта таким образом, чтобы не образовались воздушные пузырьки, и не было потери объема от испарения
3 пузырьки, которые появляются на поверхности – убирают с помощью фильтровальной бумаги
4 замеряют температуру пробы перед замером и после него, используя тот же ареометр, или, в случае применения денсиметра, отдельным прибором (температура пробы должна быть постоянной с отклонениями не более 0,2 градуса)
5 осторожно опускают в сосуд сухой и чистый прибор, держа его за верхний конец
6 когда колебания измерителя прекратятся, считывают показания с верхнего или нижнего мениска (в зависимости от калибровки)
7 полученный результат является плотностью нефти или нефтепродукта при текущих условиях
8 температура проведения испытания округляется до ближайшей, которая есть в таблице
9 по той же таблице, используя полученные результаты, определяют показатель этого параметра нефтепродукта при 20° Цельсия

Суть метода в том, что в пикнометр, представляющий собой отградуированный сосуд, наливают пробу испытываемого продукта, затем нагревают (или охлаждают) его до 20° и проводят взвешивание на специальных весах, погрешность которых не больше, чем 0,0002 грамма. Полученный результат является относительным показателем.

Такой расчет основан на зависимости этого параметра от температуры нефтепродукта.

Последовательность расчетов:

  • из паспорта исследуемого продукта берут показатель его плотности при 20°;
  • замеряют среднюю температуру испытуемого продукта;
  • вычисляют разницу между полученным результатом и 20°, округляя её до целого;
  • в специальной таблице находят поправку на один градус отклонения, которая соответствует паспортному значению параметра при плюс 20°;
  • полученная определяющая поправка умножается на разницу температур;
  • полученный результат прибавляют к паспортному, если температура проведения исследования ниже 20°, или вычитают из него, если Т > 20-ти.

0,650…0,659 – 0,000962; 0,660…0,669 – 0,000949; 0,670…0,679 – 0,000936;

0,680…0,689 – 0,000925; 0,6900…0,6999 – 0,000910; 0,7000…0,7099 – 0,000897;

0,7100…0,7199 – 0,000884; 0,7200…0,7299 – 0,000870;0,7300…0,7399 – 0,000857;

0,7400…0,7499 – 0,000844; 0,7500…0,7599 – 0,000831; 0,7600…0,7699 – 0,000818;

0,7700…0,7799 – 0,000805; 0,7800…0,7899 – 0,000792; 0,7900…0,7999 – 0,000778;

0,8000…0,8099 – 0,000765; 0,8100…0,8199 – 0,000752; 0,8200…0,8299 – 0,000738;

0,8300…0,8399 – 0,000725; 0,8400…0,8499 – 0,000712; 0,8500…0,8599 – 0,000699;

0,8600…0,8699 – 0,000686; 0,8700…0,8799 – 0,000673; 0,8800…0,8899 – 0,000660;

0,8900…0,8999 – 0,000647; 0,9000…0,9099 – 0,000633; 0,9100…0,9199 – 0,000620;

0,9200…0,9299 – 0,000607; 0,9300…0,9399 – 0,000594; 0,9400…0,9499 – 0,000581;

0,9500…0,9599 – 0,000567; 0,9600…0,9699 – 0,000554; 0,9700…0,9799 – 0,000541;

0,9800…0,9899 – 0,000528; 0,9900…1,000 – 0,000515.

Для лучшего понимания этой методики рассмотрим пример.

Предположим, что паспортное значение равняется 0,7960 г/см³, а исследуемый продукт нагрет до плюс 25°. Разность составляет 25 – 20 = 5°. В указанных выше значениях находим количественное значение поправки. Для диапазона от 0,7900 до 0,7999 она равна 0,000778. Умножаем её на разницу и получаем 0,000778 х 5 = 0,00389 г/см³. Округляем до четырех знаков после запятой, получаем 0,0039. Поскольку 25 больше 20-ти, полученное значение необходимо отнять от паспортного. Искомый результат составит 0,7960 – 0,0039 = 0,7921 г/см³.