Какая печать лучше пьезоэлектрическая или термическая. В чем разница между струйным и лазерным принтером. В гордом одиночестве


Струйная технология появилась в середине 1980-х как результат попытки избавиться от недостатков двух доминировавших в то время способов печати: матричной и лазерной (электрографической). Лазерная печать была неприемлемо дорогой, причем о цвете еще и не мечтали (да и в настоящее время, хотя цветные лазерники стали доступными, но в области фотоотпечатков не имеют никаких шансов обойти струйники). А струйная печать возникла как дешевая альтернатива для печати офисных документов, лишенная недостатков матричных принтеров - медленных, шумных и дававших отпечатки невысокого качества.

Идея, которая, видимо, почти одновременно (около 1985 года) пришла в голову инженерам компаний Hewlett-Packard и Canon, заключалась в том, чтобы заменить иголку, ударяющую в матричных принтерах по бумаге через красящий слой на ленте, каплей жидких чернил. Объем капли следовало рассчитать так, чтобы она не растекалась и создавала точку определенного диаметра. Реальную жизнь эта технология получила, когда придумали удобный способ формирования дозированной капли - термический.

Способ термической струйной печати фактически монополизирован компаниями Canon и Hewlett-Packard, которые владеют большинством патентов на эту технологию, остальные компании лишь лицензируют ее, внося свои небольшие изменения. При этом HP использует выражение "термический чернильно-струйный" (thermal ink-jet) способ печати, а Canon предпочитает термин "пузырьковый струйный" (bubble-jet).

Хотя между ними есть различия, но принципиально они идентичны.

На рис. 1 показан процесс термической струйной печати в виде условной кинограммы цикла работы форсунки (иногда их называют эжекторами). В стенку камеры встроен миниатюрный нагревательный элемент (выделен красным на верхнем кадре), который очень быстро нагревается до высокой температуры (500 °С). Чернила вскипают (второй кадр), в них образуется большой паровой пузырь (следующие два кадра) и резко растет давление - до 120 атмосфер, отчего чернила выталкиваются через сопло со скоростью более 12 м/с в виде капли объемом около 2 пиколитров (это две тысячные от миллиардной доли литра). Нагревательный элемент к этому моменту выключают, и пузырь вследствие падения давления схлопы вается (нижние кадры). Все происходит очень быстро - за несколько микросекунд. Чернила подаются в форсунку за счет капиллярных сил (что гораздо медленнее), и после заполнения форсунки новой порцией система готова к работе. Весь цикл занимает примерно 100 мс, то есть частота выброса капель составляет 10 кГц, а в современных принтерах - раза в два больше.


Такая автономно управляемая форсунка входит в состав печатающей головки, расположенной на движущейся поперек листа каретке, наподобие печатающего узла матричного принтера. При диаметре форсунки 10 мкм плотность размещения получается 2500 сопел на дюйм; в одной головке может быть от нескольких сотен до нескольких тысяч форсунок. В современных скоростных устройствах стали применять неподвижные головки - чтобы исключить самый медленный во всем этом процессе этап поперечного движения каретки. Например, HP выпускает высокопроизводительные фотокиоски, в которых головки составлены в блоки по всей ширине листа.

В принтерах Canon термический элемент расположен сбоку камеры (как на рис. 1), а у HP (и Lexmark) - сзади. Возможно, это различие обусловлено исходными идеями: согласно корпоративным легендам, инженер Canon уронил паяльник на шприц с краской (то есть шприц нагрелся сбоку), а исследователи из HP заимствовали принцип у электрочайника, у которого подогрев с торца. Так это или нет, боковое расположение позволяет Canon устанавливать два термических элемента на форсунку, что повышает быстродействие и управляемость размером капли, но усложняет и удорожает конструкцию.

Более дорогие "пузырьковые" головки Canon многоразовые и встроены в принтер. Головки HP проще в изготовлении, потому традиционно встраивались прямо в картридж и с ним же выбрасывались. Это гораздо удобнее, так как гарантирует качество печати (головка просто не успевает выработать ресурс) и высокую надежность узла. Однако при таком подходе совершенствование головок приводит к удорожанию картриджей, поэтому многие современные принтеры HP имеют отдельные головки, как у Epson или Canon. Так, Photosmart Pro B9180, сегодняшний флагман "домашних" фотопринтеров от HP, имеет заменяемые отдельные головки, а его более дешевый аналог Photosmart Pro B8353 - головки, встраиваемые в картридж.

Очень часто перед покупкой универсального принтера многие начинают путаться в большом ассортименте техники, точно не зная, какую модель и с какими возможностями им следует выбрать. Ничего удивительного: сегодняшний рынок печатных устройств предлагает огромное количество принтеров с разными функциями и технологиями печати. Изучая всевозможные модели, вы, скорее всего, зададитесь вопросом: какой принтер лучше, лазерный или струйный? Для начала рекомендуем разобраться в принципе действия данных устройств и выяснить все преимущества и недостатки обеих технологий.

Люди приобретают принтер или МФУ с разными целями. Профессиональные фотографы предпочитают модели, ориентированные на высокое качество фотопечати, то же касается фотолабораторий, фотостудий и дизайнерских агентств. Офисные принтеры закупаются руководителями исходя из своих критериев — возможности картриджей, наличие функции СНПЧ, скорость печати. Но большинство покупателей выбирают принтер для универсальных нужд . Им важно, чтобы устройство сочетало в себе основные функции: печать текстовых файлов, документов, фотографий различного формата и качества.

Если с принтером для узких задач все предельно ясно (ведь выбор делают, основываясь на конкретном критерии), то походящую по всем параметрам универсальную модель придется еще поискать. Можно, конечно, обратить внимание на готовые многофункциональные устройства , но они стоят недешево, да и ксерокс со сканером вам вполне может не пригодиться. Тем не менее, советуем определить, для чего именно вам будет необходим принтер:

  • для дома – печать документов, текстовых файлов, книг, журналов;
  • офисные нужды;
  • печать фотографий (любительские или профессиональные);
  • для учебы (распечатка дипломных и курсовых работ, рефератов, контрольных, конспектов и т.д.).

Цели покупки более-менее ясны? Тогда выбираем подходящую технологию печати, тщательно взвесив все «за» и «против».

Как работают струйные принтеры

Струйная печать считается наиболее распространенной в мире. В свое время струйные принтеры заметно потеснили матричные. Кроме того, именно со струйными принтерами в нашу повседневную жизнь прочно вошла цветная печать и печать фото «не выходя из дома». Это дешевле, практичнее и удобнее.

Как же они работают? Если в традиционных матричных устройствах изображение методично наносилось на красящую ленту с помощью тончайших иголочек, то здесь принцип действия немного иной. Для получения готового изображения в струйных принтерах имеются особые элементы под называнием дюзы (или сопла). Это маленькие отверстия, которые чрезвычайно сложно увидеть невооруженным глазом. Они располагаются непосредственно в печатающей головке принтера, где также находится емкость с чернилами. Именно через дюзы на бумагу передаются чернила. Каждая чернильная капелька краски имеет объем всего в несколько пиколитров. Диметр сопл и, соответственно, цветной капли, ничтожно мал, сравним с толщиной человеческого волоса! Попробуйте поместить под микроскоп картинку, распечатанную на струйном принтере, и вы заметите, что она сложена из огромного количества крошечных точек-капель.

Количество сопел бывает разное – от 12 до 256 штук, все зависит от назначения и класса модели принтера, а также производителя.

Под отверстиями (дюзами) имеются небольшие полости, куда и направляются капли краски из основного резервуара. Краска выдавливается с помощью двух методов.


Существует два варианта хранения чернил в струйном принтере.


Как работают лазерные принтеры

Лазерная печать вполне может быть как цветной, так и черно-белой. Красящее вещество – тонер – напоминает по своему составу не жидкие, а порошковые чернила. Ключевым элементом в конструкции лазерного принтера является светочувствительный фотобарабан . Он похож на металлический цилиндр с полупроводниковым покрытием. Полупроводник чувствителен к свету, и именно на этом свойстве основан весь принцип действия лазерного прибора.

Фотобарабан обладает либо положительным, либо отрицательным зарядом. Зарядность зависит от коронатора – вольфрамовой проволоки с золотым или платиновым напылением. Под влиянием тока возникает электрозаряд, образуя электромагнитное поле, которое отражается на фотобарабан. Вместо коронатора устройством, создающим электромагнитное поле, может служить заряжающий вал . Он похож на стержень из металла, покрытый отличными проводниками – например, резиной или поролоном.


Струйный против лазерного: плюсы и минусы

Так лазерный или струйный принтер? И тот, и другой обладают своими положительными и отрицательными сторонами. Сравним оба вида по нескольким основным критериям, чтобы понять отличие и выяснить, какой лучше.

Ценовые характеристики

Если сравнивать стоимость струйного и лазерного принтера, то ответ будет очевидный: даже «струйник» высокого класса с кучей возможностей будет стоить дешевле средненького лазерного принтера . Однако не все так радужно. Дело в том, что обслуживание струйного принтера обойдется в кругленькую сумму. Вам регулярно придется приобретать набор картриджей, а расходы на один стандартный комплект чернильных картриджей за полтора-два года превысят начальную стоимость самого принтера.

Стоимость одного отпечатка на лазерном принтере гораздо дешевле.

Еще один важный момент: модели со струйным типом печати очень требовательны к качеству загружаемой бумаги . Чтобы отпечаток (например, документ или фото) получился максимально четким и красочным, вам придется использовать бумагу наилучшего класса, что тоже приведет к очередным расходам. «Лазерники» же не столь чувствительны к качеству бумажных носителей и способны реализовать весь свой печатный потенциал на самой обычной бумаге в офисе.

Качество печати

Разница между качеством печати обоих типов принтеров не очень явна. Тем не менее, считается. что «струйник» одинаково хорошо печатает текст, фотографии, баннеры, этикетки, открытки и т.п в большом качестве и высоком разрешении. А вот фотопечать у лазерных принтеров реализована куда хуже: цветной тонер хуже наносится на поверхность, и в результате изображения получаются не такими насыщенными и сочными. В общем, цветопередача хромает . Зато несомненным достоинством лазерного устройства является превосходная устойчивость распечатанных изображений к свету и воде. Также лазер печатает текстовые документы в отличном качестве на высокой скорости.

Скорость печати

По данному критерию сравнение однозначно в пользу лазерных принтеров. Лазерник среднего класса печатает около 15 страниц за одну минуту. Скорость работы «струйника» зависит от ряда факторов: режим, объем печати, разрешение. Если необходимо напечатать текстовый документ в отличном качестве или фото в максимальном разрешении, скорость струйного принтера довольно низкая. К тому же, лазерное устройство рассчитано на больший объем печати и менее частую смену расходных материалов.

Расходные материалы и заправка картриджей

Основной расходный материал лазерных приборов – тонер. Порошковый тонер-картридж перезаряжается от силы три-четыре раза, после чего рекомендуется сменить весь барабан. Очевидный минус тонера – он токсичен, а при работе еще и выделяет в атмосферу озон. Тонер заправляют, как правило, специалисты, поэтому в случае исчерпания очередного тонера вам придется сходить в магазин или сервисный центр за новым или за перезаправкой.

Струйные принтеры в свою очередь работают с чернильными картриджами . Их несложно приобрести и заправить. Однако сам процесс заправки довольно муторный: шприцы, банки с чернилами, многочисленные пятна от краски. Учитывая не самый большой объем картриджа, повторять процедуру придется довольно часто. Оптимальный вариант – система непрерывной подачи чернил. Ее главное преимущество – низкая себестоимость отпечатков и огромный ресурс чернил без надобности покупки картриджей.

Компания Epson реализовала функцию СНПЧ в виде встроенных в конструкцию емкостей с чернилами. Чернильные резервуары гораздо дешевле, чем сменные картриджи, обладают большим ресурсом, их удобно применять и они не пачкают руки краской.

Струйный принтер EPSON L132 со съемными чернилами

Экологичность

Задаваясь вопросом, какой принтер купить, лазерный или струйный, подумайте и о таком важном аспекте, как экологичность. Дело в том, что нагревательные элементы в лазерном устройстве при подаче тока взаимодействуют с тонером. Тонер, как уже отмечалось выше, токсичен, и его микрочастицы нежелательно вдыхать. Также во время печати с «лазерника» выделяется озон в немалом количестве, что негативно влияет на окружающую среду.

Возможности

Если вам необходим принтер с универсальными функциями, вы хотите распечатывать документы для учебы или домашних нужд (распечатки сайтов, курсовые работы, рефераты, документы) и не готовы потратить большие деньги, то выбирайте струйный принтер. При небольшой нагрузке вы не потратите много денег, но устройство прослужит долгое время и будет радовать качеством и стабильностью работы. Кроме того, «струйник» хорошо проявляет себя в фотопечати. Качественный струйный принтер идеально печатает в большом разрешении цветные фотографии, максимально передавая детали и насыщенный цвет. Конечно, цветные картриджи придется весьма часто менять, но это с лихвой окупит прекрасное качество цветопередачи изображений. Лазерные модели, увы, не так хороши в этом деле. Кроме того, струйные устройства позволяют выполнять фотопечать на различных носителях, будь то рулоны, баннеры, конверты и этикетки. Чем не повод открыть домашнюю фотолабораторию?

Резюме: струйный принтер оптимален и дома, и в офисе. Профессиональный цветной «струйник» будет и вовсе незаменим в фотостудии.

Лазерный монохромный принтер пригодится в офисе или дома. Тут все идеально для стандартных офисных нужд: высокая скорость печати для получения пухлой пачки бумаг с документами, договорами, приказами, книгами и научными работами. Возможность печатать большие объемы и стабильная работа устройства. Также выглядит привлекательно рекордно низкая себестоимость отпечатка. Заправив картридж единожды, вы сможете отпечатать большое количество листов в отличном качестве.

Резюме: эксплуатация черно-белого и цветного «лазерника» наиболее обоснована в офисном пространстве, нежели в домашних условиях. Фото он печатает весьма посредственно, а обслуживание и сама стоимость принтера довольно высокие.

Так лазерный или струйный принтер? Как вы видите, нет однозначного ответа на этот вопрос. Мы выяснили, чем отличаются данные технологии печати друг от друга и разобрались в некоторых нюансах. В обоих типах устройств есть свои плюсы и минусы. Вам останется лишь определиться, для каких целей будет использовать печатная техника и, проанализировав все плюсы и минусы, выбрать идеальный вариант.

На рынке струйных печатающих устройств распространены две основные технологии печати: пьезоэлектрическая и термоструйная.

Отличия данных систем состоят в способе вывода капли чернил на бумагу.


Пьезоэлектрическая технология была основана на способности пьезокристаллов к деформации под воздействием на них электрического тока. Благодаря использованию данной технологии осуществляется полный контроль печати: определяется размер капли, толщина струи, скорость выброса капли на бумагу и т.д. Одним из множества преимуществ данной системы является возможность управления размером капли, что позволяет получать отпечатки высокого разрешения.

Доказано, что надежность пьезоэлектрической системы значительно выше в сравнении с другими системами струйной печати.

Качество печати при использовании пьезоэлектрической технологии чрезвычайно высокое: даже универсальные недорогостоящие модели позволяют получить отпечатки практически с фотографическим качеством и высоким разрешением. Также достоинством печатающих устройств с пьезоэлектрической системой считается естественность цветопередачи, что становится действительно важно при печати фотографий.

Печатающие головки струйных принтеров EPSON обладают высоким уровнем качества, чем и объясняется их высокая стоимость. При пьезоэлектрической системе печати обеспечивается надежная работа печатающего устройства, а печатающая головка крайне редко выходит из строя и устанавливается на принтер, а не является частью сменных картриджей.

Пьезоэлектрическая система печати была разработана компанией EPSON, она запатентована и ее использование запрещено другим производителям. Поэтому единственные принтеры, которые используют данную систему печати, - это EPSON.

Термоструйная технология печати используется в принтерах Canon, HP, Brother. Подача чернил на бумагу осуществляется посредством их нагревания. Температура нагрева может составлять до 600°С. Качество термоструйной печати на порядок ниже пьезоэлектрической, всвязи с невозможностью проконтролировать процесс печати из-за взрывного характера капли. В результате такой печати часто возникают сателлиты (капли-спутники), которые мешают получить высокое качество и четкость отпечатков, приводя к искажению. Этого недостатка невозможно избежать, так как он заложен в самой технологии.

Еще одним недостатком термоструйного способа является образование накипи в печатающей головке принтера, так как чернила являются ничем иным как совокупностью химических веществ, растворенных в воде. Образовующаяся накипь со временем забивает дюзы и существенно портит качество печати: принтер начинает полосить, ухудшается цветопередача и т.д.

Из-за постоянных перепадов температуры в устройствах, использующих термоструйную технологию печати, постепенно разрушается печатающая головка (сгорает под действием высокой температуры при перегреве термоэлементов). Это является главным недостатком таких устройств.
Срок службы печатающей головки принтеров EPSON такой же, как и самого устройства, благодаря высокому качеству изготовления ПГ. Пользователям же устройств с термоструйной печатью придется каждый раз покупать новую печатающую головку и производить замену, что не только уменьшает долговечность принтера, но и существенно увеличивает затраты на печать.
Качество печатающей головки имеет значение и при использовании неоригинальных расходных материалов, в частности СНПЧ.

Использование СНПЧ позволяет пользователю на 50% увеличить объемы печати.
Печатающая головка принтеров EPSON, как уже не раз упоминалось в данной статье, имеет высокое качество, засчет чего увеличение объемов печати не сказывается негативным образом на работе принтера, а наоборот позволяет пользователю получить максимум экономии без ухудшения качества печати.

Ввиду особенностей печатающих устройств, использующих термоструйную технологию, увеличение объемов печати может привести к выходу ПГ принтера из строя.

Как показывают наблюдения, для получения максимальной экономии при совершенном качестве печати целесообразней использовать печатающие устройства EPSON с СНПЧ. Принтеры EPSON работают с системой непрерывной подачи чернил стабильней, чем печатающие устройства других производителей.

Струйные принтеры сегодня одни из наиболее популярных среди потребителей. Причем в большинстве случаев такой принтер покупается в качестве периферии к домашнему компьютеру. На то есть свои резоны, и в первую очередь низкая цена и возможность печати цветных документов. Между тем, как утверждают продавцы ряда салонов компьютерной техники, большинство пользователей имеет более чем смутное представление о принципах струйной печати. Если с работой матричных или лазерных принтеров их владельцам все более-менее ясно, то про струйные принтеры они, как правило, только и могут сказать, что картинка там формируется путем разбрызгивания по бумаге мелких капель чернил.

Для начала, наверное, стоит объяснить, что представляет собой такой показатель, как dpi, который, оказывается, более важен, чем, к примеру, скорость печати. DPI (dot per inch, то есть точек дюйм) - это так называемое число капель на дюйм, функция от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка принтера перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя принтеров состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель, а значит, и качества печати.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Понятно, что в таком случае более высокое качество потребует меньшей скорости печати, и наоборот.

Струйные принтеры различаются по способу печати.

Достаточно широко распространены три основных способа печати.

Термоструйная печать

Разработка термической технологии струйной печати началась еще в 1984 году. Первопроходцами тогда стали компании HP и Canon. Но дело шло медленно, и придти к необходимым результатам долгое время не удавалось. Только в 90-х годах удалось наконец добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, что и привело к созданию сегодняшних принтеров с высоким разрешением.

Как видно из названия, в основе термического (правильнее сказать, электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, который находится в эжекционной камере. При нагревании некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через прецизионное сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Самое главное для успеха данной технологии. это максимально точно подобрать конфигурацию эжекционной камеры, а также диаметр и точность сопла. На поведение чернил при нагревании и выбросе их из сопла наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.) оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска в сопле после эжекции и повторное заполнение эжекционной камеры. Рассмотрим поподробнее этапы формирования и выброса капли. Формирование термической чернильной струи начинается в печатающей головке картриджа. Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца. Однако, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то, хотя температура в это время увеличивается со скоростью 300 млн градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь примерно до 600°C. Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла. Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем составляет порядка 125 атмосфер, т.е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания. Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 500 дюймов в секунду. Образующаяся при этом капля весит всего 18 миллиардных долей грамма. По командам, поступающим от драйвера принтера, несколько сотен сопел могут активизироваться одновременно в любых сочетаниях. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка. ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара. Изготовление печатающей головки. это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в данной сфере решаются действовать очень немногие компании. Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии примерно 1,27 см может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн точек. Качество печати определяется многими факторами, но главные из них. это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения.

Пьезоэлектрическая технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson, впервые была использована в струйных принтерах Epson не так давно. в 1993 году. В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры и давлением, создаваемым в этой камере за счет деформации пьезокристалла. Изменение размера капли осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка по чисто экономическим причинам не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером. Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей: при использовании цветных (пигментных) чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел. Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок, как высокая надежность и возможность изменения размеров капли, весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако, поскольку цены на термические струйные принтеры непрерывно снижаются, и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Пузырьково-струйная печать

Принцип пузырьково-струйной печати Canon Bubble-Jet, изобретённый в конце 70-х, до гениального прост. В каждой дюзе, тончайшем канале, в котором формируются капельки чернил, расположен микроскопический нагреватель. Электрические импульсы, подаваемые на него, заставляют чернила вскипать с образованием воздушных пузырьков, и эти пузырьки с каждым импульсом выталкивают равные объёмы чернил из дюзы. Нагрев прекращается, пузырёк исчезает, в дюзу втягивается новая порция чернил, и она готова к новому циклу!

Однако, понадобилось около 8 лет, чтобы первый пузырьково-струйный принтер стал доступен пользователям. В 1981 году перспективная технология Canon Bubble-Jet впервые была представлена на выставке Canon Grand Fair и сразу приковала к себе внимание специалистов. Но лишь в 1985-ом появилась первая коммерческая модель монохромного принтера Canon BJ-80, а первый полноцветный BJ-принтер BJC-440 (формата A2, с разрешением 400 точек на дюйм) появился в 1988 году.

До какого-то периода слово «печать» ассоциировалось либо с работой типографии, либо с лазерными завсегдатаями больших офисов. Струйная печать отличалась тем, что представляла собой процесс перенесения картинки или текста за счет пластины дюз и жидкого красителя.

Казалось бы, понятие струйной печати стало входить в обиход только недавно, после того, как струйные принтеры стали доступны обычному пользователю. Однако, история их развития охватывает почти 200 лет.

Рисунок ниже иллюстрирует эволюцию струйной печати от самого ее зарождения до современности.

Этапы развития струйной печати

Теоретические разработки

Теоретические основы струйной технологии печати истоками уходят в 1833 год. Именно тогда Феликс Савар, французский физик и изобретатель, выявил интересную закономерность: в результате распыления жидкости через отверстия с микроскопическим диаметром (дюзы) формируются идеально ровные капли. И лишь через 45 лет, в 1878 году, этот феномен математически описал лорд Рейли, лауреат Нобелевской премии.

Однако ранее, в 1867 году, Уильям Томпсон запатентовал идею непрерывной подачи чернил (Continuous Ink Jet). Он использовал электростатические силы, чтобы контролировать распыление чернил и жидкого красителя на бумажный носитель. На основе этого принципа Уильям Томпсон сконструировал самопишущие приборы, необходимые для работы электрических телеграфов.

Непрерывная печать

Знаменательным для струйной технологии печати стал 1951 год — компания Siemens получила патент на струйный принтер, первый в своем роде. В его основе лежала технология непрерывной подачи чернил. Чуть позже многие мировые производители печатающей техники переняли эту технологию и продолжили ее совершенствование.

Предшественники современных струйных печатающих устройств были довольно громоздкими, оснащёнными различными баллонами, насосами и прочими подвижными частями, прихотливыми в использовании и, к тому же, стоили больших денег. Работали такие принтеры очень медленно, да и не без недостатков: они могли пропускать чернила при печати, что было не очень-то удобно и безопасно.

Печать по требованию

Процесс зародился в 60-х годах этого столетия, когда профессору из Стенфордского университета удалось получить одинаковые по объему и удалённые друг от друга на равном расстоянии чернильные капли. Для этого он использовал волны давления, производимые вследствие движения пьезокерамического элемента. Такая система называлась «Drop-on-demand», в переводе с английского «капли по требованию». Технология позволила отойти от использования сложной системы рециркуляции чернил, системы зарядки, а также исключить отклонения капель.

Впервые печать по требованию применили в 1977 году в печатающих устройствах PТ-80 компании Siemens, а спустя некоторое время (1978 год) в принтере Silonics. Позже данный способ печати продолжил свою эволюцию: технология развивалась и становилась основой все новых и новых моделей струйных принтеров для коммерческого использования.

Наиболее дорогостоящей деталью в принтере была, да и сейчас остается, печатающая головка. Её невозможно было «безболезненно» заменить, как это происходило с картриджем. Поэтому пользователи находили новые алгоритмы взаимодействия. Например, чтобы предотвратить засорение дюз печатающей головки пузырьками воздуха или остатками засохшей краски, принтер старались использовать даже когда в этом не было особой необходимости. И все для того, чтобы не допустить длительного простоя печатающего устройства.

Еще в 70-е годы ХХ века появились предпосылки цветной печати. Шведский профессор Херц нашел способ воспроизводить всевозможные оттенки серого благодаря методу регулирования плотности нанесения капель. Это позволило печатать не только текст, но и различные изображения, передавая градации серого цвета.

Пузырьковая печать

Технологией пузырьковой печати мы обязаны компании Canon. В конце 70-х годов ее специалисты явили миру технологию струйной печати, неизвестную ранее — «Bubble Jet» или «пузырьковую печать». Принцип работы этих струйных принтеров заключается в следующем: в дюзе размещен микроскопический термоэлемент, который мгновенно нагревается до 500оС как только на него воздействует ток. При нагреве чернила закипают, внутри камеры образуются воздушные пузырьки (bubbles), под действием которых из дюзы на бумагу выталкиваются равные объёмы чернил. Как только чернила перестают нагреваться и охлаждаются до прежней температуры, пузырьки лопаются, а в дюзу втягивается следующая порция чернил. Таким образом обеспечивается беспрерывная печать.

Принцип пузырьково-струйной технологии печати

Как только в 1981 году компания Canon представила пузырьково-струйную технологию на выставке Grand Fair, та сразу заинтересовала общественность. И уже в 1985 году свет увидел Canon BJ-80, первый монохромный пузырьковый принтер. Спустя 3 года появился Canon BJC-440, первый широкоформатный принтер, использующий ту же технологию. Он уже мог печатать в цвете с разрешением 400 dpi.

Расходы на печать с технологией пузырьково-струйной печати относительно невысоки. Однако стоимость обслуживания принтера возрастает оттого, что печатающая головка встроена в чернильные картриджи, а не в принтер. Но есть и обратная сторона медали: сохраняется работоспособность устройства в случае использования неоригинального картриджа.

Термическая печать

Эпоха термической печати началась к концу 90-х годов, хотя компании HP и Canon приступили к ее разработке еще в 1984 году. Все дело в том, что не удавалось добиться необходимого сочетания качества и стоимости печати, а также скорости работы. Чуть позже к гигантам индустрии присоединилась и компания Lexmark. В этом тандеме эти крупнейшие компании добились высокого разрешения печати и создали подобие современных принтеров.

Полученная в результате разработок технология стала именоваться «термической печатью» (thermal inkjet). Эту технологию использовала первая линейка струйных принтеров HP — ThinkJet.

Струйные принтеры HP THinkJet

Принцип термической печати заключается в увеличении объёма чернил при нагреве. Температура нагревательного элемента внутри печатающей головки повышалась под воздействием нагревательного элемента. Чернила, расположенные близко к нагревательному элементу, при нагреве начинают испаряться. Формируются пузырьки, которые выталкивают из дюзы определенное их количество. В результате понижения давления в печатающую головку поступает такой же объем чернил. Этот процесс повторяется с высокой цикличностью до 12 тысяч перезаправок в секунду. Печатающая головка на основе термоструйной технологии состоит из большого количества микроскопических дюз и эжекционных камер.

Компания HP выбрала непривычный курс — она изготовила сменную печатающую головку, которая является частью картриджа и выбрасывается без особых сожалений вместе с ним. Такой шаг решил проблему долговечности принтера.

Принцип работы термического принтера

Пузырьковые и термоструйные принтеры обладали приемлемой ценой, компактностью, работали бесшумно и обеспечивали широкий цветовой диапазон, благодаря чему заполонили рынок доступных печатающих устройств и практически вытеснили с рынка матричные принтеры.

Пьезоэлектрическая печать

Технология пьезоэлектрической системы печати (Piezoelectric Ink Jet) появилась в 1993 году благодаря компании Epson, которая первая стала применять ее в своих принтерах. Принцип пьезоэлектрической печати основан на свойстве пьезокристаллов изменять свой объём и форму под воздействием силы тока. В строении картриджа одной из стенок выступает пьезоэлектрическая пластина. Она выгибается под влиянием тока и тем самым уменьшает объём чернильной камеры. В результате определенный объем чернил выталкивается из дюзы наружу.

Принцип пьезоэлектрической технологии печати

Плюс стационарной печатающей головки в ее экономичности, ведь ее не приходится менять так же часто, как и картриджи. Однако есть небольшая вероятность, что при смене картриджа в печатающую головку может попасть воздух и закупорить дюзы, повлияв на качество печати.

Современные традиции

Развитие технологий в настоящее время сделала струйные принтеры еще популярней. Их приобретают и для офисного и для домашнего использования благодаря их доступной цене и компактности. Иногда пользователи покупают струйные принтеры для цветной печати как дополнение монохромным лазерным принтерам. Существует мнение, что лазерные устройства быстрее и дешевле справляются с печатью текстовых документов, а струйные — с цветными фотографиями.

В настоящее время стандартом разрешения печати современных струйных принтеров считается 4600х1200 dpi. Но уже существуют и такие устройства, что превосходят этот показатель. Из других способностей струйных принтеров можно отметить печать без полей, а так же встроенный ЖК-дисплей или порт для чтения карт памяти.

Преимущества струйных принтеров.

Самый основной козырь струйных печатающих устройств — это высокое качество цветной печати. Вы можете воссоздавать яркие и реалистичные фотографии с отличной прорисовкой мелких деталей и полутонов. Кроме этого, струйные принтеры практически бесшумны, не требуют длительного времени на разогрев, представлены в широком модельном ряде и доступны в разных модификациях.

Недостатки струйных принтеров.

Главная причина отказа от использования струйника — дороговизна оригинальных картриджей, недолговечность отпечатков из-за выцветания или растекания чернил при попадании жидкости, а также засорение печатающих головок. Хотя решения всех этих недостатков очень просты. Засорения можно побороть стандартной прочисткой головки, а отпечатки сделать более долговечными, используя пигментные чернила. А вот избежать переплаты за оригинальные картриджи помогут альтернативные расходные материалы и чернила, которые на данный момент достигли высоких показателей качества. Отличие от оригинальных чернил составляет не более 2-5%, благодаря чему разница результатов печати неразличима невооруженным глазом.

Много новостей из развития современных принтеров, МФУ и плоттеров можно почитать .

Купить принтер или мфу