Что параметры мощности электростанций. Номинальная и максимальная мощность. Смотреть страницы где упоминается термин Установленная мощность электростанции максимальная

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Установленная мощность электростанций в развивающихся странах , как предполагается, будет удваиваться каждые 7-8 лет, в том числе в Азии - 6 лет, в Африке - 9-Ю лет. В 1971 - 1980 гг. в этих странах предстоит построить электростанции общей мощностью 150 000-200 000 МВт, и стоимостью примерно 35 млрд. долл., кроме того, около 50 млрд. долл. потребуется на сооружение ЛЭП и распределительных сетей . Оценки Международного агентства по атомной энергии установленной мощности электростанций в развивающихся странах приведены в табл. 1-IV.  


В 1970 г. выработка электроэнергии в США составила 1,64 трлн. кВт-ч, а установленная мощность электростанций - 360 млн. кВт (в 1950 г. - 83 млн. кВт). При этом в общей выработке электроэнергии станциями общего назначения доля ТЭС составляла 82,6%, ГЭС - 16,0% и АЭС - 1,4%.  

Динамика структуры установленных мощностей электростанций в стране в соответствии с этим прогнозом приводится в табл. 29-V. Исходя из этих данных, мощность АЭС проектировалась в размере в 1975-1976 гг. 4,8 млн. 1985-1986 гг. - 48 млн. 2000-2001 гг. 165 млн. кВт.  

Предполагаемое по программе Атомного форума изменение размеров и структуры установленной мощности электростанций приводится в табл. 30-V.  

В капиталистических странах при росте за 1950 - 1978 гг. общей установленной мощности электростанций в 14,8 раза производство электроэнергии увеличилось лишь в 7,0 раза. Иными словами, темпы роста генерирующей мощности электростанций более чем вдвое опережали темпы роста производства электроэнергии. В развивающихся странах они были,.наоборот, несколь-  

В табл. 3. 1 приводится изменение среднего числа часов использования установленной мощности электростанций за 1960-1976 гг.  

Доля ТЭС и АЭС в общей установленной мощности электростанций промышленно развитых капиталистических стран с 60% в 1950 г. увеличилась до 79% в 1978 г., тогда как доля ГЭС снизилась почти вдвое. В развиваю-  

Установленная мощность электростанций общего пользования США  

В условиях крайней ограниченности собственных природных ресурсов минерального топлива вполне понятно то большое внимание, которое уделяется развитию ядерной энергетики . Доля АЭС в производстве электроэнергии всеми электростанциями Японии длительное время была заметно ниже, чем в развитых капиталистических странах в целом. Если доля Японии в промышленном производстве и производстве электроэнергии всеми электростанциями развитых капиталистических стран в 1975 г. составляла 10,8 и 10,9% соответственно, то в производстве электроэнергии АЭС - только 7,8%. Низка доля АЭС и в установленной мощности электростанций (табл. 4.15).  

В 1978 г. по выработке электроэнергии ФРГ занимала третье место (после США и Японии), а по установленной мощности электростанций - четвертое место (после указанных стран в Великобритании) среди про-мышленно развитых капиталистических стран. В 1978 г. по потреблению электроэнергии на душу населения ФРГ заметно уступала США, но на 19% превосходила Японию, на 22% -страны Общего рынка, взятые в целом. В том же году установленная мощность электростанций на душу населения в ФРГ исчислялась в 1321 кВт против 2736 кВт в США, 1109 кВт в Японии и около 1100 кВт в среднем во всех странах - членах Общего рынка. Таким образом, по этим показателям ФРГ превосходила большинство капиталистических стран.  

Осенью 1973 г. была опубликована энергетическая программа правительства ФРГ, в которой было предусмотрено форсирование темпов строительства АЭС. Установленная мощность электростанций этого типа намечалась на уровне 18 ГВт в 1980 г. и 45-50 ГВт в 1985 г.  

Доля АЭС и выработке электроэнергии является более высокой, нежели в установленной мощности электростанций, поскольку они по экономическим соображениям используются в базисе графика нагрузки.  

Опережающие темпы развития электроэнергетики в ближайшие 15-20 лет сохранятся (табл. 4.28). Для обеспечения растущих потребностей в электроэнергии считается необходимым довести установленную мощность электростанций до 110 ГВт в 1985 г. и 132 ГВт в 1990 г.  

Установленная мощность электростанций в Великобритании на конец года  

За 1971-1976 гг. установленная мощность электростанций во Франции увеличилась на 12 29 МВт, из них на АЭС пришлось 1327 МВт, или 10,8%, в то время как в середине 60-х годов полагали, что на АЭС будет при-  

Еще более существенные корректировки потребовались в отношении структуры установленной мощности электростанций. По прогнозу МАГАТЭ 1974 г. предполагалось, что к концу текущего столетия АЭС займут абсолютно господствующее положение в электроэнергетике Индии - около 60% установленных мощностей и 70% производства электроэнергии . В настоящее время представляется, что столь глубокой перестройки этой отрасли индийской экономики, по всей вероятности, до 2000 г. не произойдет. Основой ее электроэнергетики останутся ТЭС на угле и других видах органического топлива. Масштабы строительства АЭС в целом будут меньшими не только по сравнению с ТЭС, но и ГЭС.  

Не только высокими темпами, но и устойчиво развивалась бразильская электроэнергетика. За 1961-1975 гг. производство электроэнергии в стране увеличилось с 3,4 раза, а установленная мощность электростанций - в 4,1 раза (табл. 5.13, 5.14).  

Р - установленная мощность электростанции Кс - стоимость электростанции мощностью Р кет. Из величины К нужно вычесть стоимость того оборудования, которое высвобождается при электрификации дороги (стоимость паровозов, пассажирских вагонов и части товарных вагонов, поскольку при электрификации их требуется для одного и того же объема перевозок меньшее количество вследствие увеличения скоростей движения). Стоимость высвобождаемого оборудования определяется с учетом процента физического износа в современных ценах, т. е. по стоимости воспроизводства. Пусть эта величина составляет /Св. Тогда дополнительные капитальные затраты на электрификацию железной дороги составят  

Графики электрической нагрузки различаются по сезонам и месяцам года, а также дням недели - рабочим и выходным (рис. 1.3,1.4). Для условий России электрическая нагрузка зимой больше, чем летом. Наименьшее ее значение называется минимумом нагрузки, он имеет место в ночные часы суток. В утренние и вечерние часы наблюдается повышение нагрузки, причем зимой более значительное, чем летом. Поэтому все необходимые ремонты оборудования в электроэнергетике стремятся провести в летний период, чтобы в обязательном порядке обеспечить покрытие зимнего максимума в самые короткие световые дни. Этот максимум называется пиком нагрузки. На его основе определяется необходимая установленная мощность электростанций. Электрическая нагрузка в субботу, воскресенье и праздничные дни существенно ниже, чем в рабочие. Это может потребовать остановки ряда крупных энергетических агрегатов, что снижает их эксплуатационные показатели . В то же время у энергокомпаний появляется возможность проводить в такие дни ремонты оборудования , обеспечивая тем самым надежность его работы.  

Усилия по ликвидации диспропорций принесли определенные результаты. Развернулась обширная программа первоочередного развития электроэнергетики и транспорта. Установленная мощность электростанций с 415 тыс. кВт в 1973 г. была увеличена к концу 1975 г. в 2,1 раза -до 879 тыс. кВт. Пропускная способность морских портов (без учета нефтепогрузочных терминалов) за 1973-1975 гг. также расширилась более чем вдвое - с 5 млн. до 10,2 млн. т грузов в год. Однако этого расширения транспортной системы оказалось недостаточно для обслуживания потока  

Действительно, если в 1964 г. Комиссия считала, что установленная мощность электростанций в США в 1980 г. составит 527 000 МВтэ, то по новому прогнозу - 665 000 МВтэ, а в 1990 г. - 1260 000 МВтэ. В 1964 г. предполагалось, что установленная мощность АЭС в 1980 г. составит 70000 МВтэ, или 13% мощности всех электростанций. Считают, что темпы развития ядерной энергетики будут более высокими. По расчетам, в 70-е годы на долю АЭС придется 50% мощности всех новых паротурбинных электростанций, предназначенных для работы в базовом режиме, а в 80-е годы - 70% таких мощностей. В 1964 г. считали, что цены на электроэнергию и минеральное топливо будут снижаться. Цена на электроэнергию в США в 1990 г. будет в 2 раза выше, чем в настоящее время. Отмечается нарастание трудностей в электроэнергетике США. Темпы строительства электростанций замедлились из-за забастовок, низкой производительности труда строительно-монтажных рабочих, ошибочности прогнозов, изменения предъявляемых к электростанциям требований со стороны организаций, выдающих разрешения на их строительство и эксплуатацию. Инфляция, рост цен на минеральное топливо, высокие банковские ставки , рост требований, связанных со снижением отрицательного воздействия электроэнергетических объектов на окружающую среду , обусловили рост стоимости строительства и эксплуатации электростанций. Эта тенденция в обозримом будущем сохранится. Основные показатели прогнозируемого развития электроэнергетики США (электростанции общего пользования) в ближайшие 20 лет характеризуются данными табл. 9-V.  

Выработка электроэнергии в 2000 г. в различных опубликованных прогнозах оценивается в диапазоне 5000-9000 млрд. кВт-ч. По нашим расчетам, основанным на оценке прироста мощностей электростанций, установленная мощность электростанций общего-пользования в США составит в 1980 г. примерно 550 млн. кВт, а в 2000г. около 1100 млн. кВт (1970 г. - 344 млн. кВт) выработка электроэнергии оценивается соответственно в 2200-2400 млрд. кВт -ч и 4700-4900 млрд. кВт-ч (1970 г. - 1520 млрд. кВт-ч). Доля АЭС в общей установленной мощности электростанций составит в 1980 г. - около 16%, или 90 млн. кВт в 2000 г. - до 50%, или 550 млн. кВт (1970 г. - 8 млн. кВт). Выработка электроэнергии на АЭС составит в 1980 г. около 400 млрд. кВт-ч, в 2000 г. -.2400 млрд. кВт-ч.  

По состоянию на начало 1978 г. структура установленной мощности электростанций, принадлежащих компаниям японской электроснабжающеи промышленности, была следующей, ГВт всего - 103800, из них ТЭС на жидком топливе - 54,84 (52,8%), ТЭС на природном газе -10,55 (10,2%), ТЭС на угле -4,24 (4,1%), прочие ТЭС-1,23 (1,2%), ГЭС-16,93 (16,3%), ГАЭС - 7,98 (7,7%), АЭС-7,99 (7,7%), ГТЭС -40 МВт. Мощность всех электростанций страны на начало 1980 г. составляла 135 ТВт, из них ТЭС - 67,2%, ГЭС и ГАЭС- 20,0%, АЭС -12,7% и ГТЭС -0,1%.  

Измененке структуры установленной мощности электростанций Японии  

Прогноз роста установленной мощности электростанций общего пользования в Японии1  

Прогноз увэличения установленной мощности электростанций в Бразилии  

Режимы энергопотребления. Динамика спроса на энергию оказывает влияние на эффективность энергопредприятий по двум причинам из-за совпадения во времени производства и потребления энергии и неравномерности потребления во времени. Более равномерный и плотный суточный график энергопотребления позволяет вырабатывать энергию с относительно большим коэффициентом использования установленной мощности электгюстшщий, что приводит к снижению удельных издержек производства (себестоимости энергии). Снизить себестоимость 1 кВтч электроэнергии можно, увеличив число часов использования установленной мощности электростанции, т.е. выработку электроэнергии (рис. 3.3).  

Выбирая электростанцию , необходимо знать будет ли питать электростанция весь объект или достаточно выделить особо важные точки (возможно, это приведет к дополнительным работам по разводке и перекоммутации нагрузок). Есть ли среди потребителей сложные для работы генератора приборы (например, любые электродвигатели, насосы и т. д. имеют так называемые пусковые токи, которые кратковременно увеличивают их потребляемую мощность в 4-5 раз), а также другие специфические моменты, влияющие на оценку мощности электростанции . Надо также знать, планируется ли в будущем увеличить количество или мощность потребителей электроэнергии.

Что такое коэффициент мощности?

Допустим, электростанция вырабатывает 3 кВА и имеет коэффициент мощности (так называемый cosφ ) 0,8. В этом случае мы можем реально получить от нее лишь 3 кВА х 0,8 = 2,4 кВт. Здесь и кроется разница между кВт и КВА.
Некоторые производители и продавцы по-разному указывают одно и то же значение мощности. Например, приводят сразу две величины (3000 ВА при cosφ =0,8 и 2400 ВА при cosφ =1) либо только одну (2400 ВА при cosφ =1), избавляя покупателя от необходимости самостоятельно выполнять арифметические вычисления. К сожалению, некоторые продавцы не указывают cosφ по другим причинам, стараясь выдать электростанцию за более мощную.

Расcчитаем мощность.

Для расчета требуемой мощности электростанции необходимо рассчитать полную мощность в ВА (вольт-амперы), потребляемую всеми электроприборами, которые вы подключите к электростанции. Так же надо учесть и электроприборы, которые вы планируете приобрести и подключить к электростанции в будущем. При расчете, под полной мощностью понимается максимальная (пиковая) мощность, потребляемая электроприборами. Берем лист бумаги, карандаш и начинаем определять мощность каждого конкретного электроприбора в ВА. Мощность прибора (P) можно узнать из эксплуатационной документации, найти на шильдике электроприбора, посетить соответствующий раздел сайта: Мощность потребителей .

Если P электроприбора указана в ВТ (ватт), то её нужно разделить на коэффициент COSф, который также должен быть указан в документации или на шильдике. Если COSф не указан, то для грубого расчета P в Вт можно разделить на 0,6 - 0,8. Если какой-либо электроприбор имеет высокие пусковые токи (напрмер, электродвигатель погружного насоса, холодильника и т.п.), то P такого электроприбора нужно умножить на 3, что бы избежать перегрузки электростанции, и, как следствие, её отключения или выхода из строя в момент включения электродвигателя нагрузки с большими пусковыми токами. Затем складываем:

P суммарная (ВА) = P устройство 1 + P устройство 2 + …. + P устройство n (В*А)

После расчёта полной суммарной мощности всех электроприборов нужно учесть поправочный коэффициент одновременности включения электроприборов, в общем случае он равен 0,7. Если у вас практически никогда не будут одновременно использоваться все электроприборы, подключенные к электростанции, умножьте полную суммарную мощность электропотребления на этот коэффициент. И в завершение всех расчётов, т.к. рекомендуется выбирать электростанцию с запасом по мощности, полную суммарную мощность всех электроприборов необходимо умножить на 1,2 - 1,25.

Подсчитанная Вами требуемая мощность не должна быть выше номинальной мощности электростанции. Имейте в виду, что многие производители указывают для электростанции так называемую максимальную выходную мощность. Этот параметр предусматривает кратковременную работу электростанции (в зависимости от производителя этот интервал колеблется от нескольких секунд до 1 часа). Реальная номинальная мощность обычно на несколько (иногда на десятки) процентов ниже.

Практический опыт использования генераторов говорит о том, что для работы двух-трех лампочек, холодильника, телевизора на вашем дачном участке вполне достаточно генератора малой мощности на 2 киловатта. Владельцу загородного коттеджа, которого постоянно беспокоят перебои с электроэнергией, необходимо приобрести генератор высокой мощности от 7 до 15 киловатт. Строителям, пользующимся дрелью, болгаркой и бетономешалкой, будет достаточно генератора средней мощности до 6 киловатт.

Атомные электростанции . Доля АЭС в суммарной выработке электроэнергии - около 12% (в США - 19,6%, в Великобритании - 18,9, в ФРГ - 34%, в Бельгии - 65%, во Франции - свыше 76%). Планировалось, что удельный вес АЭС в производстве электроэнергии достигнет в СССР в 1990 г. 20%, фактически было достигнуто только 12,3%. Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только 4 энергоблока.

В настоящее время ситуация меняется, правительством было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт (табл. 3.4). Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

Таблица 3.4. Мощность действующих АЭС

Экономический район

Название АЭС

Установленная мощность, млн кВт

Северо-Западный

Центрально-Черноземный

Центральный

Поволжский

Северный

Уральский

Дальневосточный

Ленинградская

Нововоронежская

Смоленская

Калининская

Балаковская

Кольская

Белоярская

Билибинская

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта.

Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий.

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

2. Катастрофические последствия аварий на наших АЭС - вследствие несовершенной системы защиты.

3. Тепловое загрязнение используемых АЭС водоемов. Функционирование АЭС как объектов повышенной опасности требует участия государственных органов власти и управления в формировании направлений развития, выделении необходимых средств.

Все большее внимание в перспективе будет уделяться использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла земли, морских приливов. Уже построены опытные электростанции на этих нетрадиционных источниках энергии: на приливных волнах на Кольском полуострове Кислогубская и Мезенская, на термальных водах Камчатки - электростанции близ реки Паужетки и др. Ветровые энергоустановки в жилых поселках Крайнего Севера мощностью до 4 кВт используются для защиты от коррозии магистральных газо- и нефтепроводов, на морских промыслах. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса.

Для более экономичного, рационального и комплексного использования общего потенциала электростанции нашей страны создана Единая энергетическая система (ЕЭС), в которой работают свыше 700 крупных электростанций, имеющих общую мощность свыше 250 млн кВт (т. е. 84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра, оснащенного электронно-вычислительной техникой.

Экономические преимущества Единой энергосистемы очевидны. Мощные линии электропередачи значительно повышают надежность снабжения электроэнергией народного хозяйства, выращивают суточные и годовые графики потребления электроэнергии, улучшают экономические показатели станций, создают условия для полной электрификации районов, еще испытывающих недостаток в электроэнергии. В состав ЕЭС на территории бывшего СССР входят многочисленные электростанции, которые работают параллельно в едином режиме, сосредоточивая 4/5 суммарной мощности электростанций страны. ЕЭС распространяет свое влияние на территорию свыше 10 млн км 2 с населением около 220 млн чел. Всего в стране насчитывается примерно 100 районных энергосистем. Они образуют 11 объединенных энергетических систем. Самые крупные из них - Южная, Центральная, Сибирская, Уральская.

ОЭС Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа и Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВт), Самара - Челябинск, Волгоград - Москва (500 кВт), Волгоград - Донбасс (800 кВт), Москва - Санкт-Петербург (750 кВт) и др.

Сегодня в условиях перехода к рынку ознакомление с опытом координации деятельности и конкуренции различных собственников в электроэнергетическом секторе западных стран может быть полезным для выбора наиболее рациональных принципов совместной работы собственников элекгроэнергетических объектов, функционирующих в составе Единой энергосистемы.

Создан координационный орган - Электроэнергетический совет стран СНГ. Разработаны и согласованы принципы совместной работы объединенных энергосистем СНГ.

Развитие электроэнергетического хозяйства в современных условиях должно учитывать следующие принципы:

· вести строительство экологически чистых электростанций и переводить ТЭС на более чистое топливо - природный газ;

· создавать ТЭЦ для теплофикации отраслей промышленности, сельского хозяйства и коммунального хозяйства, что обеспечивает экономию топлива и вдвое увеличивает КПД электростанций;

· строить небольшие по мощности электростанции с учетом потребностей в электроэнергии крупных регионов;

· объединять различные типы электростанций в единую энергосистему;

· сооружать гидроаккумулирующие станции на малых реках, особенно в остродефицитных по энергии районах России;

· использовать в получении электрической энергии нетрадиционные виды топлива, энергии ветра, солнца, морских приливов, геотермальных вод и т.д.

Необходимость разработки новой энергетической политики России определяется рядом объективных факторов:

· распадом СССР и становлением Российской Федерации как подлинно суверенного государства;

· коренными изменениями социально-политического устройства, экономического и геополитического положения страны, принятым курсом на ее интеграцию в мировую экономическую систему;

· принципиальным расширением прав субъектов Федерации - республик, краев, областей и т.д.;

· коренным изменением отношений между органами государственного управления и хозяйственно самостоятельными предприятиями, быстрым ростом независимых коммерческих структур;

· глубоким кризисом экономики и энергетики страны, в преодолении которого энергетика может сыграть важную роль;

· переориентацией топливно-энергетического комплекса на приоритетное решение социальных задач общества, возросшими требованиями охраны окружающей среды.

В отличие от прежних энергетических программ, создававшихся в рамках планово-административной системы управления и определявших непосредственно объемы производства энергоресурсов и выделяемые для этого ресурсы, новая энергетическая политика имеет совершенно иное содержание.

Основными инструментами новой энергетической политики должны стать:

· приведение одновременно с конвертируемостью рубля цен на энергоносители в соответствии с мировыми ценами с постепенным сглаживанием скачков цен на внутреннем рынке;

· акционирование предприятий топливно-энергетического комплекса с привлечением денежных средств населения, зарубежных инвесторов и отечественных коммерческих структур;

· поддержка независимых производителей энергоносителей, прежде всего ориентированных на использование местных и возобновляемых энергетических ресурсов.

Приняты законодательные акты для энергетического комплекса, основными целями которых являются:

1. Сохранение целостности электроэнергетического комплекса и ЕЭС России.

2. Организация конкурентоспособного рынка электроэнергии как инструмента стабилизации цен на энергию и повышения эффективности электроэнергетики.

3. Расширение возможностей привлечения инвестиций на развитие Единой энергетической системы России и региональных энергетических компаний.

4. Повышение роли субъектов Федерации (областей, краев, автономий) в управлении развитием ЕЭС Российской Федерации.

В перспективе Россия должна отказаться от строительства новых и крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС.

Новые ТЭЦ будут строиться на газе и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС.

Важным аспектом расширения рынка энергоносителей является возможность увеличения экспорта топлива и энергии из России.

Основу энергетической стратегии России составляют следующие три главные цели:

1. Сдерживание инфляции путем наличия больших запасов энергоресурсов, которые должны дать внутреннее и внешнее финансирование страны.

2. Обеспечение достойной роли энергии как фактора роста производительности труда и улучшения жизни населения.

3. Снижение техногенной нагрузки топливно-энергетического комплекса на окружающую среду.

Высшим приоритетом энергетической стратегии является повышение эффективности энергопотребления и энергосбережения.

На период становления и развития рыночных отношений выработана структурная политика в области энергетики и топливной промышленности на ближайшие 10-15 лет. Она предусматривает:

· повышение эффективности использования природного газа и его доли во внутреннем потреблении и в экспорте;

· увеличение глубокой переработки и комплексного использования углеводородного сырья;

· повышение качества углепродуктов, стабилизация и наращивание объемов угледобычи (в основном открытым способом) по мере освоения экологически приемлемых технологий его использования;

· преодоление спада и умеренный рост добычи нефти.

· интенсификацию местных энергоресурсов гидроэнергии, торфа, значительное увеличение использования возобновляемых энергоресурсов - солнечной, ветровой, геотермической энергии, шахтного метана, биогаза и т. д.;

· повышение надежности АЭС. Освоение предельно безопасных и экономических новых реакторов, в том числе и малой мощности.


При выборе автономных систем энергоснабжения возникают вопросы, связанные с определением необходимой мощности электростанции, удовлетворяющей потребителя. В приводимых ниже рекомендациях, приведены минимальные сведения для правильного определения требуемой мощности автономной электростанции для бытового и полупромышленного использования.

Обычно, в паспортных данных на автономные электростанции указываются две мощности – полная мощность в кВА и активная мощность в кВт. Электрический генератор автономной электростанции вырабатывает электрическую энергию определенного напряжения (однофазного – 220/230В, или трехфазного -380В/400В) с частотой 50Гц и, в зависимости от мощности двигателя – бензинового или дизельного, с определенным током нагрузки. Кривые напряжения и тока представляют из себя синусоиды. В идеальном случае эти кривые должны совпадать и активная мощность быть идентичной полной. Однако при выработке электроэнергии переменного тока, всегда имеется некоторый угол сдвига между кривыми тока и напряжения. Несовпадение графиков обусловливает снижение мощности, реально отдаваемой генератором в сеть. Реальная мощность, снимаемая с клемм генератора в номинальном режиме, т.е. при номинальных паспортных напряжении и частоте, и является активной мощностью электростанции. Отношение активной мощности к полной называют коэффициентом мощности - Cos?, который равен косинусу угла сдвига между током и напряжением.

В большинстве случаев, автономные электростанции имеют коэффициент мощности, равный 0, 8. Соответственно, полная мощность в кВА, вырабатываемая генератором будет в 1, 25 раз больше, нежели мощность активная, измеряемая в кВт.

Для бытового потребителя, выбирающего автономную электростанцию небольшой мощности – до 7 кВт, достаточно убедиться, что суммарная паспортная мощность электроприемников, указанная на заводских табличках, например мощность электрочайника, суммарная мощность лампочек, не превышают активную мощность электростанции, указанную в кВт.

Для потребителей на большую нагрузку необходимо учитывать также дополнительные факторы.

Так, например, на работу и отдаваемую автономной электростанцией мощность, влияют такие факторы, как температура и относительная влажность окружающей среды, давление, а также характер нагрузки – чисто активная, индуктивная и т.д. В паспортных данных приводятся как правило данные для нормальных условий средней полосы европейской части России, т.е. - температура окружающей среды: 25?С, давление: 1000 МБар (750 мм рт. ст.), относительная влажность: 30 %.

При более сложных внешних условиях - повышенная температура воздуха, уменьшенное давления (например, в горных условиях), увеличенная влажность – соответственно отдаваемая в сеть мощность будет уменьшаться. Так в условиях разряженного воздуха в горах, двигатели внутреннего сгорания теряют свою мощность. В соответствии с этим и автономная электростанция не сможет обеспечить в горах паспортную мощность. Расчет отдаваемой электростанцией активной мощности в этом случае требует введения уменьшающих коэффициентов. В объеме данной статьи невозможно привести все поправочные коэффициенты и в каждом конкретном случае требуется обратиться либо к паспорту на установку или к специалистам компании поставщика. Здесь же ограничимся предупреждением, что, в некоторых случаях, отличные от паспортных данных внешние условия эксплуатации снижают реальную отдаваемую активную мощность на 40-50%.

В заключение, приведем дополнительно определения, касающиеся работы автономных электростанций в определенных режимах.

Рабочая мощность генераторной установки – это мощность, выражаемая в КВт, которая поступает на клеммы генератора при номинальном напряжении и частоте и при установленных условиях окружающей среды.

Длительная мощность - это номинальная мощность, которую может непрерывно поставлять генераторная установка неограниченное количество времени между техническим обслуживанием, установленным производителем и в установленных им условиях окружающей среды.

Мощность в основном режиме - это максимальная мощность в цикле различных нагрузок, которые поставляет генераторная установка в течение неограниченного количества времени между техническим обслуживанием, установленным производителем и в установленных им условиях окружающей среды. Средняя мощность, поставляемая генератором в течение 24 часового периода не должна превышать 80% от основной мощности.

Кратковременная мощность - это максимальная мощность, которую генератор может поставлять при установленных условиях окружающей среды максимум в течение 500 часов ежегодно, и максимум 300 часов между техобслуживаниями, установленными производителем. Предполагается, что подобное использование в таковых условиях будет влиять на срок службы генератора.

Максимальная мощность в режиме резервного источника питания – это допустимая максимальная мощность с различной нагрузкой в течение ограниченного числа часов в год (500 часов) при установленных условиях окружающей среды и в течение следующих максимальных рабочих периодов: 100% с нагрузкой в течение 25 часов/год; 90% с нагрузкой в течение 200 часов/год; превышение недопустимо.