Метод свертки критериев онлайн. Решение задачи методом аддитивной свертки. Ci – коэффициенты относительной важности критериев

Тема 10: Формирование решений в условиях многокритериальности

Вопросы:

10.1. Основные подходы к решению многокритериальных задач. Система критериев. Методы «свертки» критериев

10.2. Решения, оптимальные по Парето

10.3. Процедура многокритериального сравнения и выбора объектов («Электра»)

Критерий – это правило или показатель, позволяющий оценивать и сравнивать анализируемые объекты (альтернативные решения, результаты деятельности, варианты производства и т.д.). Критерии могут быть объективными (например, рентабельность) и субъективными (например, престижность), формальными и содержательными, количественными и качественными.

На рис. 5.6 представлена классификация ситуаций принятия решений в зависимости от количества критериев и фактора неопределенности.

Рис. 5.6. Классификация ситуаций принятия решений

По сложности решения делятся на однокритериальные и многокритериальные.

1. Однокритериальные методы выбора . Считается известным:

Исходное множество альтернатив ;

Оценки результатов выбираемых альтернатив ;

Критерий выбора или .

В процессе решения задачи опреде­ляется альтернатива А*, для которой или .

2. Многокритериальные методы выбора . В достаточно большом количестве случаев принятия решений приходится учитывать не один, а несколько критериев.

Пример : Выбор интегрированной информационной системы предприятия осуществляется по следующим критериям :

1. Соответствие функций системы требованиям, выработанным в процессе анализа и построения информационной модели предприятия.

2. Соответствие системы современным технологическим стандартам (архитектура клиент-сервер, используемые СУБД, возможность распределенной работы и интеграция с Интернет).

3. Возможности системы по настройке и изменению.

4. Уровень сложности сопровождения и администрирования.

5. Адаптивность системы к конкретным условиям деятельности.

6. Стоимость системы.

7. Другие.

Известен целый ряд методов решения многокритериальных задач , которые можно разбить на следующие группы:

1. Сведение многих критериев к одному путем введения весовых коэффициентов для каждого критерия (более важный критерий получает больший вес).

2. Минимизация максимальных отклонений от наилучших значений по всем критериям.

3. Оптимизация одного критерия (почему-либо признанного наиболее важным), а остальные критерии выступают в роли дополнительных ограничений.

4. Упорядочение (ранжирование) множества критериев и последовательная оптимизация по каждому из них.

5. Поиск согласованного по некоторым правилам экспертного решения.

Чаще всего задачу выбора пытаются решить на основе построения интегрального (обобщающего) критерия . Для этого используются разнообразные способы «свертки» показателей, т.е. построение различных обобщающих показателей, прежде всего, аддитивных и мультипликативных.

Аддитивный обобщающий показатель (критерий) получается как взвешенная сумма оценок по частным показателям (критериям).

Мультипликативный обобщающий показатель строится как взвешенное произведение оценок по отдельным показателям.

,

где pi – значение i-го показателя (критерия);

li – вес (значимость) i-го показателя (критерия).

Общей особенностью данных обобщающих критериев является то, что они предусматривают возможность малой степени достижения одних целей за счет большей степени достижения других. При этом в оценке «стираются» различия отдельных критериев. Также проблемой является определение весов критериев.

В целом ряде хозяйственных ситуаций нежелательно сведение оценок объектов по разным критериям к одной, так как противоречивость критериев имеет существенное значение.

Для преодоления этого недостатка исследователи стараются представить пространство критериев. Одним из возможных средств решения этой задачи являются различные графические представления альтернатив в пространстве критериев. Примером подобного подхода, получившего широкое распространение в маркетинговых исследованиях, является так называемый «профильный анализ» (табл. 5.6). Пример:

Таблица 5.6

«Профили» программных продуктов

ПП Критерии ПП - 1 ПП - 2 ПП - 3 ПП - 4 ПП - 5
В С Н В С Н В С Н В С Н В С Н
Универсальность
Интегрируемость
Модульность
Развиваемость
Надежность
Защита информации
Соответствие техническим стандартам
Квалификация
Стоимость ПП
Стоимость обслуживания
Экономическая эффективность

Обозначения приоритетов:

В – высокий,

С – средний,

Н – низкий.

В таблице сравниваются 5 программных продуктов (ПП) по нескольким критериям.

Важность критериев была задана нечеткими числами с функциями принадлежности следующего вида:

ВАЖНЫЙ (В)- m B ={0,4; 1/0,7; 0/1};

ОЧЕНЬ ВАЖНЫЙ (OB) - m OB ={0/0,7; 1/1};

НЕ ОЧЕНЬ ВАЖНЫЙ (НОВ) - m HOB = {0/0,1; 1/0,4; 0/7}.

Для оценки альтернатив использовались лингвистические значения:

Альтернативы получили следующие оценки по критериям:

Взвешенные оценки альтернатив R i имеют следующие функции принадлежности:

Оценки предпочтительности альтернатив равны: m(a 1) = 0,90, m(a 2) = 0,62, m(a 3) = 1,0. Лучшей альтернативой является a 3 , a худшей – а 2 .

Решение задачи методом анализа иерархий

На заданном наборе критериев была построена трехуровневая иерархия, на верхнем уровне которой определена цель выбора (с G). На втором уровне находятся обобщенные критерии: прибыль (с P) к и риск (с R) . На третьем уровне иерархии расположены перечисленные выше критерии с 1 , ..., с 5 . При этом критерии c 1 , с 2 , с 3 , входят в группу критерия c P , а критерии с 4 , с 5 - в группу критерия c R . Экспертные предпочтения и полученные приоритеты приведены в матрицах попарных сравнений:

В результате иерархического синтеза получены векторы приоритетов альтернатив:

Альтернативой с наименьшим риском является а 1 , а наибольшую прибыль обеспечивает а 3 . Эта же альтернативаимеет максимальный приоритет относительно цели выбора.

Сравнение полученных результатов

На рис. 4.9 приведены результаты решения задачи выбора рационального инвестиционного проекта, полученные различными методами.

Несмотря на то, что исходная информация во всех рассмотренных примерах является последовательной и непротиворечивой, полученные результаты заметно отличаются. Кроме описанных выше нечетких методов принятия решений, для сравнения использовался метод анализа иерархий, который обычно дает результаты, хорошо согласующиеся с интуитивными представлениями экспертов при рациональном подходе к принятию решений.

Несовпадение результатов, полученных разными методами, объясняется, с одной стороны, разными способами представления экспертной информации, а с другой стороны - различием подходов к принятию решений. Так, в основу метода анализа иерархий и метода отношений предпочтения заложен рационально-взвешенный подход, основанный на попарных сравнениях объектов и нормированных весовых коэффициентах. Максиминная свертка и лингвистическая векторная оценка являются реализациями пессимистического подхода, игнорирующего хорошие стороны альтернатив, когда лучшей считается альтернатива, имеющая минимальные недостатки по всем критериям. Аддитивная свертка предполагает оптимистический подход, когда низкие оценки по критериям имеют одинаковый статус по сравнению с высокими. Нечеткий вывод на правилах реализует эвристический подход.

Анализ приведенных результатов позволяет сделать следующие выводы:

1. Методы принятия решений на нечетких моделях позволяют удобно и достаточно объективно производить оценку альтернатив по отдельным критериям. В отличие от других методов добавление новых альтернатив не изменяет порядок ранее ранжированных наборов. При оценке альтернатив по критериям возможна как лингвистическая оценка, так и оценка на основе точечных оценок с использованием функций принадлежности критериев.

2. Основной проблемой многокритериального выбора с применением нечетких моделей является представление информации о взаимоотношениях между критериями и способы вычисления интегральных оценок. Методы, базирующиеся на разных подходах, дают различные результаты. Каждый подход имеет свои ограничения и особенности, и пользователь должен получить о них представление, прежде чем применять тот или иной метод принятия решений. Наиболее широкие возможности для представления информации дает эвристический подход.

3. Большинство нечетких методов принятия решений показывает слабую устойчивость результатов относительно исходных данных. Исследование рассмотренных методов показало, что наибольшей устойчивостью обладает метод, основанный на правилах.

Анализ нечетких методов принятия решений позволяет сформулировать требования к дальнейшим разработкам в этой области. Это развитие теоретических подходов к описанию сложных взаимоотношений между критериями, более широкое применение интеллектуальных методов на основе нечеткой логики, а также развитие комбинированных методов принятия решений с использованием нечетких представлений.

Основные понятия

1. Нечеткие множества.

2. Нечеткие числа.

3. Лингвистические переменные.

4. Лингвистический критерий.

5. Лингвистическая оценка.

6. Нечеткие операции и отношения.

7. Нечеткие отношения предпочтения.

8. Максиминная свертка нечетких множеств.

9. Нечеткий логический вывод.

10. Композиционное правило вывода.

11. Методология применения методов теориинечетких множеств.

12. Сравнительный анализ методов.

13. Практические результаты применения методовпринятия решений.

Контрольные вопросы и задания

1. Перечислите и дайте определения основным элементам теории нечетких множеств.

2. Дайте определение нечетким операциям, отношениям и свойствам отношений.

3. Охарактеризуйте постановку задачи многокритериального выбора альтернатив на основе пересечения нечетких множеств.

4. Составьте алгоритмы и программы многокритериального выбора альтернатив методом максиминной свертки.

5. Постановка задачи выбора альтернатив на основе нечеткого отношения предпочтения.

6. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе нечеткого отношения предпочтения.

7. Постановка задачи выбора альтернатив с аддитивным критерием.

8. Разработайте алгоритмы и программы для решения задачи многокритериального принятия решений на основе аддитивной свертки предпочтений, заданных нечеткими числами.

9. Постановка задачи принятия решений на основе лингвистической векторной оценки.

10. Разработайте алгоритмы и программы для решения задачи многокритериального выбора с использованием метода лингвистического векторного критерия.

11. Постановка задачи многокритериального выбора с использованием правила нечеткого вывода.

12. Разработайте алгоритмы и программы для решения задачи выбора рациональной альтернативы на основе математического аппарата нечеткого логического вывода.

13. Рассмотрите применение принципов пересечения нечетких множеств в экономических и управленческих задачах принятия решений.

14. Разработайте методику применения метода нечеткого отношения предпочтения для проектирования и выбора конкурентоспособных экономических, технических и управленческих решений.

15. Поставьте задачи из области экономики, наилучшим образом формализуемые математическим аппаратом нечеткого логического вывода.

16. Решите одну задачу различными методами принятия решений, основанными на теории нечетких множеств. Проведите сравнительный анализ полученных результатов. Сделайте вывод о том, какой из методов дает наиболее адекватные результаты в сравнении с вашими представлениями.

Литература

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений: Пер. с англ. - М.: Мир, 1976. - 165 с.

2. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. - М.: Радио и связь, 1986. - 408 с.

3. Борисов А. П., Крумберг О. А., Федоров И. П . Принятиерешенийна основе нечетких моделей. - Рига: Зинатне, 1990. - 184 с.

4. Нечеткие множества в моделях управления и искусственного интеллекта/Под ред. Д. А. Поспелова. - М.: Наука, 1986. - 312 с.

Метод (последовательных) уступок заключается в анализе точек на границе Парето и выбора одной из них - компромиссной.

Назначение сервиса . Сервис предназначен для онлайн решения многокритериальных задач оптимизации методом последовательных уступок .

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10
Количество целевых функций 2 3 4 5 6
При этом ограничения типа x i ≥ 0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом .

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП

Решение транспортной задачи

Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.

Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

Алгоритм метода последовательных уступок (компромиссов)

Вначале производится качественный анализ относительной важности критериев. На основании такого анализа критерии нумеруются в порядке убывания важности.
Ищем максимальное значение f 1 * первого критерия f=f 1 (x) на всем множестве допустимых решений. Затем назначаем величину «допустимого» снижения (уступки ) Δ 1 критерия f 1 (x) и определяем наибольшее значение f 2 * второго критерия f=f 2 (x) при условии, что значение первого критерия должно быть не меньше, чем f 1 (x)-Δ 1 . Затем назначаем величину «допустимого» снижения (уступки ) Δ 2 критерия f 2 (x) и определяем наибольшее значение f 3 * третьего критерия f=f 3 (x) при условии, что значение второго критерия должно быть не меньше, чем f 2 * - Δ 2 и т. д. Таким образом, оптимальным решением многокритериальной задачи считается всякое решение последней из задач последовательности:
1) найти max f 1 (x)=f 1 * в области x ∈ X;
2) найти max f 2 (x)=f 2 * в области, задаваемой условиями x ∈ X; f 1 (x) ≥ f 1 * -Δ 1 (6)
……………………………………………………………….
m) найти max f m (x)=f m * в области, задаваемой условиями
x ∈ X; f i (x) ≥ f i * -Δ i , i=1,...,m-1
Очевидно, что если все Δ i =0, то метод уступок находит только лексикографически оптимальные решения, которые доставляют первому по важности критерию наибольшее на Х значение. В другом крайнем случае, когда величины уступок очень велики, решения, получаемые по этому методу, доставляют последнему по важности критерию наибольшее на Х значение. Поэтому величины уступок можно рассматривать как своеобразную меру отклонения приоритета частных критериев от жесткого лексикографического.
Метод последовательных уступок не всегда приводит к получению только эффективных точек, но среди этих точек всегда существует хотя бы одна эффективная. Это следует из следующих утверждений.
Утверждение 3 . Если X ⊂ R n - множество замкнутое и ограниченное, а функции f i (x) непрерывны, то решением m-й задачи из (6) является, по крайней мере, одна эффективная точка.
Утверждение 4 . Если x * - единственная (с точностью до эквивалентности) точка, являющаяся решением m-й задачи из (6), то она эффективна.

Примеры решения многокритериальной задачи методом последовательных уступок

Пример №1 . Решить методом последовательных уступок многокритериальную задачу.
f 1 (x)=7x 1 +2x 3 -x 4 +x 5 → max ,

при ограничениях
-x 1 +x 2 +x 3 =2 ;
3x 1 -x 2 +x 4 =3 ;
5x 1 +2x 2 +x 3 +x 4 +x 5 =11;
x i ≥ 0 для i=1,2,...,5.
Упорядочим критерии согласно их нумерации, то есть будем в начале работать с критерием f 1 (x), а затем с критерием f 2 (x).
При решении примера методом искусственного базиса была получена симплекс-таблица (табл.). Возьмем ее в качестве начальной, вычислив относительные оценки для функции f=f 1 (x). Получим таблицу 10. Таблица 11 определяет точку, доставляющую функции f1(x) наибольшее значение f 1 * , равное 16.
Таблица 10. Таблица 11.




7

0







c в


X 1

x 2




x 4

x 2


2

x 3

-1

1

2


x 3

1/3

2/3

3

-1

x 4

3

-1

3


x 1

1/3

-1/3

1

1

x 5

3

2

6


x 5

-1

3

3


f 1

-9

5

7


f 1

3

2

16

Далее переходим к решению задачи
f 2 (x)=x 1 -5x 2 -4x 3 +x 4 → max
при ограничениях задачи, к которым добавлено новое ограничение f 1 (x)≥f 1 * -Δ:
-x 1 +x 2 +x 3 =2,
3x 1 -x 2 +x 4 =3 , (7)
5x 1 +2x 2 +x 3 +x 4 +x 5 =11,
7x 1 +2x 3 - x 4 +x 5 ³16-Δ,
x i ≥ 0 для i=1,2,...,5.
Новое ограничение преобразуем в равенство и заменим переменные x 1 , x 3, x 5 , используя таблицу 11, выражениями
x 1 =1/3x 2 -1/3x 4 +1, x 3 =-2/3x 2 -1/3x 4 +3, x 5 =-3x 2 +x 4 +3.
В результате этих преобразований дополнительно введенное ограничение примет вид -2x 2 -x 4 +x 6 =-16+Δ. Итак, получили задачу параметрического программирования с параметром в правой части ограничений.
В качестве начальной таблицы для задачи (7) можно использовать таблицу 12, которая получена из таблицы 11 в результате пополнения ее еще одной строкой и пересчета строки относительных оценок. Решим задачу (7) для произвольного параметра Δ≥0. Для этого столбец правых частей ограничений в таблице 12 представим в виде двух столбцов z′, z″: z i 0 =z i ′+z i ″Δ. При выборе главной строки в таблице 12 следует использовать значения из столбца z′. Полученная далее таблица 13 является оптимальной при Δ=0 и при всех значениях Δ, удовлетворяющих условиям
3+(-1/9) Δ ≥ 0, 1+(-1/9) Δ ≥ 0, 3+1/3 Δ ≥ 0, 0+1/3 Δ ≥ 0.
Из этой системы неравенств получаем 0 ≤ Δ ≤ 9. При этих значениях параметра решением задачи является точка x*=(1+(-1/9)Δ, 0, 3+(-1/9)Δ, 0+1/3Δ, 3+1/3Δ).
Таблица 12. Таблица 13.



1

-5








с в


x 4

x 2

z′

z″



x 6

x 2

z′

z″

-4

x 3

1/3

2/3

3

0


x 3

-1/9

4/9

3

-1/9

1

x 1

1/3

-1/3

1

0


x 1

-1/9

-5/9

1

-1/9

0

x 5

-1

3

3

0


x 5

1/3

11/3

3

1/3

0

x 6

3

2

0

1


x 4

1/3

2/3

0

1/3


f 2

-2

2

-11

0


f 2

2/3

10/3

-11

2/3

При Δ > 9 таблица 13 не является оптимальной, и нужно выполнить шаг двойственного симплекс-метода с главным элементом, стоящим на пересечение второй строки и первого или второго столбцов. Получим таблицу 14, из которой видно, что при Δ > 9 решениями являются точки, доставляющие функции f 2 (x) значение –5. Таблица 14 определяет опорное решение x ** =(0,0,2,3,6).
Таблица 14.



x 1

x 2

z′

z″

x 3

-1

1

2

0

x 6

-9

5

-9

1

x 5

3

2

6

0

x 4

3

-1

3

0

f 2

6

0

-5

0

Найдем эти решения. Выберем главным столбец с 0-оценкой. В зависимости от Δ главной строкой будет первая или вторая строка. Если
(-9+Δ)/5 > 2, то главной строкой будет выбрана 1-я. А значит, следующей будет таблица 15. Она определяет опорное решение X=(0,2,0,5,2) , если
–19+Δ≥0. Итак, если D≥19, оптимальными решениями будут все точки выпуклой комбинации
ax ** +(1-a)x * =(0, 2-2a, 2a,5-2a,2+4a), где a∈.
Таблица 15.



x 1

x 3

z′

z″

x 2

-1

1

2

0

x 6

-4

-5

-19

1

x 5

5

-2

2

0

x 4

2

1

5

0

f 2

6

0

-5

0

Если (-9+Δ)/5 > 2, то главной строкой будет выбрана 2-я. А значит, следующей после таблицы 14 будет таблица 16. Таблица 16 определяет решение X=(0, (-9+Δ)/5, (19-Δ)/5, (6+Δ)/5, (48-2Δ)/5), если –19+Δ≤0. Итак, если Δ≤19, оптимальными решениями будут все точки выпуклой комбинации
ax**+(1-a)x*=(0, (1-a)(-9+Δ)/5, (19-Δ)/5+a(-9+Δ)/5, (6+Δ)/5+a(9-Δ)/5, (48-2Δ)/5+a(-18+2Δ)/5), где a∈.
Таблица 16.



x 1

x 6

z′

z″

x 3

4/5

-1/5

19/5

-1/5

x 2

-9/5

1/5

-9/5

1/5

x 5

33/5

-2/5

48/5

-2/5

x 4

6/5

1/5

6/5

1/5

f 2

6

0

-5

0

Окончательный результат формулируется следующим образом: решением многокритериальной задачи являются:
точки x*=(1+(-1/9)Δ, 0, 3+(-1/9)Δ, 0+1/3Δ, 3+1/3Δ), если 0 ≤ Δ ≤ 9,
точки x**=(0, (1-a)(-9+Δ)/5, (19-Δ)/5+a(-9+Δ)/5,
(6+Δ)/5+a(9-Δ)/5,(48-2Δ)/5+a(-18+2Δ)/5), если 9 < Δ ≤ 19,
точки x *** =(0, 2-2a, 2a,5-2a,2+4a), если Δ ≥ 19,
где a∈.

Пример №2 . Методом последовательных уступок найти решение задачи, считая, что критерии упорядочены по важности в последовательности {f 2 ,f 1 }, и Δ 2 =1.
f 1 =-x 1 +3x 2 → max,
f 2 (x)=4x 1 -x 2 → max ,
Первая задача из последовательности (6) в данном случае имеет вид:
f 2 (x)=4x 1 -x 2 → max ,
при ограничениях
-x 1 +x 2 ≤1, x 1 +x 2 ≥3, x 1 -2x 2 ≤0 , x 1 ≤4 , x 2 ≤3.
Решение этой задачи можно найти графически. Из рисунка 14 видно, что максимум критерия f 2 (x) на множестве X достигается в вершине x 5 =(4,2) и f 2 * =f 2 (x 5)=14.
Графическое решение примера №2.

Рис.
Добавим к ограничениям задачи условие f 2 ≥f 2 * -Δ и сформулируем вто­рую задачу последовательности (6):
f 1 =-x 1 +3x 2 → max,
-x 1 +x 2 1 , x 1 +x 2 3, x 1 -2x 2 0 , x 1 4 , x 2 3,
4x 1 -x 2 13
Ее решением (рис.) будет вершина x 4 =(4,3) и f 1 * =f 1 (x 4)=5. Так как, оптимальное решение последней задачи единственно, то в силу утверждения 5, x 4 принадлежит множеству Парето.
Отметим, что при Δ∈ методом последовательных уступок будет найдена одна из точек отрезка , а при Δ>1, одна из точек отрезка . Все эти точки и только они принадлежит множеству Парето.

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Схемы компромиссов, метод свертывания критериев

Схемы компромиссов смотреть здесь.

Метод свёртывания критериев

Локальные критерии свёртываются в глобальный в соответствии с какой-то функцией.

Линейная аддитивная свёртка:

Линейная мультипликативная свёртка: , где - вес критерия,

Нелинейная свёртка:

Эффективность-стоимость:

После операции свёртки, альтернативы упорядочиваются по значению глобального критерия: .

Основные проблемы применения метода свёртывания критерия:

· Сложно обосновать значения «весов» критериев;

· Недостатки по одним критериям могут компенсироваться большими значениями других критериев;

· Сложно обосновать вид функции свёртки критериев.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.