Характеристики потребителей тепловой энергии на предприятиях отрасли. Производство и потребление тепла. Что такое теплоснабжение и каковы субъекты теплоснабжения

13.06.2019 Снилс

Тема 4. Потребители тепловой энергии.

Систем теплоснабжения

Эффективность внедрения автономных

Критическая ситуация с обеспечением энергоресурсами, увеличением цен на их приобретение до мировых требует незамедлительных мер по активному внедрению энерго- и ресурсосберегающих технологий на уровне государственной политики.

Одним из направлений, позволяющих решить эту проблему, является децентрализация теплоснабжения путем внедрения систем автономного теплоснабжения (САТ), эффективность которых подтверждена многолетним опытом эксплуатации их во многих европейских странах.

Под САТ принято понимать система отопления и горячего водоснабжения с источником тепла, расположенным на отапливаемом объекте (на крыше или в чердачном пространстве), или в непосредственной близости от него.

Значительный экономический эффект от внедрения САТ перед централизованным теплоснабжением достигается за счёт следующих факторов:

Отсутствие капитальных затрат на строительство здания котельной и приобретение дорогостоящего инженерного оборудования;

Отсутствие значительных капитальных затрат на строительство, эксплуатацию и устранение аварийных ситуаций многокилометровых теплотрасс, срок службы которых не превышает 10-12 лет вместо нормативных 25 лет;

Отсутствие теплопотерь и затрат энергии на транспортирование теплоносителя по тепловым сетям;

Отсутствие многочисленного персонала для обслуживания котельных теплосœетей и сооружений на них.

Украина является первой из постсоветских государств, в разработке новых нормативов ʼʼкрышныхʼʼ котельных установок. В 1993 г в ᴦ. Белая Церковь была смонтирована на 9-ти этажном жилом доме первая ʼʼкрышнаяʼʼ котельная в Украинœе. Анализ работы котельной за 10 лет показал, что обустройство дома автономным источником позволит обеспечить качественное отопление дома, при этом сэкономив до 35 % газа, 75 % электроэнергии, 50 % эксплуатационных затрат по сравнению с действующим централизованным теплоснабжением.

Вопросы для самоконтроля:

1. Что принято называть системой теплоснабжения?

2. Какие задачи стоят перед теплоснабжением?

3. Назовите источники тепловой энергии.

4. Как классифицируются системы теплоснабжения исходя из источника теплоснабжения.

5. Проведите сравнительную характеристику различных источников теплоснабжения.

Вопросы темы:

1. Потребители тепла.

2. Классификация потребителœей тепла.

3. Неравномерность потребления тепловой энергии.

На теплоснабжение зданий расходуется около 40 % всœего добываемого в стране топлива. В жилых и общественных зданиях тепловая энергия затрачивается на обеспечение комфортных условий пребывания людей в помещениях, соответствующих современному уровню развития техники теплоснабжения, а также на коммунально-бытовые и санитарно-гигиенические цели. В промышленных зданиях тепловая энергия, кроме того, необходима по условиям технологии для обеспечения требуемого теплового режима при изготовлении отдельных видов продукции и проведения ряда производственных операций.

Учитывая зависимость отрода теплопотребления всœе потребители делятся на коммунально-бытовые и технологические. К ним относятся потребители тепловой энергии для целœей отопления и вентиляции зданий, а также для подогрева воды на санитарно-гигиенические и бытовые цели. Инженерными устройствами, распределяющими тепловую энергию в зданиях, являются системы отопления, вентиляции, кондиционирования воздуха и горячего водоснабжения и теплотехническое оборудование, крайне важно е по технологии производства продукции.

Система отопления обеспечивает заданный тепловой режим в помещениях в холодное время года путем компенсации теплопотерь через наружные ограждающие конструкции здания.

Система вентиляции создает требуемую чистоту воздуха в рабочей зоне производственных зданий, необходимый воздушный и тепловой режим в общественных зданиях путем соответствующей организации воздухообмена в помещениях.

Система кондиционирования воздуха применяется для создания в помещениях микроклимата͵ удовлетворяющего повышенным санитарно-гигиеническим или технологическим требованиям, путем обеспечения строго заданных температуры, влажности, подвижности и чистоты воздуха в рабочей зоне.

Система горячего водоснабжения предназначена для подогрева и транспортирования воды к местам водоразбора на хозяйственно-бытовые или производственные нужды.

Технологическое теплотехническое оборудование является потребителœем тепловой энергии в виде подогретой воды или водяного пара и включает как специальные теплопроводы, так и теплообменные аппараты, а иногда и электрокотлы.

Каждое устройство обеспечивает один из видов теплопотребления и имеет свой режим работы, который определяется расходом тепловой энергии в течение заданного промежутка времени, к примеру, одного часа рабочей смены, суток, месяца, сезона или года.

По расходу тепловой энергии в течение часа всœе потребители делятся на равномерно потребляющие (отопление, вентиляция) и неравномерно потребляющие (подогрев воды, технологические нужды).

По продолжительности непрерывного использования тепловой энергии в течение определœенного периода года всœе потребители объединяются в две основные группы: с сезонным потреблением (отопление, вентиляция) и с годовым потреблением (подогрев воды, технологические нужды). Режим работы сезонных потребителœей зависит от климатических условий (наружной температуры t н и влажности воздуха, скорости и направления ветра) и характеризуется неравномерностью теплопотребления как в течение отопительного сезона, так и в течение каждого месяца. У годовых потребителœей при сравнительно постоянном расходе теплоты в течение сезона, месяца и недели режим работы резко изменяется не только по часам суток, но и по дням недели.

Совместное действие потребителœей с различными режимами их работы предъявляет определœенные требования к виду, количеству и потенциалу теплоносителя, циркулирующего в наружных теплопроводах. Выбор рационального варианта схемы теплоснабжения объекта производится по суммарной тепловой нагрузке отдельных инженерных устройств всœех зданий и технологических потребителœей. Тепловую нагрузку, или потребность в тепловой энергии, обычно рассчитывают в характерные промежутки времени: час, сутки, месяц, сезон или год, причем расчетным расходом теплоты является часовой.

По расчетному расходу выбирают тип источника тепловой энергии, мощность теплоподготовительного оборудования и диаметры трубопровода. Учитывая зависимость отизменения тепловой потребности в течение суток, месяца, сезона и года разрабатывают соответствующие режимы отпуска тепловой энергии – эксплуатационные режимы работы теплоснабжающих устройств. При этом учитывают концентрацию тепловых потребителœей, удаленность потребителœей от теплоисточников, геометрическую высоту зданий и рельеф местности.

Месячный, сезонный и годовой расходы тепловой энергии используют в технико-экономических расчетах при сравнении вариантов систем теплоснабжения. Расходы тепловой энергии на отопление, вентиляцию и горячее водоснабжение принимают по типовым или индивидуальным проектам соответствующих зданий и сооружений. Расход тепловой энергии на производственные процессы учитывают по технологическим проектам данных производств. При отсутствии проектов расчетный расход теплоты определяется раздельно для каждого потребителя. Расчетный расход тепловой энергии здания квартала, города включает расход на отопление, вентиляцию, горячее водоснабжение и на технологические нужды.

Учитывая зависимость оттребований, предъявляемых к надежности и качеству теплоснабжения, а также к виду и параметрам теплоносителя, системы централизованного теплоснабжения подразделяются:

а) по виду транспортируемого теплоносителя – паровые, водяные и смешанные;

б) по числу параллельно проложенных теплопроводов – одно-, двух-, трех- и многотрубные;

в) по использованию теплоносителя в системах горячего водоснабжения и технологических потребителœей – закрытые (замкнутые) и открытые (разомкнутые).

Водяные двух- и четырехтрубные системы применяют для теплоснабжения жилых и общественных зданий. Двухтрубные системы бывают как закрытыми, так и открытыми, как правило, с местными тепловыми подстанциями. Четырехтрубные системы, как правило, закрытые, причем до центральной тепловой подстанции тепловые сети выполняют двухтрубными, после ЦТП до здания – четырехтрубными. Режим работы двухтрубных тепловых сетей устанавливается из условия обеспечения тепловой энергией всœех потребителœей. В четырехтрубных сетях к двум магистралям (подающей и обратной) подсоединяют системы отопления и к двум (подающей и циркуляционной) – системы горячего водоснабжения.

Для теплоснабжения промышленных предприятий применяются системы всœех типов: паровые одно- и многотрубные, водяные, как правило, трехтрубные, в которых первый трубопровод – подающей для отопления и вентиляции, второй – подающий с постоянной температурой теплоносителя в течение года для горячего водоснабжения и производственных нужд, а третий – обратный общий.

В закрытой системе теплоснабжения система горячего водоснабжения и другие потребители присоединœены к тепловым сетям через теплообменные аппараты, в которых подогревается водопроводная вода (или воздух), поступающая на водоразбор.
Размещено на реф.рф
Теплоноситель в этой системе отдает часть тепловой энергии и полностью возвращается к источнику.

В открытой системе теплоснабжения вода, предназначенная для горячего водоснабжения и технологических нужд, забирается непосредственно из тепловой сети. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в этой системе используется не только тепловая энергия теплоносителя, но и собственно теплоноситель. Часть теплоносителя, не использованная у потребителœей (в системах отопления и вентиляции), возвращается в котельную.

Однотрубные системы как водяные, так и паровые являются только открытыми. В них теплоноситель полностью используется у потребителя, удовлетворяя последовательно всœе тепловые нужды. При максимальных температуре воды или давлении пара теплоноситель отдает часть теплоты в системах отопления и вентиляции и, кроме того, используется для горячего водоснабжения и технологических нужд. При однотрубных системах требуются меньшие капитальные вложения на строительство тепловых сетей. С повышением потенциала теплоносителя, к примеру, при давлении пара более 1,1 МПа и температуре воды до 180 – 200 0 С экономичность их возрастает.

Для теплоснабжения городов и жилых посœелков наибольшее распространение получили водяные двухтрубные (открытые и закрытые) системы теплоснабжения.

В открытых системах значительно упрощаются узлы присоединœения систем горячего водоснабжения к тепловым сетям, упрощается схема автоматизации, а главное обеспечивается длительная эксплуатационная надежность трубопроводов системы горячего водоснабжения. Поступление в них воды, прошедшей умягчение и дегазацию в котельной, исключает коррозию внутренней поверхности стенок труб. К недостаткам этой системы следует отнести возможную повышенную цветность воды, особенно при присоединœении радиаторных систем отопления к тепловым сетям по зависимой схеме, а также в случае ремонта тепловых вводов.

В закрытых системах водопроводная вода, подогреваемая в теплообменных аппаратах и поступающая в систему горячего водоснабжения, как правило, не подвергается химической обработке, крайне важно сложное и дорогостоящее оборудование, требующее высококвалифицированного обслуживания и занимающее много места. По этой причине трубопроводы системы горячего водоснабжения подвержены коррозии из-за наличия в водопроводной воде кислорода и углекислоты. В них часто появляются свищи, а в водоподогревателях на стенках труб, по которым проходит водопроводная вода, откладывается накипь, резко снижающая эффективность и приводящая к быстрому выходу их из строя. При водоснабжении объекта из артезианских скважин, когда вода имеет повышенное содержание солей жесткости по сравнению с водой из открытых водоемов, очистка водоподогревателœей от накипи требуется через каждые четыре – шесть месяцев.

Вопросы для самоконтроля:

1. Как классифицируются потребители тепла?

2. Назовите потребителœей тепла.

3. В чем заключается неравномерность потребления тепловой энергии?

4. Как выбирается выбор варианта схемы теплоснабжения.

Библиографический список:

1. И.И. Павлов, М.Н. Федоров ʼʼКотельные установки и тепловые сетиʼʼ, с. 150-165, 179-190.

2. Ю.Д. Сибикин “Отопление, вентиляция и кондиционирование воздуха”, М, 2004, стр.
Размещено на реф.рф
8

Тема 4. Потребители тепловой энергии. - понятие и виды. Классификация и особенности категории "Тема 4. Потребители тепловой энергии." 2017, 2018.

Существует два основных вида источников тепловой энергии (теплоносители - пар и горячая вода): котельные и ТЭЦ.

Если ТЭЦ является источником и тепловой и электрической энергии, то котельная вырабатывает только теплоту.

Котельная - это совокупность устройств, состоящая из котлов, вспомогательного оборудования и систем хранения, подготовки и транспорта топлива; подготовки, хранения и транспорта воды; золо- и шлакоудаления, а также сооружений для очистки дымовых газов и воды.

Главный элемент любого источника тепловой энергии - котельная установка, служащая для выработки пара или горячей воды. Котельная установка - это совокупность котла и вспомогательного оборудования. Котел -это конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением за счет тепловой энергии от сжигания топлива. Котлы подразделяются на паровые, водогрейные и паро - водогрейные.

Паровые котлы делятся на энергетические и котлы промышленной теплоэнергетики.

Энергетические котлы входят в состав тепловых электростанций и служат для получения перегретого водяного пара различных давлений и температур. Котлы промышленной теплоэнергетики служат для выработки насыщенного или перегретого пара низких и средних параметров. Этот пар используется либо в качестве технологического в производственных процессах предприятия, либо для приготовления горячей воды на нужды отопления, вентиляции, кондиционирования и горячего водоснабжения (ГВС).

Водогрейные котлы могут устанавливаться как на ТЭЦ, так и в котельных. Нагретая в них вода используется для тех же нужд.

Паровые котлы классифицируются по целому ряду признаков: конструкции, компоновке поверхности нагрева, производительности, параметрам пара, виду применяемого топлива, способу подачи и сжигания топлива, давлению дымовых газов.

Широко распространенными паровыми котлами являются вертикально-водотрубные котлы типа ДКВР, предназначенные для производства насыщенного пара давлением 1,4 МПа. Паропроизводительность их составляет 4; 6,5; 10; 20 т/ч при работе на твердом топливе и увеличивается в 1,3... 1,5 раза при работе на мазуте и газе. В настоящее время взамен ДКВР выпускается новая серия котлов производительностью от 2,5 до 25 тонн насыщенного или перегретого пара в час типов КЕ (для слоевого сжигания твердого топлива) и ДЕ (для работы на мазуте и газе).

В промышленной теплоэнергетике используются также паровые котлы П - образной компоновки типов ГМ50-14/250, ГМ50-1, БК375-39/440. Котлы типа ГМ могут работать на газе или мазуте, а БКЗ - также и на твердом топливе.

Паровые котлы различаются по конструкции, типу, производительности, параметрам пара и виду применяемого топлива.

Котлы малой (до 25 т/ч) и средней (160...220 т/ч) производительности с давлением пара до 4 МПа применяются в производственных и отопительных котельных для получения тепловой энергии в виде пара, идущего на технологические и отопительно - бытовые нужды.

Котлы производительностью до 220 т/ч имеют естественную циркуляцию без промежуточного перегрева пара и применяются на промышленных теплоэнергетических установках и ТЭЦ.

Водогрейные котлы предназначены для подготовки теплоносителя в виде горячей воды для технологического использования и бытового (отопление, вентиляция, кондиционирование и горячее водоснабжение).

Водогрейные котлы могут быть чугунными секционными и стальными водотрубными.

Чугунные секционные водогрейные котлы, например, типов КЧ-1, «Универсал», «Братск», «Энергия» и др. отличаются размерами и конфигурацией чугунных секций; мощность этих типов котлов - 0,12... 1 МВт.

Стальные водогрейные котлы имеют маркировку ТВГ, ПТВМ и КВ. Эти котлы отпускают воду с температурой до 150°С и давлением 1,1... 1,5 МПа, теплопроводностью от 30 до 180 Гкал/ч (35...209 МВт).

Котлы типа ПТВМ работают на газе и мазуте. Котлы типа KB являются унифицированными, предназначенными для работы на твердом, газообразном и жидком топливе. В зависимости от вида и способа сжигания топлива котлы KB делятся на КВТС (слоевые механизированные топки), КВТК (камерная топка для сжигания пылевидного топлива), КВГМ (для сжигания газа и мазута).

Теплоэлектроцентрали (ТЭЦ) - это станции комбинированной выработки электрической и тепловой энергии. Перегретый пар от котла подается на лопатки паровой турбины, закрепленные на роторе. Под воздействием энергии пара ротор турбины вращается. Этот ротор жестко связан при помощи соединительной муфты с ротором электрогенератора, при вращении которого вырабатывается электроэнергия. Пар, частично отдавший свою энергию в турбине, поступает потребителям либо для технологического использования, либо для нагрева воды, подаваемой потребителям.

На ТЭЦ применяются теплофикационные турбины с промежуточными теплофикационными отборами пара и турбины с противодавлением.

Тепловая схема ТЭЦ с противодавлением турбин показана на рис. 5, где: 1 - паровой котел, 2 - паровая турбина, 3. электрический генератор, 4 -потребитель теплоты, 5 - конденсатный насос, 6 - деаэратор, 7 - питательный насос.

Тепловая схема ТЭЦ с теплофикационными турбинами показана на рис. 6, где 1, 2, 3, 4 соответствуют обозначениям рис. 5, 5 - сетевой насос, 6-конденсатор, 7 - конденсатный насос, 8 - деаэратор, 9 - питательный насос.


Рисунок 5. Рисунок 6.

ТЭЦ с турбинами с противодавлением характеризуется тем, что производство электроэнергии здесь жестко связано с отпуском тепловой энергии, работа такой станции целесообразна только при наличии крупных потребителей теплоты с постоянным расходом ее в течение года, например, предприятий химической или нефтеперерабатывающей промышленности.

ТЭЦ с теплофикационными турбинами лишены этого недостатка и могут одинаково эффективно работать в широком диапазоне тепловых нагрузок. В тепловой схеме имеется конденсатор, а пар для подогрева воды отпускается из промежуточных ступеней турбины. Количество пара и его параметры регулируются, такие отборы называются теплофикационными в отличие от отборов, используемых для регенеративного подогрева питательной воды.

Для теплоснабжения городов и населенных пунктов используются отопительные котельные. Они бывают:

а) индивидуальные (домовые) или групповые для отдельных зданий или группы зданий. Теплопроизводительность таких котельных 0,5...4 МВт, вид котлов - водогрейные чугунные секционные, температура теплоносителя 95...115°С, КПД на каменном угле - 60-70%, на газе и мазуте- 80-85%;

б) квартальные для теплоснабжения квартала или микрорайона. Теплопроизводительность - 5...50 МВт, вид котлов - стальные паровые типа ДКВР или ДЕ и водогрейные типов КВТС, КВГМ, ТВГ, температура теплоносителя 13О...15О°С, КПД на каменном угле - 80-85%, на газе и мазуте - 85-92%;

в) районные для теплоснабжения одного или нескольких жилых районов. Теплопроизводительность - 70...500 МВт, вид котлов - стальные водогрейные типов ПТВМ, КВТК, КВГМ, температура теплоносителя 150...200°С, КПД на каменном угле - 80-88%, на газе и мазуте - 88-94%; или паровые типа ДКВР, ДЕ, ГМ-50.

Если котельная помимо нужд отопления и горячего водоснабжения (ГВС) I отпускает пар, то такая котельная называется промышленно-отопительной. Если котельная обеспечивает тепловой энергией в виде пара и горячей воды только нужды предприятия, то такая котельная называется промышленной. Котельные могут быть также только с водогрейными котлами (водогрейная котельная), только с паровыми котлами (паровая котельная) и с паровыми и водогрейными котлами (паро-водогрейная котельная). Пример отопительной котельной с паровыми котлами показан на упрощенной схеме рис. 7.

Рисунок 7.

Здесь 1 - питательный насос, 2 - паровой котел, 3-паровая редукционная установка (РУ), 4 - транспорт пара на технологические нужды предприятия, 5 - трубопровод подпитки тепловой сети, 6 - сетевой насос, 7 - теплообменники подогрева сетевой воды, 8 - тепловая сеть, 9 -деаэратор.

Тепловая сеть - это система прочно и плотно соединенных между собой участков стальных труб (теплопровод), по которым теплота с помощью теплоносителя (пара или, что чаще, горячей воды) транспортируется от источников (ТЭЦ или котельных) к потребителям теплоты.

Теплотрассы бывают подземные и надземные. Надземная прокладка тепловых сетей используется при высоком уровне грунтовых вод, плотной застройке районов прокладки теплотрассы, сильно пересеченном рельефе местности, наличии многоколейных железнодорожных путей, на территориях промышленных предприятий при наличии уже имеющихся энергетических или технологических трубопроводов на эстакадах или высоких опорах.

Диаметры трубопроводов тепловых сетей колеблются от 50 мм (распределительные сети) до 1400 мм (магистральные сети).

Около 10% тепловых сетей проложены надземно. Остальные 90% тепловых сетей проложены под землей. Около 4% проложены в проходных каналах и тоннелях (полупроходных каналах). Около 80% тепловых сетей проложены в непроходных каналах. Около 6% тепловых сетей уложены бесканально. Это самая дешевая укладка, но, во - первых, наиболее подверженная повреждениям и, во - вторых, она требует больших затрат при ремонте, особенно в условиях прокладки в кислых влажных грунтах Северо - Запада.

Тепловая энергия используется в процессе отопления, вентиляции, кондиционирования воздуха, горячего водоснабжения, пароснабжения.

Отопление, вентиляция, кондиционирование воздуха служат для создания комфортных условий для проживания и трудовой деятельности людей. Объем потребления тепловой энергии для этих целей определяется сезоном и зависит прежде всего от температуры наружного воздуха. Для сезонных потребителей характерным является относительно постоянный суточный расход теплоты и значительные его колебания по временам года.

Горячее водоснабжение - бытовое и технологическое - круглогодичное. Оно характеризуется относительно постоянным расходом в течение года и независимостью от температуры наружного воздуха.

Пароснабжение применяется в технологических процессах обдувки, пропарки, паровой сушки.

Отопление может быть местным или централизованным. Простейшим видом местного отопления является печь дровяного отопления, представляющая собой кирпичную кладку с топкой и системой газоходов для удаления продуктов сгорания. Выделенная в процессе сгорания теплота нагревает кладку, которая в свою очередь отдает теплоту помещению.

Местное отопление может осуществляться с помощью газовых отопительных приборов, имеющих малые размеры и вес и высокую эффективность.

Применяются также поквартирные системы водяного отопления. Источник теплоты - водонагревательный аппарат на твердом, жидком или газообразном топливе. Вода нагревается в аппарате, подается в отопительные приборы и, охладившись, возвращается в источник.

В системах местного отопления в качестве теплоносителя может использоваться воздух. Аппараты нагрева воздуха называются огневоздушными или газовоздушными агрегатами. В помещениях воздух подается вентиляторами через систему воздуховодов.

Большое распространение получило местное отопление электрическими приборами, выпускаемыми в виде переносных аппаратов различных конструкций. В некоторых случаях применяются стационарные электроотопительные приборы с вторичными теплоносителями (воздухом, водой).

На предприятиях в производственных помещениях местное отопление практически не используется, однако в административных и бытовых помещениях оно может применяться (в основном электроприборы).

Централизованной называется система отопления с одним общим (центральным) источником теплоты. Это система отопления отдельного здания, группы зданий, одного или нескольких кварталов и даже небольшого города (например, для отопления и горячего водоснабжения города Сосновый Бор Ленинградской области используется один источник теплоты - Ленинградская атомная электростанция).

Отличаются системы также видом передачи теплоты воздуху помещения: конвективное, лучистое; типом нагревательных приборов: радиаторные, конвертерные, панельные.

На рис. 8 показана двухтрубная система центрального водяного отопления, в которой вода поступает в нагревательные приборы по горячим стоякам, а отводится по холодным. В этом случае температура воды получается одинаковой во всех приборах, независимо от их расположения.

Обозначения рис. 8: 1 - котельная, 2 - главный стояк, 3 -нагревательные приборы, 4 - расширительный бачок, 5 - горячая магистраль, 6 - горячий стояк, 7 - холодный стояк, 8 - обратная магистраль.

Рисунок 8.

Однотрубная система центрального отопления (рис. 9) отличается от двухтрубной тем, что вода поступает в приборы отопления и отводится от них по одному и тому же стояку. Схема однотрубной системы может быть проточной (рис. 9, а), с осевыми замыкающими участками (рис. 9, б), со смешанными замыкающими участками (рис. 9, в). Обозначения те же, что на рис. 8.

Рисунок 9.

В проточных системах вода последовательно проходит через все приборы стояка, в системах с осевыми замыкающими участками вода частично проходит через приборы, частично через замыкающие участки, общие для двух приборов одного этажа, в системах со смешанными замыкающими участками вода ответвляется через два замыкающих участка.

В однотрубных системах температура воды снижается в направлении ее движения, то есть приборы верхних этажей горячее приборов нижних этажей. В этих системах несколько меньше расход металла на стояки, но требуется установка замыкающих участков.

Нагревательные приборы, устанавливаемые в обогреваемых помещениях, изготавливаются из чугуна и стали и имеют различные конструктивные формы от гладких труб, изогнутых или сваренных в блоки (регистры), до радиаторов, ребристых труб и отопительных панелей.

Вода для горячего водоснабжения должна быть такого же качества, как и питьевая, так как она используется для гигиенических целей. Температура воды должна быть в пределах 55.. .60°С.

Различают местное и центральное горячее водоснабжение. Местное горячее водоснабжение осуществляется с помощью водонагревательных аппаратов автономного и периодического действия с устройством распределения и разбора горячей воды. Водонагреватели работают на твердом топливе (угле, дровах), на газе и могут быть электрическими. По принципу действия водонагреватели делятся на емкостные и проточные.

Система центрального горячего водоснабжения применяется для объектов тепловой мощностью свыше 60 кВт. Система является частью внутреннего водопровода и представляет собой сеть трубопроводов, распределяющих горячую воду между потребителями.

Рисунок 10.

На рис. 10 показана система центрального горячего водоснабжения с рециркуляцией, где 1 - водонагреватель первой ступени, 2 - водонагреватель второй ступени, 3 - подающая магистраль, 4 - водоразборные стояки, 5 -циркуляционные стояки, 6 - отключающие вентили, 7 - циркуляционная магистраль, 8 - насос.

Циркуляционные стояки предотвращают остывание воды в стояках при отсутствии водоразбора. Источником тепла служат водонагреватели (бойлеры), располагаемые в тепловом вводе здания или в групповом тепловом пункте.

Вентиляция служит для введения чистого воздуха в помещение и удаления загрязненного с целью обеспечения требуемых санитарно-гигиенических условий. Подаваемый в помещение воздух называется приточным, удаляемый - вытяжным.

Вентиляция может быть естественной и принудительной. Естественная вентиляция происходит под действием разности плотностей холодного и теплого воздуха, его циркуляция идет либо по специальным каналам, либо через открытые форточки, фрамуги и окна. При естественной вентиляции напор невелик и соответственно мал воздухообмен.

Принудительная вентиляция осуществляется с помощью вентиляторов, которые подают воздух и удаляют его из помещения с высокой эффективностью.

По виду организации воздушного потока вентиляция бывает общеобменной и местной. Общеобменная обеспечивает обмен воздуха во всем объеме помещения, а местная - в отдельных частях помещения (на рабочих местах).

Система вентиляции, только удаляющая воздух из помещения, называется вытяжной, система вентиляции, только подающая воздух в помещение, называется приточной.

В жилых домах применяется, как правило, общеобменная естественная вытяжная система вентиляции. Наружный воздух поступает в помещения путем инфильтрации (через неплотности в ограждениях), а загрязненный внутренний воздух удаляется через вытяжные каналы здания. Потери тепловой энергии от поступления холодного наружного воздуха восполняются системой отопления и составляют величину 5.. .10% нагрузки отопления в зимний период.

В общественных и производственных зданиях обычно устраивается приточно-вытяжная принудительная вентиляция, причем расход тепловой энергии учитывается отдельно.

Кондиционирование воздуха - это придание ему заданных свойств независимо от наружных метеорологических условий. Это обеспечивается специальными аппаратами - кондиционерами, которые очищают воздух от пыли, подогревают его, увлажняют или осушают, охлаждают, перемещают, распределяют и автоматически регулируют параметры воздуха.

Широкое распространение получили системы кондиционирования для производственных помещений на приборостроительных, радиоэлектронных, пищевых, текстильных предприятиях, к воздушной среде которых предъявляются высокие требования.

Основная задача кондиционера - термовлажностная обработка воздуха: зимой воздух следует подогреть и увлажнить, летом - охладить и осушить.

Воздух нагревается в калориферах, охлаждается в поверхностных или контактных охладителях, аналогичных по устройству калориферам, но в трубах охлаждения циркулирует холодная вода или хладоноситель (аммиак, фреон).

Осушение воздуха получается в результате контакта с поверхностью охладителя, температура которого ниже точки росы воздуха - на этой поверхности выпадает конденсат.

Для орошения воздуха используются форсунки подачи воды или смоченные поверхности с лабиринтными ходами.

Баланс производства тепловой энергии в 2002 г. в Российской Федерации показан на диаграмме рис.1.

Рисунок 1.

Годовое теплопотребление жилищного фонда, объектов социального и коммунального назначения в 2003 г. составило порядка 2933 млн. ГДж (700 млн. Гкал).

Главным потребителем тепловой энергии в этом секторе ЖКХ является жилищный фонд - порядка 2095 млн. ГДж (500 млн. Гкал) в год или 71 % общего потребления.

Тепловая нагрузка системы теплоснабжения (тепловая нагрузка) - это суммарное количество теплоты, получаемой от источников теплоты, равное сумме теплопотреблений приемников теплоты и потерь в тепловых сетях в единицу времени.

Основными производителями и поставщиками тепловой энергии в ЖКХ являются специализированные предприятия коммунальной энергетики, находящиеся в ведении муниципалитетов и исполнительных органов власти субъектов регионов Российской Федерации. Предприятия коммунальной энергетики в 2003 г. обеспечивали отпуск порядка 2220 млн. ГДж (530 млн. Гкал) в год, что составило 64 % общей потребности жилищно-коммунальной и социальной сфер. Остальная часть тепловой энергии поставляется региональными акционерными обществами энергетики и электрификации, а также другими предприятиями и организациями министерств, ведомств, концернов, объединений.

Порядка 1477 млн. ГДж (352,4 млн. Гкал) в год предприятия коммунальной энергетики вырабатывают на собственных теплоисточниках (котельных) и около 964 млн. ГДж (230 млн. Гкал) покупают у других производителей с последующей передачей ее абонентам - потребителям по коммунальным распределительным

тепловым сетям.

Абонент (потребитель) - юридическое лицо, а также предприниматель без образования юридического лица, имеющие в собственности или на ином законном основании объекты и системы теплопотребления, которые непосредственно присоединены к системам коммунального теплоснабжения, заключившие с теплоснабжающей организацией в установленном порядке договор на отпуск (получение) тепловой энергии и (или) теплоносителей.

Объемы и структура производства тепловой энергии на источниках теплоты для теплоснабжения ЖКХ и объектов социальной сферы представлены в табл. 1. Основную технологическую структуру коммунального теплоснабжения формируют собственные домовые и групповые котельные (ГрКУ), квартальные (КТС) и районные (городские) тепловые станции (РТС) с тепловыми сетями от них, распределительные сети, а также многочисленные теплопотребляющие (абонентские) установки.

Таблица 1. Структура производства тепловой энергии

Источник теплоснабжения мощностью, МВт (Гкал/ч)

Производство тепловой энергии

Количество произведенной тепловой энергии, млн. ГДж (млн. Гкал)

Доля в общем объеме производства, %

Домовые котельные - до 3,5 (3)

Групповые котельные (ГрКУ) - от 3,5 до 23,3 (3-20)

Квартальные котельные (КТС) - от 23,3 до 116 (20-100)

Районные котельные (РТС) - более 116 (более 100)

Общий годовой расход топлива на производство тепловой энергии для ЖКК и объектов социальной сферы составляет порядка 150 млн. т условного топлива, в том числе в коммунальных котельных - 66 млн. т условного топлива. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива представлена в таблице 2.

Таблица 2. Структура производства тепловой энергии в коммунальных котельных по видам используемого топлива

Вид топлива

Число котельных, тыс. ед.

Произведено теплоты, млн. ГДж, (млн. Гкал)

Доля в общем производстве, %

Газообразное

Как следует из таблиц 1, 2, половина от общего числа котельных ЖКХ - 22,4 тыс. единиц, работают на твердом топливе и вырабатывают почти 35 % всей тепловой энергии, потребляемой жилищным фондом, оказывая значительную нагрузку (давление) на природную среду обитания людей. Здесь кроется существенный резерв для экологического оздоровления жилых микрорайонов путем замены многих мелких котельных централизованными источниками теплоснабжения или перевода их на экологически более «чистые» виды топлива - газовое, жидкое котельно-печное, а также нетрадиционные возобновляемые энергоресурсы (например, энергия солнца, волны, ветра, геотермальных источников и т.д.).

Решением Правительства РФ сельские системы теплоснабжения должны быть переданы на баланс и в эксплуатацию муниципальным образованиям местных администраций. Эта работа продолжается, и количество установок ЖКХ возрастает.

Расчет расхода теплоты является основой для определения мощности систем теплоснабжения при их проектировании, а также для оптимизации тепловых нагрузок при их эксплуатации. Максимальный расход теплоты определяют при полной нагрузке технологических потребителей и горячего водоснабжения с учетом расхода теплоты на отопление и вентиляцию в самый холодный период года. По максимальному расходу теплоты выбирается мощность производственно-отопительной котельной предприятия или расход теплоносителей от централизованных источников теплоты.

Расход теплоты на технологические нужды приводится в проектной документации предприятия или цеха. Детальные расчеты расходов теплоты на отдельные технологические процессы выполняются по специальным методикам и нормативным материалам. В случае отсутствия проектных данных для определения мощности котельной и всей системы теплоснабжения расходы теплоты и теплоносителей вычисляются по укрупненным удельным показателям и нормативам или по аналогии с другими предприятиями. Ориентировочные нормы расхода теплоты различными потребителями с учетом потерь в окружающую среду представлены в табл. 19.2.

Таблица 19.2

Ориентировочные нормы расхода теплоты на технологические нужды в расчете на один плотный м 3 (пл. м 3) продукции

Примечания :

  • 1. Различие в расходах теплоты на сушку пиломатериалов и шпона объясняется величиной потерь теплоты в сушилках различного типа.
  • 2. Расход теплоты на прессование зависит от плотности готовых плит. Большие значения следует принимать для плит большей плотности.
  • 3. Теплота на обогрев бассейна расходуется в течение половины отопительного сезона. Большие значения расхода теплоты следует принимать для регионов с низкими зимними температурами.

Приведенные нормы не являются постоянными. Они постепенно снижаются в результате применения энергосберегающих технологий.

Расчет максимальной тепловой мощности, МВт, технологических потребителей, за исключением обогрева бассейна, можно проводить по следующей зависимости:

Тепловую мощность, МВт, на подогрев воды в бассейне лесопильного производства можно рассчитать по формуле

В формулах (19.1) и (19.2): q npi , q 6 - нормы расхода теплоты технологическими потребителями и бассейном лесопильного цеха на единицу продукции, МДж/пл. м 3 (см. табл. 19.2); П™- - годовое производство продукции тепловым потребителем, пл. м 3 ; - годовой объем бревен, обрабатываемых в бассейне, МДж/пл.м, п от - продолжительность отопительного периода, определяется по климатологическим данным для заданного региона, сут.; z np - время работы теплового потребителя в год, ч/год.

Расходы теплоты на отопление и вентиляцию зданий зависят от температуры наружного воздуха и других климатических условий (солнечной радиации, скорости ветра, влажности воздуха), а также от конструкции, производственного назначения и объема здания. Потребители тепловой энергии на отопление и вентиляцию, для которых расход теплоты необходим только при сравнительно низких температурах наружного воздуха, называются сезонными.

Максимальная (расчетная) тепловая мощность отопления отдельного здания кВт, для каждого здания определяется как

тепловая мощность вентиляции с подогревом воздуха

где q 0T j и q B i - удельные отопительные и вентиляционные характеристики зданий, зависящие от назначения здания и его объема, Вт/(м 3 К) ; V t - объем здания по наружному обмеру, м 3 ; t p o - температура наружного воздуха для расчета отопления, °С, ; Г р в - температура наружного воздуха для расчета вентиляции, °С, ; Г вн - температура внутри помещений по Санитарным нормам и правилам (СНиП 41-01-2003, актуализированная редакция, действует с 2013 г.) принимается: для производственных помещений - 16 °С, административных и жилых - 18 °С.

Суммарная максимальная тепловая мощность определяется:

Для системы отопления

Для системы вентиляции

Средние расходы теплоты для отопления и вентиляции, и (2 в р, кВт, за отопительный период определяются по формулам:

где t c р о - средняя за отопительный период температура наружного воздуха, °С .

Средний за отопительный период расход теплоты на горячее водоснабжение Q B P B , кВт, определяется по формуле

где с в = 4,19 - удельная теплоемкость воды, кДжДкг-К); т - количество жителей или работников на предприятии; а = 100 - норма расхода горячей воды для жилых зданий на одного жителя, кгДчел-сут); b = 20 - норма расхода воды для общественных зданий, кгДчел-сут); / г = 65 °С - температура горячей воды; t x = 5 °С - темм пература холодной воды.

Величину (9 г ср, кВт, приближенно можно оценить по формуле

Расчетный расход теплоты на горячее водоснабжение жилых и общественных зданий Q rB , кВт, рассчитывается по формуле

где к - коэффициент часовой неравномерности расхода теплоты в течение суток = 2,04-2,4).

В летнее время тепловая нагрузка горячего водоснабжения снижается за счет повышения температуры холодной воды, средний расход теплоты (? г с в л, кВт, определяется по формуле

где / х л - температура водопроводной воды летом (15 °С); (3 - коэффициент, учитывающий снижение расхода горячей воды летом по сравнению с зимой (принимается равным 0,8 для жилых и общественных зданий, для промышленных предприятий (3 = 1).

Структурообразующая роль транспортной системы города

Организация систем водоснабжения и водоотведения

Организация энерго- и теплоснабжения

МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ

ИНФРАСТРУКТУРЫ

ИНЖЕНЕРАЯ и ТРАНСПОРТНАЯ

Важнейшей отраслью городского хозяйства является система энергоснабжения города, к которой относятся теплоснабжающие и электроснабжающие хозяйства.

Система энергоснабжения включает комплекс энергетических установок и сетей, обеспечивающих потребителей в городе тепловой и электрической энергией. Особую сложность для муниципальных властей представляет организация систем теплоснабжения, поскольку требуют значительных капиталовложений в теплотехническое оборудование и тепловые сети, непосредственно влияют на экологическое и санитарное состояние окружающей среды при этом требуют различных вариантов их размещения.

Теплоснабжение - самый энергоемкий и самый энергорасточительный сегмент национальной экономики. Поскольку главным потребителем тепловой энергии является население, теплоснабжение является социально-значимым сектором энергетического комплекса РФ. Цель теплоснабжения – удовлетворение потребностей населения в услугах отопления, горячего водоснабжения и вентиляции.

При организации системы теплоснабжения города необходимо учитывать классификацию этих систем по признакам:

1. источнику приготовления тепла (высокоорганизованное централизованное теплоснабжение на базе комбинированной выработки тепла и электроэнергии на ТЭЦ – теплофикация);

2. степени централизации ;

3. роду теплоносителя различают водяные (для снабжения тепловой энергией сезонных потребителей и для горячего водоснабжения) и паровые системы теплоснабжения (для технологических процессов);

4.способу подачи воды на горячее водоснабжение и отопление делятся на закрытые и открытые. Первые используют воду из тепловых сетей как греющую среду для нагревания в подогревателях поверхностного типа водопроводной воды, поступающей затем в местную систему горячего водоснабжения. Вторые горячую воду к водоразборным приборам местной системы горячего водоснабжения берут из тепловых сетей.

5. количеству трубопроводов тепловых сетей различают системы теплоснабжения однотрубные, двухтрубные и многотрубные.;

Современная централизованная система теплоснабжения состоит из следующих элементов:

Для организации централизованного теплоснабжения используется два типа источников тепла: теплоэлектроцентрали (ТЭЦ), районные котельные (РК) различной мощности.

Районные котельные большей мощности сооружают для обеспечения теплом крупного комплекса зданий, нескольких микрорайонов или района города. Тепловая мощность современных районных котельных составляет 150-200Гкал/час.



Этот вид систем теплоснабжения имеет ряд преимуществ перед теплоснабжением от котельных малой и средней мощности.

1.более высокий коэффициент полезного действия котельной установки;

2. меньшее загрязнение атмосферного воздуха;

3. меньший расход топлива на единицу тепловой мощности;

4. большие возможности механизации и автоматизации;

5. меньший штат обслуживающего персонала и т.д.

Следует учитывать, что ТЭЦ экономически целесообразно сооружать лишь при больших тепловых нагрузках (более 400 Гкал/ч).

На ТЭЦ тепло высокого потенциала используется для выработки электроэнергии, а тепло низкого потенциала – для теплоснабжения. Тепловые сети разделяются на магистральные , прокладываемые на главных направлениях населенного пункта, распределительные – внутри квартала, микрорайона – и ответвления к отдельным зданиям и абонентам.

Схемы тепловых сетей применяют, как правило, лучевые. Во избежание перерывов в снабжении теплом потребителя предусматривают соединение отдельных магистральных сетей между собой, а также устройство перемычек между ответвлениями. В больших городах при наличии нескольких крупных источников тепла сооружают более сложные тепловые сети по кольцевой схеме.

Эксплуатацией систем теплоснабжения и управлением технологическими процессами и теплотехническим оборудованием занимаются в основном специализированные организации – муниципальные унитарные предприятия и акционерные общества.

Основные системные и проблемы функционирования теплоснабжения современных городов:

Значительный физических и моральный износ оборудования систем теплоснабжения;

Высокий уровень потерь в тепловых сетях;

Массовое отсутствие приборов учета тепловой энергии и регуляторов отпуска тепла у жителей;

Несовершенство нормативно-правовой и законодательной базы.

Одной из первостепенных проблем является энергорасточительность и неэкономичность систем централизованного теплоснабжения, вызванного массовым отсутствием приборов учета и регуляторов расхода тепловой энергии потребителей. Так, в жилищной сфере в качестве критерия качества оказания услуги теплоснабжения принимается температура в помещении. Если температура соответствует критерию» не ниже 18 С», то услуга считается оказанной и должна быть оплачена по действующему нормативу. Но температура внутри помещения не может быть использована для оценки количества поставляемого тепла. В разных зданиях для отопления одной и той же площади может расходоваться различное количество тепловой энергии – различия могут составлять до 40-60% только за счет различных тепловых характеристик зданий. Население, как правило, оплачивает отопление и горячую воду не прямо за фактически потребленное тепло, а по нормам расхода, которые устанавливаются органами власти в каждом субъекте Федерации. Тепловая энергия не воспринимается жителями как товар, который нужно покупать. По оценкам экспертов Минэнерго из-за невозможности контролировать реальные объемы поступающего из систем центрального отопления тепла потребители ежегодно переплачивают за недопоставленное им тепло около 114 млрд. руб., в том числе население – около 51 млрд. руб.

Плата населения за тепловую энергию ни как не связана с объемом и качеством услуг теплоснабжения. В результате несоответствия объема и режима поставляемого тепла его необходимому количеству возникает целый ряд негативных последствий, в числе которых:

Население переплачивает за ненужное либо не доставленное ему тепло и в этом случае расходует дополнительные средства на электроэнергию для обогрева квартир;

Завоз лишнего топлива в город перегружает транспортные коммуникации;

Ухудшается экология городов из-за дополнительных выбросов и отходов теплоснабжающих установок.

Теплоснабжение г. Казани

Теплоснабжение города Казани осуществляется: от источников ОАО «ТатЭнерго» и от 126 котельных МУП «Производственное объединение «Казэнерго».

Износ распределительных внутриквартальных сетей отопления и горячего водоснабжения составляет 46%.

Электроснабжение – это процесс обеспечения потребителей электрической энергией.

Муниципальное хозяйство городов является крупным потребителем электроэнергии, и на его долю приходится почти четверть вырабатываемой в стране электрической энергии. В ближайшей перспективе суммарная мощность электробытовых приборов для средней трех-, четырехкомнатной квартиры составит 5 кВт, а с учетом электроплиты, электроводонагревателя и кондиционера – 20 к Вт. В этих условиях особую актуальность приобретают проблемы рациональной организации системы электроснабжения потребителей и повышения эффективности работы электроснабжающих предприятий.

Система электроснабжения – совокупность электроустановок электрических станций (генерирующих мощностей), электрических сетей (включая подстанции и линии электропередач различных типов и напряжений) и приемников электроэнергии, предназначенная для обеспечения потребителей электроэнергией.

В настоящее время на большей части территории ЕЭС России продавцами электроэнергии являются региональные энергосистемы, а также муниципальные (городские и районные) предприятия электрических сетей и подразделения энергосбыта, которые в свою очередь перепродают электроэнергию конечным потребителям.

Основными видами деятельности муниципальных предприятий электроснабжения городов являются :

Покупка, производство, передача, распределение и перепродажа электрической энергии;

Эксплуатация внешних и внутренних систем электроснабжения жилых помещений, объектов соцкультбыта и коммунального хозяйства.

Проектирование, строительство, монтаж, наладка, ремонт оборудования, зданий и сооружений электрических сетей, объектов коммунальной электроэнергетики, электроэнергетического оборудования;

Соблюдение режимов энергосбережения и энергопотребления.

Финансирование производственно-хозяйственной деятельности муниципальных предприятий электроснабжения происходит за счет оплаты потребленной электроэнергии абонентами, а также за счет средств городского бюджета, выделяемых по следующим статьям:

На возмещение разницы между утвержденным тарифом за 1 кВт час электроэнергии и льготным тарифом для населения;

Оплату работ и услуг, финансирования которых осуществляется из бюджета муниципального образования, включая:

Внутридомовое обслуживание жилого фонда;

Уличное освещение города;

Праздничную иллюминацию города;

Проведение капитального и др. видов ремонта внутригородских линий электропередач, трансформаторных подстанций и пр.

Структура электроснабжения г. Казани:

Электроснабжение Казани осуществляется по электрическим сетям

ОАО «Сетевая компания» от: трех казанских ТЭЦ ОАО «Татэнерго», электростанции Закамья: Заинская ГРЭС и Нижнекамской гидроэлектростанцией.

Муниципальных электрических сетей, за исключением сетей наружного освещения и ГорЭлектоТранспорта в городе Казани нет.